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ABSTRACT. This paper uses Popper's treatment of probability and an epistemic con- 
straint on probability assignments to conditionals to extend the Bayesian representation 
of rational belief so that revision of previously accepted evidence is allowed for. Results 
of this extension include an epistemic semantics for Lewis' theory of counterfactual 
conditionals and a representation for one kind of conceptual change. 

I. ORTHODOX BAYESIAN PROBABILITY 

1. Preliminaries 

In the orthodox Bayesian tradition of  Ramsey, De Finetti and Savage 
rational belief functions are represented by sharp probabilities. 1 This 

representation has been defended in a number of  ways, but the arguments 
most  characteristic of  the tradition turn on the role of  belief in guiding 

decisions. 2 Given some fundamental assumptions about preference and 
some idealizations and conventions about  belief functions, the represen- 

tation falls out of  the Bayesian analysis of  rational decision making. 
One of  the idealizations is that the objects for which the belief function is 

defined are closed under boolean operations. I f P  (,4) and P (B) exist then 
so do P (~), P (AB), etc. The domain of  a belief function P will be a boolean 
algebra g of  propositions. I t  will be convenient to consider propositions 
as sets of  possible worlds so that g is a field of  subsets of  the necessary 
proposit ion T. Thus, AB and ~ are the ordinary set operations A n B 

and T -  A. The possible worlds in T correspond to Savage's (Savage [49] 
pp. 8-12) possible states of  the world and the propositions correspond 
to his events. 3 

The values of  the belief function are real numbers in the interval [0, 1] 
with the convention that full belief in A is represented by P (A)=  1. 

Ramsey and Savage provide axiomatic characterizations of  rational 
preference according to which a rational agent acts as though his decisions 

* Serious difficulties with the construction used in Section III, 3 have been discovered 
by Robert Stalnaker. See note added in proof to the end of the paper. 
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were guided by maximizing expected utility relative to a utility function 
U and a probability function P. The utility function is determined up to 
positive linear transformations. The probability function is determined 
uniquely and represents the agents belief function. 

Suppose that Ao...A,_I is a partition of the propositions relevant for 
a decision among acts ao...ak-1. The acts do not influence the subjective 
probability of the propositions. 4 Let U (ajA,) represent the utility to the 
agent of doing act aj when proposition A, is the case. The expected 
utility _E(aj) of each act aj is the sum over the Ai's of U(a3A~).P (Ai). 

(1) E(aj) =~<. U (ajAf)'P(Ai) 

The preference ordering among the acts for a utility maximizing agent 
conforms to their expected utilities. 

There are various ways of construing the objects of the utility function 
U. Richard Jeffrey would have U (ajA,) attach directly to the proposition 
that the agent performs act aj when proposition At is the case (Jeffrey 
[1] pp. 63-81). Savage has utility defined primarily for acts construed as 
functions mapping possible worlds into consequences, and derivatively 
for consequences (Savage [49] pp. 17-26). There are other variations. The 
differences are interesting and important for the problem of axiomatizing 
preference. (A very nice summary of the field together with the most up 
to date treatment is to be found in Krantz et aL [28] pp. 369-422). For 
our purposes, however, all that needs attention is a kind of invariance 
with respect to finer partitions that most treatments share. 

Suppose, as before, we have partition Ao...A,_ 1 of T and acts 
ao...am-1. For each A, let ffo...B~,-1 be a partition of At such that the 
acts do not influence the subjective probability of the Bj's. 

(2) E U(aA,)'P(AI)= E E U(aBj)'P(Bj). 
i<n i<n j < k i  

WhatI shall call the finer partitions principle is that the agents acts do not 
conflict with (2). 

2. Bets and Coherence 

If an agent satisfied Savage's or Ramsey's axioms and his utilities were 
linear with the stakes in decisions between buying and selling bets then 
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his belief function would determine the prices at which he would buy and 
sell. He would buy a bet for A at positive stake s when the price is less 
than P (A)" s, sell when the price is more and be indifferent when the price 
equals P (A).s. De Finetti (De Finetti [12] pp. 103-104) showed that the 
direct assumption of this connection between bets and beliefs requires 
that P be a probability function if the agent is to avoid having book made 
against him. Kemeny (Kemeny [26] pp. 268-269) showed that under this 
bets-belief assumption having P a probability is sufficient to prevent 
having book made against the agent. These and later variations by many 
writers have come to be called dutch book arguments for representing 
rational belief as a probability function. 

