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It is argued in Leblanc 1983b that statements are accorded probabilities 
in light of assumptions - or, as mathematicians often put it, under 
conditions.~ It is further argued that each singulary probability function 
in Kolmogorov 1933 or, equivalently, Popper 1955 comes with (a set 
of) assumptions, to wit, those statements evaluating to 1 under P. With 
P a singulary probability function of the Kolmogorov-Popper  sort and 
A a statement from a certain language L, Leblanc thus takes P(A) to 
be the probability that P accords to A in light of the assumptions in 
{A: P(A)= 1}. His rationale for interpreting P(A) in this manner  is 
two-fold. He first contends that any assumption set in light of which a 
rational agent would accord probabilities must be deductively closed 
and, for convenience 's  sake, may be presumed consistent as well. He 
then establishes that a set S of statements of L is consistent and 
deductively closed if and only if there is a singulary probability function 
P for L such that S = {A: P(A)= l}. The second result is called by 
Leblanc The Fundamental Theorem on Assumption Sets, Case One. 

A like approach is taken here towards binary probability functions. 
We presume that pairs of statements, as well as single statements, are 
accorded probabilities in light o[ assumptions, and that each binary 
probability function P in Popper  1959 comes with (a set of) assump- 
tions, to wit, those statements A of L such that - no matter  the 
statement B of L - P(A/B)=  1. We thus take P(A/B) to be the 
probability that P accords to A in light of the assumptions in {A : (VB) 
(P(A/B) = 1)} and in the light of B, B a stated assumption which may 
but need not figure among the members of {A:(VB)(P(A/B)  = 1)}, and 
when it does not figure among those unstated assumptions is operative 
only if flagged as in P(A/B).  Our rationale for interpreting P(A/B) in 
this manner  is two-fold. We take it as in Leblanc 1983b that a rational 
agent would accord probabilities in light of all and only those sets of 
statements o]" L that are consistent and deductively closed. And we 
establish (in Theorem 5 below) that a set S of statements of L is consistent 
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and deductively closed if and only if there is a binary probability function 
P for L such that S = { A : ( V B ) ( P ( A / B ) = I ) }  a result we call The 
Fundamental Theorem on Assumption Sets, Case Two. 

When arguing that assumption sets must be deductively closed, 
Leblanc remarked that 

to be rational is to be alert to logical implications, those of what one knows, those of what 
one believes, and - in the present context - those of what one assumes. So, a rational agent 
- and it is for rational agents that the probability functions in studies such as this are 
intended - would own as an assumption any statement of L logically implied by his 
assumptions, and hence accord probabilities in light of none but  deductively closed sets of 
statements of L. 

Leblanc could see according probabilities in light of "contradictory" 
assumptions, so long as the probabilities accorded all equal 1. However, 
the constraints Kolmogorov and Popper place on singulary probability 
functions ruled that out. CO, one of the constraints Popper places on 
binary probability functions, rules it out here as well. The constraint, 
however, could be dropped without prejudice (other than editorial) to 
our results, a matter we take up on p. 100. 2 

The authors first thought of assumption sets in 1979-80 while 
outfitting intuitionistic logic with a "probabilistic" semantics, and they 
obtained (roughly) the present proof of the Fundamental theorem, Case 
Two, in the summer of 1980. Proof of Case One was found in early 
1982 and is reported in Leblanc 1983b. 3 

The language L we work with is that in Leblanc 1983b. It has as its 
primitive signs ~ o atomic statements, the two connectives ' - - '  and '&', 
and the two parentheses '(' and ')'; as its formulas all finite sequences of 
primitive signs of L; and as its statements (i) the atomic statements 
just mentioned, (ii) all formulas of the sort - A ,  where A is a 
statement of L, and (iii) all those of the sort (A &B), where each of A 
and B is a statement of L. We shall presume the statements of L to have 
been arranged in a fixed order, to be known as their alphabetic order; 
one way of doing that, due to Smullyan, is reported in Leblanc and 
Wisdom 1972. To abridge matters, we shall write (AD B) for 
- - (A & --B); with A the alphabetically earliest statement of L, we shall 
write T for (A D A); and, when clarity permits, we shall drop outer 
parentheses. 
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L has as its axioms all statements of L of the sorts A D (A & A), 
( A &  B) D A, and (A D B) D ( - ( B  & C) ~ - ( C &  A)), and as its one 
rule of inference Modus Ponens - with B called as in Quine the ponential 
of A and A ~ B. Where A is a statement and S a set of statements of L, 
a finite column of statements of L is counted a proof of A from S if (i) 
every  entry in the column is a member  of S, an axiom, or the ponential 
of two earlier entries in the column, and (ii) A is the last entry in the 
column; A is counted provable from S (S ~ A, for short) if there exists a 
proof of A from S; and A is counted provable O-A, for short) if ~b I- A. 
To  define formally terms used above and congeners of these, a set S of 
statements of L is counted consistent if there is no statement A of L 
such that both S F- A and S ~ --A, inconsistent otherwise; complete if for 
each statement A of L either S W A or S ~ - A ,  incomplete otherwise; 
deductively closed if S has among its members each statement of L 
provable from it; and maximally consistent if S is consistent, complete,  
and deductively closed. Further,  we say that A is consistent with S if 
S U {A} is consistent, and that S and S' are deductively equivalent if any 
statement of L provable from either of S and S' is provable from the 
other. 

