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1. INTRODUCTION 

This paper provides a general characterization of noncompensatory 
preference structures in multi-attribute preference theory, then examines 
a number of conditions that might hold for such structures. It will be 
assumed throughout that >- ('is preferred to') is an asymmetric binary 
relation on a product set X = X1 x X2 x . . .  x Xn, with each X~ nonempty 
and n I> 2. The indifference relation ~ on X is defined from >- by x - y iff 
neither x :~ y nor y > x. We shall refer both to i and to Xi as an attribute. 

Loosely speaking, (X, > )  will be said to be a noncompensatory prefer- 
ence structure if it satisfies a simple independence condition pertaining to 
conditional preferences on the Xi and if > between any two n-tuples 
x = (xa . . . . .  xn) and y = (Yl, • • •, yn) depends solely on the coordinates i 
for which xi is conditionally preferred to yl and for which y~ is condition- 
ally preferred to xi. Since this prohibits compensating trade-offs among 
different attributes, noncompensatory structures are probably much less 
common than compensatory ones. However, as shown by Chipman 
(1960), Coombs (1964), Green and Wind (1973), MacCrimmon (1973), 
Fishburn (1974), and others who are cited in these studies, there are many 
situations in which a noncompensatory preference or choice model may 
be a useful guide for decision making or a realistic descriptor of a decision 
agent's preferences. 

The definition of noncompensatory preference structure given below 
does not presume that the preference relation > is transitive or acyclic. 
This is in keeping with examples and arguments based on sensory or 
judgmental thresholds, individual feelings about what constitutes a sig- 
nificant difference between levels of an attribute, and other aspects (e.g., 
Davidson et al., 1955; Coombs, 1964; Weinstein, 1968; Tversky, 1969; 
Schwartz, 1972; Fishburn, 1974) that can give rise to cyclic preferences in 
mulfiattribute contexts. The effects of ordering assumptions for > on 
noncompensatory preferences will be considered later in the paper where 
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the most restrictive ordering assumption is shown to imply that (X, > ) 
has a lexicographic structure. 

2. N O N C O M P E N S A T O R Y  P R E F E R E N C E  S T R U C T U R E S  

For notational convenience let (x~,(ai)i~) denote the n-tuple 
(al . . . . .  a~-l, xi, ag÷l . . . .  , an). Then for each i and all xi, yi ~Xi,  we 
define a binary relation ~- i on X~ by 

xi > iYi iff (xi, (ai)j~i) > (y, (ai)i,i) 

for all (ai)i~ i ~ )X~ Xj. 

Each > i is asymmetric since > is presumed to be asymmetric. For each 
ordered pair (x, y ) = ( ( x l  . . . . .  x,), (Y l , . . . ,  y,)) of n-tuples in X let 
P(x, y) be the set of all i ~ {1 . . . . .  n} for which xg stands in the relation >- 
to y~: 

P(x, y)={ i :  x~ > ~y~}. 

The ordered pair (P(x, y), P(y, x)) then identifies two disjoint subsets of 
{1 . . . .  , n} such that all i in the first have xg > ~yi, and all i in the second 
have y~ ~ gx~. 

DEFINITION 1. (X, > ) is an N.P.S. (noncompensatory preference struc- 
ture) if and only if, for all x, y, z, w ~ X, 

(1) [(P(x, y), P(y, x)) = (P(z, w), P(w, z))] ~ [ x  > y iff z > w]. 

Thus, preference between x and y for an N.P.S. depends only on the 
specific i for which x~ > ~yi and the specific i for which y~ > ix~. This is the 
characteristic feature of all noncompensatory preference structures. A 
secondary feature of such structures is the conditional independence 
property 

(2) (xi, (xj)i..~) > (y.  (xj)i~.~) lit (xj, (y;)j~.i) > (y~, (Yi)J~.,) 

for all i and all x~, y¢ ~X~, which is an immediate consequence of (1) and 
the asymmetry of each > ;. Conditional independence has wide applica- 
bility beyond the context of noncompensatory preferences. For example, 
(2) arises frequently in compensatory situations, and it is necessary for the 
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standard additive utility model (e.g., Debreu, 1960; Luce and Tukey, 
1964; Fishburn, 1970) that has x > y iff ~ u~(x~) >Y.~ u~(y~), where u~ is a 
real-valued function on X~. 

Attribute X~ will be called essential iff x; > ey~ for some x~, y~ e X,.. Since 
nonessential attributes contribute nothing to our analysis of an N.P.S., we 
shall assume henceforth that every X~ is essential. It then follows that the 
set of all possible pairs (P(x, y), P(y, x)) for x, y e X  is the set 

S = .[(A, B): A, B ~ { 1 , . . . ,  n} and A c~B = ~b}. 