A belief function is understood to be coherent as a guide to rational 
decision making just in case making the bets-beliefs assumption for it does 
not lead to any system of bets on which the agent faces a total net loss on 
every outcome. Let 0 < x < s. Any act with utility s - x  in outcomes where 
A holds and - x for outcomes in _,f constitutes buying a bet for A at stake 
s and price x. Similarly any act with utilities x - s  in A and x for outcomes 
in A- can be regarded as selling the bet at the same price and stake. The 
bets-beliefs assumption characterizes the obvious way belief ought to 
guide choices between acts with such utilities. The dutch book arguments 
show that this assumption is consistent with expected utility maximizing 
just in case P is a probability function. 

In order to award the utilities properly, actual bets require some pro- 
cedure for deciding if the proposition is true or false. Brian Ellis has 
investigated betting systems relative to decision procedures where some 
propositions may remain undecided (Ellis [11 ] pp. 131-136). A proposi- 
tion that may remain undecided is called semidecidable. When A is not 
decided bets for A are called off. They are won or lost as A is decided to 
be true or false. Ellis shows that in such a framework if arbitrary semi- 
decidable propositions are allowed then strictly coherent betting ratios 
cannot be probabilities. 5 

As Ellis sees it the classical dutch book arguments only apply to systems 
of propositions all of which are decidable, and his result shows that they 
cannot be generalized to cover semi-decidable propositions. As there are 
many interesting propositions for which no decision procedures exist 
Ellis considers his result to be a serious objection to the dutch book 
justification of the probability representation of rational belief. 
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In the dutch book arguments, we have been presenting, the acts of 
buying and selling bets have been defined simply in terms of having 
appropriate utilities for the outcomes. That actual bets require some 
method of determining what outcome obtains in order to award utilities 
properly is beside the point. The idea of coherence is that the bets-beliefs 
assumption can hold safely under all possible combinations of utilities 
and outcomes. Ellis' objection just doesn't apply. The classical dutch 
book arguments had nothing to do with decidability and never were 
restricted to decidable propositions. 

The difficulties with actual bets do not undercut the force of the dutch 
book argument and Bayesians need not assume that the degree of belief 
P (A) is behavioristically defined as the critical rate a which he would buy 
and sell actual bets on A. These difficulties do indicate, however, that 
measuring degrees of belief is not as straight-forward as one might hope. 

Ramsey's treatment suggests a way to use gambling devices and prizes 
to measure degrees of belief (Ramsey [46] pp. 77-79). Suppose that the 
outcomes of some gambling devices are themselves value neutral to the 
agent and that he assigns equal subjective probability to the designed 
equi-probable outcomes. Let e be a prize that the agent desires and con- 
sider the choice between (a) and (b). 

(a) receive e, if A and nothing if ~/ 
(b) receive e, if gambling device comes up with any one of m out 

of the n outcomes, and nothing if it comes up with 
one of the rest. 

The agents degree of belief is measured as close as one wants by considering 
his preferences between (a) and (b) in various choices of this sort. Since 
Ramsey's time many such procedures have been proposed, some of which 
are more sophisticated than this (cf. Krantz, et al [28] pp. 900-901 for dis- 
cussion and further references). All of the available procedures, however, 
share with the one we sketched that sometimes the choices will involve 
gambles on propositions for which no convenient method of verification 
exists. 

Many interesting propositions have no convenient procedures for 
verification. Popper points out that most general scientific hypotheses have 
special problems. According to him, there is no method for finding out 
that they are true, but there may be a method for finding out that they 
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are false (Popper [43] pp. 27-48, [45] pp. 1-30 and many further publica- 
tions referenced in [45]). I f  .4 cannot be verified then any attempt to build 
explicit tests for deciding .4 into the choice between (a) and (b) is doomed. 
Considerations of this sort have led Abner Shimony to give up the ex- 
pected utility justification for inductive probability (Shimony [51] pp. 
103-104). 

I think it is important to see that when .4 is not conveniently verified the 
option (a) is considerably different than a bet on a horse race where the 
outcome will be disclosed without fail. The decision between (a) and (b) 
is a kind of thought experiment of  what one would do under the hypoth- 
etical assumption that choosing (a) would without fail result in pay off 
(c) if ,4 and nothing if AT. I do not, however, see why such hypothetical 
choices cannot be made in all seriousness. Moreover, the degrees of belief 
that they reveal are exactly those that would operate to guide decisions 
where the agent thinks that the truth of .4 matters. 