One more syntactic notion will be defined on p. 95, the Lindenbaum 
extension L(S) of a set S of statements of L; and one more on p. 101 that 
of a state-description of L. 

Turning to semantic (hence, probabilistic) matters, we understand by 
a (binary) probability function for L any function P that maps the pairs 
of statements of L into reals and meets the following seven constraints 
(issuing from constraints in Popper  1959): 4 

CO. (3A)(3B)(P(A/B) ~ 1) 
C1. O~  P(A/B) 
C2. P ( A / A ) =  1 
C3. If (3C)(P(C/B) ~ 1), then 

P ( - A / B )  = l - P(A/B)  

(Existence) 
(Nonnegativity) 
(Reflexivity) 

(Complementation) 
C4. P(A & B/C) = P (A /B  & C) × P(B/C) (Multiplication) 
C5. P(A & B/C) <- P(B & A/C)  (Commutat ion to the left) 
C6. P(A/B  & C)<-P(A /C& B) (Commutat ion to the right) 

With P a (binary) probability function of L, we take a statement A of L 
to be P-normal if (3B) (P(B/A)~  1), 5 otherwise to be P-abnormal; 
and, as indicated earlier, we take a set S of statements of L to constitute 
the assumption set of P if S = {A : (VB)(P(A/B) = 1)}. With S again a 
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set of statements of L, we take S to constitute a binary assumption set of 
L - for short, an assumption set of L - if there exists a (binary) 
probability function for L of which S is the assumption set. 6 And, with S 
once more a set of statements and A a statement of L, we say that S 
logically implies A in the probabilistic sense if - no matter  the probability 
function P for L - (VB)(P(A/B)= 1) if (VB)(P(C/B)= 1) for each 
member  C of S, and that A is logically true (i.e., is a tautology) in the 
probabilistic sense if 4~ logically implies A in that sense. S thus logically 
implies A in the probabilistic sense if and only if A belongs to each 
assumption set of L of which S is a subset, and A is logically true in that 
sense if and only if A belongs to each assumption set of L, two results 
which speak for our account  of an assumption set. 

Proof that 

(1) If S ~- A, then S logically implies A in the probabilistic sense, 

a probabilistic version of the Strong Soundness Theorem for L, will be 
found in Leblanc 1979 and (considerably improved) in Leblanc 1983b, 
as will be proof that 

(2) If  S logically implies A in the probabilistic sense, then S ~- A, 

a probabilistic version of the Strong Completeness Theorem for L. 
(1)-(2) legitimize the account  of logical implication and - with th as S - 
logical truth. We appeal to (1) in the proof of Theorem 1, and show on 
pp. 99-100 that (2) follows from Theorem 3(a). 

Half of the Fundamental  theorem on Assumption sets, Case Two, is 
readily proved: 

T H E O R E M  1. f f  there is a probability function P for L such that 
S = {A: (VB)(P(A/B)  = 1)}, then S is deductively closed and consistent. 

Proof: Let  P be an arbitrary probability function for L such that 
S = {A : (VB)(P(A/B)  = 1)}. (1) Let  A be an arbitrary statement of L 
such that S ~-A. Then,  by the Strong Soundness Theorem for L, A 
belongs to each assumption set of L of which S is a subset. But by 
hypothesis S is an assumption set of L, and S is of course a subset of 
itself. Hence  A c S. Hence  S is deductively closed. (2) Suppose for 
reductio that S is inconsistent. Then,  no matter  the statement A of L, 
S P A, hence by (1) A ~  S, and hence (VB)(P(A/B)= 1), against 
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Constraint CO. Hence  S cannot  be inconsis tent]  
Proof of the converse of Theorem 1 calls for an extra notion and a 

few preliminary results. 
The  reader is doubtless familiar with the so-called Lindenbaum 

extension L(S) of a set S of statements of L. We define L(S) by means of 
(i)-(iii) below, and - using various Lindenbaum extensions of the sort 
L(S U {'}) - we construct in Theorem 2 a binary function Ps which (a) 
invariably meets Constraints C1 -C6  and (b) when S is consistent, meets 
Constraint CO as well. 