With ~ and ~- defined on subsets of {1 . . . . .  n} by 

A ~ B iff (A, B) ~ S and x ~- y whenever (P(x, y), P(y, x)) 
=(A,B) ,  

A ~-B i f f ( A , B ) e S  a n d x ~ y  
whenever (P(x, y), P(y, x)) = (A, B), 

an N.P.S. is described by specifying the one of A -> B, B ~. A and A --~B 
that holds for each A, B _c {1 . . . .  , n} for which A I-I B = ~b, subject to the 
limitations in the following lemma. (Asymmetry of > and essentiality are 
presupposed.) 

L E M M A  1. (X. > )  is an N.P.S. iff ¢ ~ ¢, {i} > ¢ for each i ~ (1 . . . . .  n}, 
and exactly one of A -> B, B ~> A and A ~--B holds for every A, B 
{1 . . . . .  n} for which A I"1B = ¢. 

Proof. Suppose (X, > )  is an N.P.S. Then exactly one o f A  ~ B, B -> A 
and A ~ B  holds for each disjoint pair A , B ~ { 1 , . . . ,  n}. Moreover, 
¢ ~ &  since x ~ x  and (P(x, x), P(x, x)) = (4~, ~b), and {i} -> ¢ since xi > iyi 
requires (xi, (aj)j~) > (Yi, (aj)j~) with ({i}, ¢)  = (P((x,, (aj)i,,~), 
(yi, (a~)j,,i)), P((yi, (aj)~.~,i), (xl, (aj)j,,i))). Conversely, (1) follows from the 
conditions in the theorem on -> and = .  

Let xl ~ ~y; mean that neither xe > iyi nor yi > ~xi. Then, when (X, > )  is 
an N.P.S., it follows immediately from ~b ~ ¢ and {i} ~, ¢ that 

(3) xl ~ iYi for all i ~ x ~ y, 

xg > ;y~ and xj ~ iYi for all ] ~ i ~ x > y. 
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However, when A w B contains two or more i ~ {1 , . . . ,  n} and A n B = 
~b, the lemma allows any one of A -> B, B -> A and A ~ B to hold. In 
particular, an N.P.S. can have y ~ x  along with x~>iyi for all i. For 
example, with X = {xl, Yl} x {Xz, Y2}, suppose that 

(x~, x2) > (yl, x2) 

(yl, x2) > (yl, y2) 

(Yl, Y2) > (Xl, X2) 

(x~, x2) > (x~, y~) 

(xl, y2)> (y~, y2) 

(x~, y2 ) -  (y~, x2). 

Then (X, >)  is an N.P.S. with xl ~ 1yl, x2 > 2Y2 and (Yl, y2) > (xl, x2). For 
this N.P.S., 

{1}={2}, {1} ~ ~b, {2} ~ ~b and ~b -> {1, 2}. 

Although ~b -> {1 , . . . ,  n} may seem strange, and can occur only if > has 
cycles, there is nothing in Definition 1 that prevents it. The next section 
examines conditions that forbid such behavior and which, in varying 
degrees, give coherence to the structure of noncompensatory prefer- 
ences. 

Despite the terminology used here, it should be remarked that an 
N.P.S. allows interactions among attributes. For example, if {1} -> {2} and 
{1} -> {3}, it may be true that {2, 3} -> {1}, so that the combination of X2 
and X3 outweighs Xa although Xx outweighs X2 or X3 separately. It could 
also be true here that ~b -> {2, 3}, in which case 'good values' of X2 and X3 
considered separately become undesirable in combination. Hence an 
N.P.S. allows compensatory effects and interdependencies within the 
attribute set even though changes within attributes that preserve the >- 
or -~  relationships cannot alter these effects. 

3. S P E C I A L  C O N D I T I O N S  F O R  N O N C O M P E N S A T O R Y  

P R E F E R E N C E S  

In the interests of brevity, I shall first define a number of special 
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conditions together and then present a theorem that shows the implica- 
tions among these conditions. A proof of the theorem will be given in the 
final section. 

The following preliminary definitions are needed. First, we define a 
binary relation w on S by 

( A , B ) ~ ( C , D )  iff ( A , B ) , ( C , D ) ~ S , A  ~_CandBc_D 
with at least one inclusion a proper 
inclusion. 