3. Acceptance and Strict Coherence 

If  P is a classical probability on 8 then Ap={,4:P (`4)= 1} has some 
important characteristics. For all .4, B e ~  

(1) If ,4,  BeAp then A n B~Ap 
(2) I fAeAp and Ac_B then B~Ap 
(3) AnA=Oq~Ap. 

A subset A of g satisfying these requirements is a proper filter of @ and 
corresponds to a consistent set of propositions dosed under semantical 
consequence. The semantical consequence relation is that of truth preser- 
vation. A proposition ,4 is true at world W just in case WeA. Clearly 1 
preserves truth in that whenever both A and B are true in W so is A n B. 
Similarly for 2. Constraint 3 is consistency. 

We have introduced a convention that P (A) = 1 represents full belief 
in A. Robert Stalnaker considers a belief function P to represent an 
idealized possible state of knowledge where every A such that P (A)= 1 
is known by the agent (Stalnaker [52] p. 66). The concept of knowledge 
is idealized in that what the agent knows is closed under semantical con- 
sequence just as in Hintikka's analysis (Hintikka [21] pp. 8-39). When P 
is so considered the set K (P) = n Ap consists in exactly those worlds that 
are epistemically possible relative to P in Hintikka's sense of epistemic 
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possibility (Ibid., and Hintikka [22]). An agent who knows every A in 
Ap in effect knows that the actual world is in K (P). I interpret P (A) = 1 
as the agent accepts A, and interpret K (P) as a proposition that expresses 
the total content of what he accepts. Stalnaker's heuristic of a possible 
state of knowledge is a good one, however, because the agent will usually 
regard himself as knowing just those propositions he accepts. 

Let h be a function mapping ~ into K(P) so that for each A in 

h(a) = a K ( P )  

and let Cp be the range of h. ¢p is a field of subsets of K (P) isomorphic 
to the quotient algebra of ~ modulo the filter Ap, and h is a homomor- 
phism of ~ onto ¢p. Where we have a decision D relative to ¢ with parti- 
tion Ao...An_ 1 of T and acts ao...ak-x let h(D) be the corresponding 
decision in d~p with partition h(Ao)...h(An_l) of K(P) and expected 
utility Eh(aj)= E~<n u(ajh(A,)). P (h(A,)) for each act aj. 

Remark 2.1. D and h(D) are equivalent in that for every aj 

_e (a j) = gh(aj) .  

Proof: Break _E(aj) down into a sum over h(Ai)'s and a sum over 
(A t -h  (A~))'s. The later sum is zero. [] Every decision relative to partitions 
of T in field d is equivalent to its corresponding decision relative to 
partitions of K(P) in field ¢,. The expected utility framework does not 
distinguish between U (ajA~) and U (aiA~ n K (P)). 

There are two opposed ways of dealing with this point and they rep- 
resent two quite different approaches to the Bayesian analysis of rational 
belief. On the one hand, we may say that no rational agent would accept 
contingent propositions because this would be tantamount to ignoring 
what could happen in some of the possible outcomes. On the other hand, 
we may allow that rational agents do accept contingent propositions and 
hold that for a rational agent only those outcomes consistent with what 
he knows are relevant for making his decisions. The second position sees 
the Bayesian belief function as an extension of our ordinary ideas of 
belief and knowledge. In addition to representing what the agent regards 
himself as knowing it also assigns degrees of belief to those propositions 
his knowledge does not decide. On this view the agent may be quite 
rational to accept any of the propositions we would usually regard him 
as knowing. The first view is the strict-coherence position. On it the 



RATIONAL B E L I E F  C H A N G E  227 

ordinary notions of belief and knowledge are inoperative for decision 
making. They are replaced by the more adequate notion of rational 
partial belief (see Richard Jeffrey [24] for an excellent defense of this 
view). Those cases where an agent would normally be regarded as accept- 
ing some contingent propositions are really just cases where his degree 
of belief is close to but not equal to 1 (see Teller [55] p. 240). 

An agent who thinks he rationally accepts some contingent truths 
might argue: 

"I  am sure that my hand is before me on the page, and that 
the population of the United States is greater than that of 
Canada." 

The strict coherence advocate replies: 

"Then you should be indifferent between paying $1000 for 
a change to lose it if you are wrong and get it back if you are 
right, and paying nothing for a chance to get $1000 if you 
are wrong and nothing if you are right." 

If the agent refuses to see the light, the strict coherence advocate simply 
increases the amount. Sooner or later the agent breaks down and admits 
that he is just a little bit unsure. 