Let  S be an arbitrary set of statements of L, and A1, A2, A3, etc., be 
in alphabetic order  the various statements of L. 

(i) 
(ii) 

L , ( S )  = 

and 

(iii) 

Lc~(S) is to be S itself, 
for each / f r o m  1 on 

Li-l(S) U {Ai} if Li t(S) is inconsistent o r  Li_l(S)U {Ai} 
is consistent 

. Li-I(S) U { -Ai}  otherwise, ~ 

L(S) is to be the union of L0(S), Ll(S), L2(S), etc. 

We shall take for granted various familiar facts about Lindenbaum 
extensions in general: S is a subset of L(S), L~(S) (i = 1, 2, 3 . . . .  ) and 
L(S) are consistent if S is, L(S) is complete,  and L(S) is deductively 
closed. Further facts about these extensions are separately recorded in 
Lemmas 1 and 2, and one fact about Lindenbaum extensions of the sort 
L(S U {-}) is recorded in Lemma 3. 

LEMMA 1. Let S be a set of statements of L; let Al, A2, A3,. • . ,  be in 
alphabetic order the various statements of L; and for each i from 1 on let 
Bi be Ai or - A i .  

(a) I f  S is inconsistent, then L(S) = S U {A1, A2, A3 . . . .  }; 
(b) If  S is consistent, then 

Li(S) = Li l(S) U {Ai} 

o r  

Li(S) = Li l(S) U {-A~} 

according as Ai is consistent with Li-l (S) or - -A i  is; 
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(c) Whether or not S is consistent, ( i) L( S) = S U { B1, B2, B 3 ,  . . . } and 
( ii) each member of S is one of B~, B2, B3 . . . .  ; 

(d) If  S is consistent and L( S) ~- A,  then A is consistent with each subset 
of L(S). 

Clause (b) of the lemma hinges upon the fact that Li_~(S) is consistent if 
S is, and either Li._1(S) U {Ai} or Li-I(S) U { -Ai}  is consistent if Li-l(S) 
is. (ii) in Clause (c) follows from (a) when S is incofisistent. In the 
contrary case let member C of S be the alphabetically i-th statement of 
L. Since Li(S) is consistent, L~(S) is sure to be Li_I(S) U {C} rather than 
L~_~(S) U {-C},  and hence C is sure to be B~. And Clause (d) hinges 
upon the fact that A ~ L(S) if L(S) ~- A,  and each subset of L(S) is sure 
to be consistent if S is. So, under the present circumstances each subset 
S 'U {A} of L(S) is sure to be consistent, and hence A is sure to be 
consistent with each subset S' of L(S). 

L E M M A  2. If S and S' are deductively equivalent, then L( S) = L( S'). 
Proof: Let S and S' be deductively equivalent. When S is in- 

consistent, so of course is S', and hence by Lemma l(a) L(S) = L(S'). 
So, suppose S is consistent, and let 

L(S) = S U {B~, B2, B3 . . . .  }, 

where B1, /32, /33, etc., are as in Lemma 1. (1) Since S and S' are 
deductively equivalent, B1 is consistent with S' as well as with S, and 
hence by Lemma l(b) LI(S') = S' U {B1}. (2) Since as a result LI(S) and 
L~(S') are deductively equivalent,/32 is consistent with LI(S') as well as 
with LI(S), and hence by Lemma l(b) again L2(S') = S' U {B~, B1}. And 
so on. Hence for each i from 1 on Li(S ' )= S U {Ba, B2 , . . .  Bi}, and 
hence 

L(S') = S' U {B,, B2, B3 . . . .  }. 

But by Lemma l(c) each member of S is among B1, B2, B3, etc., as is 
each member of S'. Hence L(S) = L(S'). Hence Lemma 2. 

L E M M A  3. If L(S U {A}) F B, then L(S U {A}) = L(S U {B & A}). 
Proof: When S U {A} is inconsistent, so is S U {B & A}, and hence by 

Lemma l(a) L(S U {A}) = L(S U {B & A}). So, suppose S U {A} is 
consistent, and for arbitrary i equal to or larger than 1 let 
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L~(SU{B& A}) = S LI{B & A} U {Cl, C2,... C/}. 