Thus, e.g., ({1, 2, 3}, d~) "~ ({1, 2, 3}, {5}), (~b, {1, 2}) ~ (~b, {1, 2, 4}) and 
({1, 2, 3}, {6} ~ ({3}, {4, 6}). In going from (A, B) to (C, D) when 
(A, B ) ~  (C, D), A is contracted to yield C and B is expanded to 

give D. 
Second, a binary relation R on a set Y is acyclic iff there are no 

a l ,  a2 . . . .  , am e Yfor  which alRa2, a2Ra3 . . . . .  am-lRam and amRal; R 
is a strict partial order iff it is asymmetric and transitive; and R is a weak 
order (asymmetric sense) iff it is asymmetric and negatively transitive (for 
all al ,  a2, a3 ~ Y, if alRa2 then either a~Ra3 or a3Ra2). 

DEFINITION 2. An N.P.S. (X, •) is 
C1. regular iff A ~ ~b for all nonempty A c { 1 , . . . ,  n}; 
C2. monotonici f f[(A,B)~(C,D)andC,> D ] ~ A , >  B; 
C3. strongly monotonic iff [(A, B) ~ (C, D) and either C ~> D or 

C - ~ D ] ~ A  ~> B; 
C4. additive iff [A c~ C = &, (A u C) c~ (B u D) = ¢, A ~> B and 

either C ~> D or C - ~ D ] ~ A  u C ~> B u D ;  
C5. superadditive if[ [(A u C) c~ (B • D) = ¢, A ~> B and 

C~> D ] ~ A  uC~.  B u D ;  
C6. decisive iff [ (A ,B)eS  and ( A , B ) ~ ( ¢ , ¢ ) ] ~ A  ~>B or 

B ~> A;  
C7. attribute acyclic iff ~ on the subsets of {1 . . . . .  n} is acyclic; 
C8. acyclic iff > on X is acyclic; 
C9. partially ordered iff > on X is a strict partial order; 
C10. weakly ordered iff > on X is a weak order; 
C11. doubly essential iff for each i e {1 . . . . .  n} there are ai, bi, c~ 

X~ such that a~ > ~b~ and bi > ;c~; 
C12. lexicographic iff there is a permutation o" on { 1 , . . . ,  n} such 
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that, for all x, y ~ X, x > y iff xi # iyl for some i and x=(~) > 
~(~)Y~(n for the smallest i for which x~,(i) ~z,,(ny~,(i). 

Regularity (C1) is the natural extension of (3) or {i} -> ~b: if x~ > ~y,. for 
all i ~ A  #~b and xj ~j.yj for all j ~ A ,  then x >y .  Monotonicity (C2) says 
that if x > y  and if x and y are changed to x' and y' in favor of x' on an 
attribute-by-attribute basis, then x' > y'. Strong monotonicity (C3) aug- 
ments this by asserting that if x ~ y  before the changes then x ' > y '  
afterwards. 

Additivity (C4) is one of many conditions that might be called 'addi- 
tive'. It says that if the attributes in A are collectively more important 
than those in B, and the attributes in C are collectively at least as 
important as those in D, and if A n C = ~b and (A w C) c~ (B u D)  = ~b, 
then the attributes in A u C are collectively more important than those in 
B u D. This can be strengthened or modified in various ways. One 
modification, which is a very powerful strengthening of the strict part of 
C4, is superadditivity (C5). The strength of C5 lies in not requiring 
A n C = ~b in its hypotheses. Thus, if {1} ~ {2, 3} and {1} ~ {4, 5, 6}, then 
C5 requires {1} ~, {2, 3, 4, 5, 6}. As noted later, superadditivity is a key 
aspect of lexicographic preferences. 

Decisiveness (C6) asserts that x ~ y  iff x~ ~ iy~ for all i, so that a 
conditional preference on at least one attribute prohibits overall indiffer- 
ence. It too is a key aspect of lexicographic preferences. 

Attribute acyclicity (C7) forbids the derived preference relation ~ on 
subsets of attributes from cycling, and C8, C9 and C10 place increasingly 
restrictive ordering properties on the basic preference relation. The 
penultimate condition, double essentiality (Cl l ) ,  will be used to facilitate 
certain implications between other conditions. 

If (X, > )  is a lexicographic N.P.S. and o" is as given in Definition 2, then 
X~,(1) is the dominant attribute, X,~(2) is the next most important attribute, 
and X~(n) is the least important attribute. An extensive survey of lexicog- 
raphic structures is given by Fishburn (1974). 

The following theorem lists the basic implications among the twelve 
conditions of Definition 2. 