At first glance the case for strict coherence seems strong. But, the 
situation is less simple than it may seem. Try the Ramsey degree of belief 
measurement. Consider a choice between 

(a) Receive $1000 if my hand is really there on the page and 
nothing if not. 

(b) Receive $1000 if the random device comes up on any but in 
of the n possible outcomes and nothing if not. 

No matter how small m/n is made, so long as there is at least one un- 
favorable outcome, I will prefer (a) to (b). This also holds for the proposi- 
tion that the population of Canada is less than that of the United States. 

If the agents degree of belief is 1 why isn't he indifferent between the 
choices offered by the strict coherence advocate? One answer might be 
that the utilities of receiving a net of zero dollars can differ with the choice 
context. If the agent breaks down at one stake, but not at another then 
one has prima facie evidence that the stake can change the relative 
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desirabilities of zero dollar net gain in different contexts. Even if the choice 
offered by the strict coherence advocate could avoid all difficulties of this 
sort a result in his favor would be a puzzle for decision theory rather than 
an unambiguous defense of his position. 

Strict coherence is usually defined and defended relative to the bets- 
belief assumption. A belief function is strictly coherent just in case the 
bets-belief assumption does not lead to any system of bets where the 
agent suffers a net gain on no outcome and a net loss on some outcome. 
From Kemeny's result we have that a belief function is strictly coherent 
just in case it is coherent and P (A) = I just for those propositions that are 
true in every relevant possible outcome. A bet having utilities matching 
the money offered in the strict coherence advocate's choice would lead 
to a violation of strict coherence if the agent accepts a contingent prop- 
osition and the relevant outcomes are all the worlds in T. Stalnaker 
suggests the obvious way to have acceptance of contingent propositions 
not violate strict coherence (Stalnaker [54] p. 68). The relevant possible 
outcomes are just those in K (P). 

Strict coherence was originally introduced by Shimony as a constraint 
on confirmation functions (Shimony [50] pp. 9-12). A confirmation 
function cg on ~ maps ~ x d ~-  {0} into the reals and satisfies the fol- 
lowing basic axioms: 

(1) 
(2) 
(3) 
(4) 

0 <~ ~ (H/E) <,N 1 
~g(E/E) = 1 

(H/E) + ~ (I•/E) = 1 
If  E n H # 0 then ~g (H n J/E) = g' (H/E) .  ~g (J/E n H) .  

I have used Carnap's axiomatization (Carnap [7] p. 38), because con- 
firmation functions have been so closely identified with Carnap's program 
of inductive logic. The motivation for the constraints on confirmation is 
that cg is to be a conditional probability adequate to play the following 
role: 

I f  an ideally rational agent were to have exactly E as his total 
evidence then his degree of belief in proposition H ought to 
be Cg(H/E). 

Carnap's program may be regarded as the attempt to put as many con- 
straints on cg as can be justified by this role. 6 
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When Shimony applied the strict coherence argument to confirmation 
functions he made g~(H/E) determine betting rates for bets on H when 
the relevant possible cases are restricted to just those in E. On this proce- 
dure a confirmation function is strictly coherent just in case it is regular. 
Regularity is the constraint that 

cg (H/E) = 1 only if E _~ H.7 

The heuristics of confirmation indicate that regularity is a natural con- 
straint on confirmation functions. Suppose ~(B/A)= 1 but A SB.  Thus, 
proposition ,4wB is contingent (i.e. ,~oB¢T) .  For any E and H 
Cg(H/E) = cg (HIE n (A u B)). If  E ~  E c~ (.4 va B) then the heuristic of con- 
firmation is violated since Cg(H/E) corresponds to having E n (erva B) as 
evidence rather than just E. 

When cg is regular the corresponding absolute probability function, 

(e (H)  = (e (HIT) ,  

is strictly coherent in the strict sense. This does not, however, imply that 
the belief function of a rational agent who guides his beliefs by c~ would 
also be strictly coherent in the strict sense. Carnap represents rational 
belief of an agent with background evidence as a credence function. 
Where K is the total content of the agent's background evidence his 
rational credence function (~qo conforms to ~' so that 

%, )  (H/E) = ~ (H/E n K) 
and 

c~(t 0 (H) = c~ (H/K). 

Clearly ~(r) need not be strictly coherent in the strict sense, s More- 
over, ~(K) need not even be regular. I f  K ~/ - / then c#(~) (H/E) = 1 even if 
E~H. 