Since Li(S U {A}) is sure to be consistent if S U {A} is, CI is consistent 
with S U {B & A}, C2 with S U {B & A} U {C1}, etc. But, if so, then C1 is 
consistent with S U {A}, C2 with S U {A} U {C~}, etc., and hence by 
Lemma l(b) 

L~(S U {A}) = S U {A} U {C1, G , . . . ,  Ci}. 

Suppose then that 

L,(SU{A}) = SU{A}U{C',, C; , . . . ,  C',}, 

and suppose L(S  U {A} ~- B. Then by Lemma l(d) B is consistent with 
S 10 {A} U {C~}, and hence C~ is consistent with S 12 {B & A}. Hence by 
the same reasoning C~ is consistent with S U {B & A} U {C[}. And so 
on. Hence 

L,(SU{B &,4}) = S U { B &  A}U{C~, C ; , . . . ,  C'i}. 

Hence 

and 

L(S U {A}) = S O {A} U S' 

L ( S U { B  & A}) = S U { B &  A}U S' 

for some common set S' of statements of L. But by Lemma l(c) each of 
A and B & A  is sure to be a member of S'. Hence L ( S U { A } ) =  
L(S  U {B & A}). Hence Lemma 3. 

With Lemmas 2 and 3 at hand we show that any set S of statements of 
L generates a function for L meeting Constraints C1-C6; and, when S 
is consistent, one meeting Constraint CO as well. The result will readily 
yield the converse of Theorem 1. 

T H E O R E M  2. Let S be a set of statements of L, and Ps be the binary 
function such that, for any two statements A and B of L, 

{10 i fL(SU{B})F-A 
Ps( A / B ) = otherwise. 

Then: 
(a) Ps meets Constraints C1-C6; 
(b) If S is consistent, then Ps meets Constraint CO as well. 
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Proof: (a) That Ps meets Constraints C1-C6 can be shown as follows. 
Constraint CI: 0-< Ps(A/B) by the very construction of Ps. 
Constraint C2: L(S U {A}) t- A. Hence Ps(A/A) = 1. 
Constraint C3: Suppose (=IC)(Ps(C/B)¢I). Then (3C)(L(SU 
{B})~ z C), and hence L(SO{B}) is consistent. Suppose next that 
Ps(A/B) = 1, in which case L(S U {B}) k A. Then L(S U {B}) b t --A by 
the consistency of L(SU{B}), and hence Ps( -A /B)=O.  Suppose 
finally that Ps(A/B)= O. Then L(S U{B})~z A, hence by the com- 
pleteness of L(S U {B}), L(S U {B}) k --A, and hence Ps( -A /B)  = 1. 
Hence, if (3C)(Ps(C/B) ~ 1), then Ps( -A /B)  = 1 - Ps(A/B). 
Constraint C4: Suppose first that P s ( A & B / C ) =  1. Then L(SU 
{(7}) ~- A & B, and hence both L(S U {C}) k A and L(S U {C}) k B. But, 
if L(S U {C}) t- B, then by Lemma 3 L(S U {C}) = L(S U {B & C}), and 
hence L ( S U { B &  C})t-A. Hence both Ps(A/B& C) and Ps(B/C) 
equal 1, and hence Ps( A & B / C) = Ps( A / B & C) x Ps( B / C). Suppose 
next that Ps(A& B/C) =0.  Then L(SU{C})I/ A &  B, hence either 
L(SU{C})~/A or L(SU{C})~B (or both), and hence either 
Ps(A/C) = 0 or Ps(B/C) = 0 (or both). Now suppose Ps(B/C) ~ 0, in 
which case Ps(A/C)=O. Then Ps(B/C)=I ,  hence L(SU{C})~-B, 
hence by Lemma 3 L(SU{C } )=L(SU{B&C}) ,  hence L(SU 
{C})kA if and only if L ( S U { B & C } ) k A ,  hence Ps(A/C)-- 
Ps(A/B& C), and hence Ps(A/B& C ) =  0. Hence, if Ps(B/C)~:0, 
then Ps(A/B& C)=O. Hence Ps(B/C)=O or Ps(A/B& C)=O. 
Hence again Ps(A & B/C) = Ps(A/B & C) x Ps(B/C). 
Constraint C5: L(S U {C}) ~- A & B if and only if L(S U {C}) k B & A, 
hence P s ( A & B / C ) = P s ( B & A / C ) ,  and hence Ps(A&B/C)  < - 
Ps(B & A~ C). 
Constraint C6: Both when consistent and when not, S U {B & C} and 
S U { C &  B} are deductively equivalent. Hence by Lemma 2 L(S U 
{B & C}) = L(S U {C & B}), hence L(S U {B & C}) k A if and only if 
L ( S U { C &  B}) F- A, hence Ps(A/B& C) = Ps(A/C& B), and hence 
Ps(A/B& C) < - Ps(A/C& B). 