T H E O R E M  1. Suppose (X, ~ )  is an N.P.S. Then 

(a) C 1 0 ~ C 4 ~ C 3 ~ C 2 ~ C 1 ;  



N O N C O M P E N S A T O R Y  P R E F E R E N C E S  399 

(b) 
(c) 
(d) 
(e) 
(f) 
(g) 

[C9 & C l l ] ~ C 5 f f C 1 ;  
[C5 & C 6 ] ~ C 4 ;  
C 1 0 f f C 9 ~ C 8 ~ C 7 ;  
C 9 ~ C 2 ;  
[C5 & C6 & C7]¢¢,C12; 
[C10 & CII]~C12. 

Part (a) says that a weakly ordered N.P.S. is additive, an additive N.P.S. 
is strongly monotonic, and so forth; and (b) says that a partially ordered 
and doubly essential N.P.S. is superaddifive, and a superadditive N.P.S. is 
regular. Of importance here are missing implications that are not a 
consequence of the conclusions of the theorem in conjunction with the 
transitivity of implication. For example, although weak order (C10) 
implies all Ck for k < 10 (parts (a) and (d)) except for decisiveness (C6) 
and superadditivity (C5), simple examples will show that neither C5 nor 
C6 is generally implied by C10. In conjunction with C5 ~ C1 in (b), it can 
be shown that C5 does not generally imply C2, whereas (c) shows that C4 
follows from C5 when (X, >)  is decisive. Similarly, although a partially 
ordered N.P.S. is monotonic (e), it is not generally strongly monotonic. 

The penultimate part of Theorem 1 shows that (X, >)  is a lexicog- 
raphic N.P.S. if and only if it is superadditive, decisive and attribute 
acyclic. And (g) says that a weakly ordered and doubly essential N.P.S. is 
lexicographic. Taken together, (a), (d), (f) and (g) imply that a weakly 
ordered and doubly essential N.P.S. satisfies every other condition in 
Definition 2. But examples show that a lexicographic N.P.S. need be 
neither acyclic nor doubly essential. 

Other implications can be drawn from the theorem. For example, a 
superadditive and decisive N.P.S. is strongly monotonic (a, c), and a 
decisive, partially ordered and doubly essential N.P.S. is lexicographic 
(b, d, f). 

4. P R O O F  O F  T H E O R E M  1 

The proof of each implication assumes the hypotheses including asym- 
metry of > and essentiality. 

C 2 ~ C 1 .  Since {i} ~ ¢ by Lemma 1, regularity follows immediately 
from monotonicity. 
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C3 ~ C2. This follows directly from the definitions. 

C 4 ~  C3. Since {i} ~ ~b for all i, successive applications of CA show that 
C 4 ~ C 1 .  To show that C 4 ~ C 3 ,  suppose (A, B ) ~  (C, D)  with either 
C -> D or C~.D. We need to show that A -> B. Since (A, B)  ~ (C, D)  
requires either (A, D)  .~ (C, D)  or (C, B)  ~ (C, D),  suppose first that 
(A, D)  .D (C, D).  Since A \C  ~ & by C1, C4 implies that A -> D. I f B  = D, 
this gives A ~ B as desired. If B ~ D, and A -> B is false, so that B ~ A or 
B ~ A ,  then D \ B  ~ qb by C1, and hence D -> A by C4, which contradicts 
A ~, D. Hence A ~ B when B = D. Secondly, suppose (C, B) ~ (C, D). 
If C ~ B is false, then B ~ C or B -> C along with D \ B  ~ ¢b by C1 yields 
D ~ C, contrary to prior hypothesis. Hence C -> B. If C = A then A -> B, 
and if C = A then the first case applies and gives A -> B. 

C 1 0 ~ C 4 .  For the hypotheses of C4 suppose that A IqC=d~, 
(A U 63 I"1 (/3 U D)  = ~b, A ~ B and either C ~> D or C = D. With ai > ~b~ 
for each i let 

xi = a~ on A u C; x~ = bi otherwise; 

y~ = a~ on B u C; y~ = b~ otherwise; 

zi = ai on C u  (B\D) ;  zi = bi otherwise; 

w~ = a~ on B u D ;  w~ = b~ otherwise, 

where B \ D  denotes set difference. Then x > y  since A -> B, y = z if 

B n C = ~b, y > z if B c~ D ~ ~b (by changing one a~ at a time to b~ for each 
i ~ B u C~[Cu  (B\D)]  and using transitivity), z ~ w if C ~ D ,  and z > w if 
C ~, D. Then x > w by the assumption that > is a weak order, and 
therefore A u C ~, B u D, which is the desired conclusion for C4. 

C 5 ~ C 1 .  See first sentence of C 4 ~ C 3  proof. 