This difference between ~(K)(H/E) and ~(H/E) corresponds to the 
following different heuristics for conditional probability. The confirma- 
tion conditional probability Cd(H/E) is what the rational agent would 
assign to H if his total evidence were reduced to nothing but the proposi- 
tion E. The credence conditional probability cd(x)(H/E ) is what the 
rational agent would assign to H if E and nothing further were added to 
what he now accepts. 
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4. Conditionalization and Learning from Experience 

One of the most striking features of the orthodox Bayesian tradition is the 
representation of learning from experience by conditionalization. A 
change from rational belief function Po to P1 is by conditionalization on 
A just in case P1 (B) is the conditional probability Po (B/A) for every B. 
Let us suppose that Po (A)> 0 and examine the claim that Po (AB)/Po (A) 
is the appropriate new degree of belief in B for a rational agent who has 
just altered his belief function Po by learning A and nothing more. 

The most extensive discussion of such claims is by Paul Teller (Teller 
[55, 56]). Under assumptions that come to the specification that Po (A)> 0 
and that accepting A is the total direct epistemic input from the learning 
experience Teller suggests that ifPo(B)=Po(C), B~A and C _cA, then it 
ought to be that P1 (B) =P1 (C) (Teller [55] pp. 233-238). He shows that 
this qualitative assumption about rational belief change is equivalent to 
conditionalization under fairly normal structural assumptions about 
belief functions (Teller [55] pp. 223-230). Teller, also, reports a rather 
ingenious dutch book argument by David Lewis (Teller [55] pp. 222- 
225). 

I shall give a dutch book argument based on an idea that can be used 
to help extend the representation of rational belief so that conditionaliza- 
tion on propositions of zero probability is allowed. The idea can also 
be used to defend Savage's conditional expected utility argument for 
conditionalization from an objection Teller makes against it (Teller [56] 
p. 18). 

Suppose that P0 (A)> 0 and P1 is the appropriate new belief function 
when the change from Po is to learn A and nothing more. The new set of 
propositions accepted A (P1) ought to be A (P) w {A} and the content of 
what is accepted K (P1) ought, therefore, to be K (Po) ca A. The basic idea 
is that the shift from Po to P1 ought to be as minimal as is required for 
accepting A. One obvious principle governing minimality here is that one 
not give up any proposition he already accepts unless he needs to. Since 
Po(A)>0; K(Po)caA#O and A is compatible with everything the agent 
accepts. Thus the agent need give up none of the propositions in A (P) 
when he accepts A. 

When the bets-beliefs assumption is applied to PI the relevant outcomes 
are just those in K (P1). A conditional bet for B on A is one that is called 
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off in relevant outcomes not in A and that is won or lost as usual for 
relevant outcomes in A. Since K (P1) = K (Po) n A any bet for B at stake s 
and price ? .s relative to K(P1) outcomes has exactly the same net return 
on every outcome as a conditional bet for B on A at the same price and 
stake with K (Po) relevant outcomes. If the bets-beliefs assumption holds 
for both Po and P1 then Pi (B) must be the same as the critical price ratio 
for conditional bets for B on A relative to K (Po) outcomes. De Finetti 
(De Finetti [12] pp. 108-109) has shown that the Po critical price ratio 
for conditional bets for B on A must be Po (AB)/Po (,4) if the agent is to 
avoid dutch books, i° 

I think that implicit assumptions like those I make explicitly here 
account for the fact that some Bayesian writers (e.g. De Finetti) were 
content to limit their argument for conditionalization to showing that the 
ratio is the appropriate betting rate for conditional bets. 

If all rational learning from experience is by conditionalization on new 
evidence and belief functions are only classical probabilities, then no way 
is provided for revising previously accepted evidence on the basis of new 
inputs. Suppose Pi arises from Po by conditionalization on A. Then, 
PI(A)=I,PI(A/C)=I for every C such that PI(C)>0,  and no con- 
ditional probability PI(A[C) exists for any C such that PI(C)=0.  
Clearly all revision of the assignment P1 (A) = 1 blocked. Any hypothetical 
new evidence C that is not already rejected will continue to support A, 
and any hypothetical C that is rejected cannot play a new evidence role 
because the relevant conditional probabilities do not exist. 