(b) Suppose S is consistent. Then S U {T} is consistent, hence so is 
L(SU{T}), hence L(SU{T})A---T,  hence Ps( -T /T )=O,  hence 
(=tA)(3B)(Ps(A/B) --/= 1), and hence Ps meets Constraint CO as well as 
Constraints C1-C6. Hence (b). 

T H E O R E M  3. (a) If a set S of statements of L is consistent, then 
there is a probability function P for L such that { A : S k A } =  
{A: (V B)( P( A / B) = 1)}. (b) If S is consistent and deductively closed, then 
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there is a probability function P for L such that S=  
{A: (VB)(P(A/B)  = 1)}. 

Proof: Let S be consistent. 
(a) Let Ps be the function defined in the preamble of Theorem 2, and 

suppose first that S k A. Then (VB)(L(S U {B})k A), and hence (VB) 
(Ps(A/B) = 1) by the definition of Ps in Theorem 2. Suppose next that 
S / A. Then S U {-A} is consistent, and hence so is L(S U {-A}). But 
L(S U {-A}) k - A .  Hence L(S U {-A}) ~z A, hence P s ( A / ~ A )  = 0 by 
the definition of Ps, and hence (3B)(Ps(A/B) ¢ 1). Hence S k A if and 
only if (VB)(Ps(A/B) = 1). Hence (a). 

(b) Suppose S is deductively closed. Then S = {A : S k A}. Hence (b) 
by (a). 

Hence: 

T H E O R E M  4. Any set of statements of L that is consistent and 
deductively closed is the assumption set of a probability function for L. 

Hence Case Two of the Fundamental Theorem on Assumption Sets: 

T H E O R E M  5. A set of statements of L is the assumption set of a (binary) 
probability function for L if and only if it is consistent and deductively 
closed. 

As the reader may verify, S k A if and only if A belongs to each 
consistent and deductively closed set of L of which S is a subset. 
Theorem 5 thus guarantees that 

(3) If S ~- A, then A belongs to each assumption set of L of which S is a 
subset, 

and 

(4) If A belongs to each assumption set of L of which S is a subset, then 
Sk  A, 

and hence - given the account of logical implication on p. 94 - the 
theorem yields each of (1) and (2) on that page. 

That  Theorem 5 yields (1) signifies little since we called on that ver- 
sion of the Soundness Theorem for L when proving Theorem 1. That 
Theorem 5 yields (2) is of more interest, as indeed may be the follow- 
ing proof of (2) by means of just Theorem 3(a). Suppose that S ~ A, 
in which case S U {--A} is sure to be consistent. Then by Theorem 
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3(a) there exists a probability function for L, call it PSU{-A}, such that (i) 
(VC)(Psu{-A}(B/C) --- 1 )  for each statement B of L that belongs to S 
and hence is provable from S, and (ii) (VC)(Psu{-A}(-A/C) = 1 )  and 
hence Psu{-A}(~A/T) - l .  But, as a brief argument using Constraint CO 
would show, T is P-normal ,  this for each probability function P for L. 9 
Hence  by Constraint C3 Psu{-a}(a/T)--0~ 1. Hence  there exists a 
probability function P for L such that (V C)( P( B / C) = 1) for each 
member  B of S and yet (3C)(P(A/C) --/: 1). Hence,  by Contraposition, 
A is sure - if logically implied by S in the probabilistic sense - to be 
provable from S. 

Returning to a point raised on p. 92, suppose that Constraint CO 
were dropped. Theorems 1 and 2(a) would then guarantee that a set of 
statements of L constitutes an assumption set of L if and only if it is 
deductively closed. The  result is easily accommodated  here. We just 
pointed out that S ~- A if and only if A belongs to each consistent and 
deductively closed set of statements of L with S as a subset. However ,  it 
can also be shown that S~-A if and only if A belongs to each 
deductively closed set of statements of L - be the set consistent or not - 
with S as a subset. So, with CO dropped from the list of constraints on p. 
93. A would still be provable f rom S if and only if it belongs to each 
assumption set of L with S as a subset. In view of this result and others, 
one might willingly jettison C0J  ° 

The  assumption sets of L can be sorted as follows: 

Group One, to consist of {A: ~- A}, a set included in all the assumption 
sets of L, 
Group Two, to consist of the remaining assumption sets of L that are 
incomplete, and 
Group Three, to consist of all the assumption sets of L that are complete 

- hence, to consist of the "maximally consistent" sets of statements of 
L. 