[C9 & C l l ] f f C 5 .  For the hypotheses of C5 assume t h a t A  -> B, C ->D 
and (A u 63 n (B u D)  = ~b. We wish to show that A u C -> B u D. Using 
C11, take a~ > ib~ and bi :> ~c~ for each i (then also a~ > ici since > ~ is strict 
partial order), and let 

x~ = a~ on A u C; xi = bi on (B w D)\(B c~ D);  x~ 
-- c~ otherwise; 

Yl = ai on (C\A)  w (B\D);  yi = b~ on A w D;  y~ = c~ 
otherwise; 
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zi = ai on B u D ;  zi = bi on (A  ~ C) \ (A n C); zi = ci 

otherwise. 

Then  x > y by A > B, y > z by C -> D, and hence x > z by transitivity 

(C9). But x > z yields A w C -> B u D. 
[C5 & C6] ~ C4. The only case of concern for the hypotheses of C4 is 

A c 3 C = ¢ ,  (A u C ) c 3 ( B w D ) = ¢ ,  A -> B and C ~ D .  By C6, C ~ D ~  

(C, D )  = (~, ~) ,  in which case A w C ,> B wD.  
C 8 ~ C 7 .  Suppose (X, > )  is attribute cyclic with A I > > A 2 . . .  >> 

Am ->A1. Let  a~,beaXi be such that a~>gb~ and form x 1 . . . . .  x m as 

follows: 

x~ = a~ for all i e Aj;  x~ = b~ otherwise. 

Then A1 ~> A2 "> . . .  "> Am "> A1 implies x I > x 2 > . . .  > x  m > x  1, so that 

>- is cyclic. Hence  if > is acyclic then -> is acyclic. 
C10 ~ C9 ~ C8. These follow easily f rom the definitions. 

C 9 ~ C 2 .  For the hypotheses of C2 suppose ( A , B ) ~  (C ,D)  and 
C -> D. With ai > ~bi for each i let 

x~ = ai for i c A  ; x~ = b~ otherwise; 

yi = a~ for i e C; y~ = bi otherwise; 

z, = ag for i e D ;  z~ = bi otherwise; 

w,. = a~ for i e B ;  w~ = b~ otherwise. 

Since C -> D, y > z. If A = C then x = y. If A ~ C then, by changing one a~ 
for i in A but not C at a t ime to bg, transitivity of > implies that x > y. 

Likewise, z = w if B = D and z > w if B c D. Consequently, transitivity 
of > gives x > w, which implies A -> B. 

[C5 & C6 & C7]¢:>C12. Suppose that C12 holds. Then (X, > )  is easily 

seen to be  decisive (C6) and superadditive (C5). Contrary to C7, 

suppose that A1 -> A2 ~> . . .  -> A,,, -> A1. Then no Ai is empty  and, with cr 
as in Definition 2 for C12, min {i: o-(i) e A 1} < min {i: or(i) e A2} < . . .  < 
min {i: or(i) e Am} < min {i: o'(i) e A 1}, or min {i: o'(i) e A 1} < min {i: 
o ( i ) e A l ~ ,  which is false. Hence  (X, > )  satifies C7. Suppose next 

C5, C6 and C7 hold. Then C6 and C7 require ~, to be a linear order  on 

{~, {1}, {2} , . . . ,  {n}}, say {o-(1)} -> {~r(2)} -> . . .  -> {or(n)} -> ~. C5 yields 
A -> ¢ for all nonempty  A e{1 . . . . .  n} since C 5 ~ C 1 ,  and C5 implies 
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t h a t A  ~, B w h e n A  ~ b ,  B ~4~, min {i: o'(i)~A}<min{i: o'(i) ~ B }  and 
(A, B)  e S. Hence (X, > )  satisfies C12. 

[C10 & C l l ] ~ C 1 2 .  In view of parts (b), (d) and (f) of Theorem 1, we 
need only prove that [C10 & C l l ] ~ C 6 .  Contrary to C6 and C1 (as 
implied by C10), suppose there are nonempty disjoint A,  B ~ {1 . . . . .  n} 
for which A ~ B. Take ai > ~b~ > ~c~ for each i and let 

x~ = b~ on A ; x~ = a~ on B; xi = c~ otherwise; 

yi =a~ o n A ;  y~ =c~ o n B ;  y~ =c i  otherwise; 

z~ = c; on A ; zl = bl on B;  zi = ci otherwise. 

T h e n A  = B  impfies x my and y ~ z .  However,  x ~-z by C1, which along 
with x my and y ~ z contradicts C10. An  alternate proof that a weakly 
ordered, doubly essential N.P.S. is lexicographic appears in Fishburn 
(1975). 
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