The  set in Group One is the "smallest" assumption set of L: it is the 
only assumption set of L no proper  subset of which constitutes an 
assumption set of L. The  sets in Group Three ,  on the other hand, are 
the " largest"  assumption sets of L as befits maximally consistent sets: 
they are the only assumption sets of L no proper  superset of which 
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constitutes an assumption set of L. 
The  probability functions for L with {A : ~- A} as their assumption set 

are called in Leblanc and van Fraassen 1979 Carnap's probability 
functions for L. 11 They  are the probability functions for L that meet the 
following constraint (due to van Fraassen and to Fine, independently): 

C7. No matter  the state-description C of L, P ( - C / C )  = 0, 

a state-description of L being a conjunction of the sort ( . . .  (±A1 & 
±A2) & . . .  ) & ± A , ,  where n -> 1, A1, As . . . .  , A, are in alphabetic 
order  the first n atomic statements of L, and for each i from 1 through 
n, ± Ai is Ai or --Ai. 12 

L E M M A  4. Let C be an arbitrary state-description of L. 
(a) If P ( - C / C ) = O ,  then - no matter the statement A of L - 

(VB)(P(A/B)  = 1) if and only if ~- A. 
(b) If  - no matter the statement A of L - (VB)(P(A/B) = 1) / / a n d  

only if ~- A, then P ( - C / C )  = 0 .  

Proof: (a) Let  P ( - C / C ) = O ,  and hence ( 3 B ) ( P ( B / C ) ~  1); and 
suppose first that ~-A. Then  (VB) (P(A/B)= 1) by the Soundness 
Theorem for L. Suppose next that I/A. Then  there is sure to be a 
state-description C of L such that ~- C D - A ,  hence by a familiar result 
such that P ( - A / C )  = 1,13 and hence by C3 (and (::i B)( P( B / C) ~ 1)) 
such that P ( A / C ) = 0 ~  1. Hence  ( 3 B ) ( P ( A / B ) ¢  1). Hence  (VB) 
(P(A/B)  = 1) if and only if F- A. Hence  (a). 14 

(b) Let  (VB)(P(A/B)  = 1) if and only if F- A, this for any statement A 
of L. Since }z - C ,  (3B) (P(~C/B)  7 ~ 1), and hence by a familiar result 
P ( - C / C )  = 0.15 Hence  (b). 

Hence:  

T H E O R E M  6. {A: ~- A} is the assumption set of all and only those 
probability functions for L known as Carnap's probability functions] 6 

The  probability function Ps in Theorem 2 being 2-valued, each 
assumption set of L - i.e., {A: ~- A}, each set in Group Two, and each 
one in Group Three  - is the assumption set of at least one 2-valued 
probability function for L. {A: ~- A} and the assumption sets in Group 
Two are also the assumption sets of probability functions boasting 
more than 2 values. Not  so, however,  the sets in Group Three.  All 
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probability functions with these sets as assumption sets are indeed 
2-valued (Theorem 7(b)). 

Further,  {A: F A} is the assumption set of 2 ~¢,, probabili ty functions, 
as is each of the 2 ~¢ ,, sets in Group Two. Each of the 2 ~¢,, sets in Group 
Three,  by contrast,  is the assumption set of exactly one probabili ty 
function (Theorem 8(a)). However ,  since 2~ , ,x  2 ~t,, equals 2 ~,,, the 
probability functions with a set f rom Group  Two as their assumption set 
are 2 ~ ,, in number,  as are those with {A: t- A} or with a set f rom Group 
Two as their assumption set. 

L E M M A  5. Let S be a maximally consistent set of statements of L, and 
P be any probability function for L such that S = { A : ( V B )  
(P(A/B)  = 1)}. Then, for any statements A and B of L, P(A/B)  equals 
1 or 0 according as B D A belongs to S or not. 

Proof: Let A and B be arbitrary statements of L, and suppose first 
that B is P-abnormal .  Then by definition P ( A / B ) =  l, and hence 
P ( A / B ) =  1 if B D A c S. Suppose then that B is P-normal  and 
B ~ A 6 S .  Then - - B c S  or A c S ;  hence, by the hypothesis on S 
and that on P, (V C)( P ( -  B / C) = 1) or (V C)( P( A / C) --- 1);and hence 
P ( - B / B )  = 1 or P(A/B) - -  1. But P ( - B / B ) =  0 ~ 1 by C2, C3, and 
the P-normal i ty  of B. Hence  P ( A / B ) =  1. Suppose finally that B is 
P-normal  but B ~ A ~ S. Then  - A  ~ S by the hypothesis on S, hence 
(V C)( P ( -  A / C) = 1) by the hypothesis on S and that on P, hence 
P ( - A / B )  = 1, and hence P ( A / B ) =  0 by C3 and the P-normali ty  of 
B. Hence  Lemma 5. 

Hence:  

T H E O R E M  7. Let S be a maximally consistent set of L. Then: 

(a) S is the assumption set of exactly one probability function for L; 
(b) The one probability function for L of which S is the assumption set 

is 2-valued. 
Proof: (a) Suppose S = {A : (VB)(PI(A/B) = 1)} and S = 

{A:(VB)(P2(A/B) = 1)}. Then by L e m m a  5, PI(A/B)= P2(A/B) for 
any statements A and B of L. (b) By (a) and L e m m a  5. 
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It is because of Theo rem  5, to wit: 

(5) ( 3 P ) ( S  ={A:(VB)(P(A/B)  = 1)}) if and only if S is con- 
sistent and deductively closed, 

and our feeling that all and only consistent and deductively closed sets 
of statements of L qualify as assumption sets, that we appointed 
{ A : ( V B ) ( P ( A / B )  = 1)} the assumption set of P. Alternatively,  we 
could have required of the assumption set S of P that 

(6) S = { A : ( V B ) ( V C ) ( P ( A &  B / C )  = P ( B / C ) ) }  

and 

(7) s = {A:(VB)(VC)(P(B/A & C) = P(B/C))}. 

Showing that S meets desiderata (6)-(7) if and only if 

(8) S = { A : ( V B ) ( P ( A / B )  = 1)} 

would have been an easy task, and Theo rem 5 would now assure us that 
a set of statements of L counts as an assumption set if and only if it is 
consistent and deductively closed. 

The  route is a longer one, but going about  things thusly would 
effectively rule out 

{ A : P ( A / T )  = 1} " 

from consideration as the assumption set of P. {A: P ( A / T )  = 1)} does 
have credentials. It can indeed by shown, as Leblanc noted in early 
1982, that 

(9) S F A if and only if - no matter and probability function P for 
L - P ( A / T )  = 1 i f P ( B / T )  = 1 for each member B of S, ~7 

and 

(10) (3P)(  S = {A: P( A / T)  = 1)} if and only if S is consistent and 
and deductively closed. 

Because of (9) one might take S to logically imply A in the probabilistic 
sense if - no mat ter  the probabili ty function P for L - P ( A / T )  = 1 if 
P ( B / T )  = 1 for each m em ber  B of S. Despite  (10), however,  one 
should not understand {A: P ( A / T )  = 1} as the assumption set of L: it 
does not follow form C 1 - C 6  that 
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(11)  I f  P ( A / T )  = 1, then ( V B ) ( V C ) ( P ( B / A  & C) = P ( B / C ) ) .  

F o r  p r o o f ,  a s s i g n  2 to  A ,  0 t o  B ,  a n d  1 t o  C .  A c c o r d i n g  t o  t h e  

m a t r i c e s  o n  p.  3 3 8  of  P o p p e r  1 9 5 9 ,  P ( A / T )  wil l  t h e n  e q u a l  1, a n d  ye t  

P ( B / A  & C) wil l  e q u a l  1 w h i l e  P ( C / B )  e q u a l s  0. 

I n t e r e s t i n g l y  e n o u g h ,  { A :  ( V B ) ( P ( A / B ) =  1)} a n d  { A :  P ( A / T ) =  1} 

a r e  t h e  s a m e ,  M o r g a n  r e c e n t l y  n o t e d ,  w h e n  P is w h a t  w e  a c k n o w l e d g e  

in  M o r g a n  a n d  L e b l a n c  1 9 8 3 a  as  a n  i n t u i t i o n i s t i c  p r o b a b i l i t y  f u n c t i o n  

f o r  L .  B u t  i n t u i t i o n i s t i c  l o g i c  is n o t  o u r  p r e s e n t  c o n c e r n .  ~s'19 

N O T E S  

1 All pertinent texts are listed in the References. We refer to them in the body of the 
paper and in the notes by author's name and date of publication. 
2 Theorem 5 holds with (3P)(S={A:P(A/T)=I}) in place of (3P)(S={A:(VB) 
(P(A/B) = 1)}). But, as we shall see on pp. 13-14, {A: P(A[T) = 1} is unsuitable as the 
assumption set of P. 

A paper from which we freely borrow when covering matters already treated there. 
4 See p. 349. That Popper's constraints A1-A3,  B1-B2, and C are equivalent to C0-C6 
is shown in Harper, Leblanc, and van Fraassen 1983 and in Leblanc 1981. In earlier 
writings of Leblanc's C5-C6 appeared as equalities; we use inequalities here to preserve 
consistency with Popper 1955, Leblanc 1983a, and Leblanc 1983b; in those texts the 
singulary counterpart of C5 runs P(A& B)<-P(B& A) (rather than P(A& B)= 
P(B & A)). 

Given this definition C3 may of course be made to read: "If B is P-normal, then 
P(-A/B)  = 1 - P(A/B)." 
" From now on we shall often drop the (already parenthesized) 'binary'. 
7 The proof is an adaption to the binary case of the proof of Theorem 1 in Leblanc 1983b. 
8 L(S) is commonly defined only for consistent S, in which case Li(S) is taken to be 
L t(S) IJ {A,} when L~ ~(S) U {&} is consistent, otherwise to be L~ t(S) IJ { -&} .  
~' See the proof of T5.33(c) in Leblanc 1983a. 
z,~ Only one set of statements of L is both inconsistent and deductively closed: the set of 
all the statements of L. The probability function with that set as its assumption set would 
of course he the function P such that (VA)(VB)(P(A/B) = 1). See Leblanc 1983b, pp. 
381 and 395, for more on requiring assumption sets to be consistent and for ways of lifting 
that requirement in the singulary case. 
~1 Also Popper's probability functions in the narrow sense, an unfortunate appellation 
which we hope will not gain currency. 
t2 In the presence of C7, CO becomes of course redundant. 
~3 The result trivially holds true when C is P-abnormal. So suppose C is P-normal, and 
suppose ~ - C 2 - A  (i.e., ~ - - ( C & A ) ) .  Then by the Soundness Theorem for L 
P(~(C & A)/C)= 1, hence by C3 P(C & A/C)= 0, and hence by C4 P(C/A & C)× 
P(A/C) = 0. But, as we establish a few lines hence, P(C/A & C) = 1. Hence P(A/C) = 
0, and hence by C3 and the P-normality of C P(~A/C)= 1. For proof that 
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P ( C / A & C ) = I ,  note that by C2 P ( A & C / A & C ) = I  and hence by C4 
P(A/C & (A & C)) x P(C/A & C) = 1. But by C1 and C3 any probability lies in the 
interval [0, 1], and hence each of two probabilities must equal 1 if their product does. 
Hence P(C/A & C) has to equal 1. 
~ The first correct proof of (a), an embarrassingly long one, is in Leblanc and van 
Fraassen 1979. 
~ We prove that if P(-C/C):/:  O, then (VB)(P(-C/B) = l). The result trivially holds 
true when B is P-abnormal. So suppose B is P-normal (Hypothesis One) and 
P( -C/C)  ~ 0 (Hypothesis Two). By Hypothesis One and C2-C3, P(--B/B) = 0, hence 
by C4 P(C & - B / B )  ~ O, hence by C5 P ( - B  & C/B) = 0, and hence by C4 P ( - B / C  & 
B) × P(C/B) = 0. But by Hypothesis Two and C2-C3, (VB)(P(B/C) = 1), hence P(~B 
& B/C) = 1, hence by C4 and the result obtained at the close of note 13, P ( - B / B  & 
C) = 1, and hence by C6 P ( - B / C  & B) = 1. Hence P(C/B) = 0, and hence by C3 (and 
the P-normality of B) P ( - C / B )  = 1. 
~ For further information on Carnap's probability functions, see Leblanc and van 
Fraassen 1979, and Harper, Leblanc, and van Fraassen 1983. 
,7 The proofs of the Soundness and Completeness Theorems in Leblanc 1983b are easily 
edited to yield (9). As for (10), establish first that the results of putting P(./T) for P(.) in 
Constraints C1-C6 of Leblanc 1983b follow from Constraints C0-C6 in this paper. 
Putting P(./T) everywhere for P(-) in the proof of Theorem 4 in Leblane 1983b will then 
yield (10). 
'~ Proving Theorem 5 for a language L with quantifiers as well as connectives is our next 
order of business. Bas van Fraassen reported in October 1982 that such a proof can be 
retrieved from his 1982 paper. However, the constraints he places there on binary 
probability functions are more restrictive than the ones commonly used. 
~' The paper is an elaboration of part of Leblanc's talk at the Conference on Foundations. 
While working on these matters Leblanc held a research grant from the National Science 
Foundation (Grant SES 8007179) and was on partial research leave from Temple 
University. Thanks are due to Tom McGinness, Muffy E. Siegel, and Bas van Fraassen 
for reading an earlier draft of the paper. 
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