Richard Jeffrey (Jeffrey [23] pp. 153-164) has proposed a generaliza- 
tion of conditionalization according to which/'1 (A) need not be 1. A 
change from Po to P1 originates in the partition A o...A._~ just in case 
for i<n PI(B/A~)=Po(B/Ai) for every B. When this happens the co- 
herence constraints on P1 generate the rule: 

Pi(B) = ~Po(B/A,)'PI(A,). 
f<n 

Jeffrey argues that there can be cases where one rationally responds 
directly to experience by shifting Po (A) to some new value Pi (A) without 
accepting A or anything else as new evidence. He claims that in such 
cases the partition {A, ~} should be an origin for the shift from Po to P1. 

Isaac Levi, a defender of rational acceptance, rightly saw that Jeffrey's 
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rule would provide for a representation of learning from experience where 
no contingent evidence would ever need to be accepted (Levi [34]). 
His attack on Jeffrey's rule, however, was defective (Harper and Kyburg 
[20], Levi [35]). Teller has now provided a quite adequate defense of 
Jeffrey's rule (Teller [55] pp. 243-257). Levi's fears have beeen realized. 
The strict-strict coherence approach can handle learning from experience. 
In fact it handles it better than the ordinary framework of conditionaliza- 
tion and acceptance because any change is open to correction on the 
basis of future observations. 

I think that the standard notions of acceptance and bodies of evidence 
are too useful to give up. But, if one is to accept contingent evidence of 
the usual sort some provision must be made for revision of previously 
accepted evidence. A first step toward this is to allow P (B/A) to be 
defined even when P (A) = 0. 

II .  E X T E N D I N G  THE R E P R E S E N T A T I O N  OF R A T I O N A L  B E L I E F  TO 

P O P P E R  F U N C T I O N S  

1. Popper's Probability Functions 

Popper provides an axiomatic treatment of probability in which con- 
ditional probability is primitive and exists everywhere. 11 Suppose F is a 
minimal algebra with a binary operation AB and unary operation ~.1~ 
Nothing specific about the algebraic properties of these operations is 
assumed. The following axioms characterize one version of a Popper 
probability function P mapping F x 1~ into the reals, la For all A, B and 
C in F, 

al. 0 <~ P (B/A) <~ P (A/A) = 1 
a2. If P (A/B) = 1 = P (B]A) then P (C]A) = P (C]B) 

a3. If P (C/A) ¢ 1 then P (B/A) = 1 - P (B[A) 
a4. P (AB/C) = P ( A / C ) . P  (B/AC) 

a5. f (AB/C) <~ P (B/C) .  

Popper adds the additional constraint that there be some C and D in F 
such that P (A/B) v ~ P (C/D). I shall call functions satisfying these 
requirements Popper functions. 

In the classical mathematical treatment probability is defined as a non- 
negative additive set function normalized to 1. Suppose that d ~ is a field 
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of subsets of some non-empty set T. A function M mapping ¢ into the 
reals is a classical probability just in case 14 

(i) M ( T )  = 1, and 
(ii) I f  A c~ B = 0 then M (A w B) = M (A) + M (B). 

Sometimes the treatment is generalized to have ¢ an arbitrary boolean 
algebra. In this case T will be the maximum of d ~ and in place of set inter- 
section and union we will have boolean meet and join. 

Classical conditional probabilities are introduced by definition as 
ratios of absolute probabilities. 

(iii) M (B/A) = M (AB)/M (A), 

provided M (A)> 0. I f  M (A)= 0 then no classical probability M (B/A) 
exists. In a Popper function conditional probability is primitive, but 
absolute probability is easily represented. For Popper function P the 
absolute probability P (A) is conditional probability relative to T=AA, 
so that 

P (A) = P (A/T) 

for A in F. Where P (A) > 0 the Popper conditional probability P (B/A) 
is a ratio of absolute probabilities. 

P (B/A) = e (AB)/P (A) 

just as classical conditional probability. The most salient difference 
between a Popper function and classical probability is that P (B/A) 
exists even when P (A) = 0. 

Popper's extension of conditional probability to all pairs of elements 
has some mathematical advantages. Chief among these is that P induces 
an interesting boolean algebra of equivalence classes on the minimal 
algebra F. For elements A, B of F define, 

dl.3. (i) A 7 B i f fP  (A/C) = P (B/C) for all C in F 
(ii) [A]p = {C~F:A ~vC} 

(iii) F/P = { [C]p: C eF} 

When A 3' B we say that A is P-equivalent to B. The subset [A]p of F is 
the equivalence class of A under P, and F/P is the set of equivalence 
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classes induced by P on F. The following operations are defined on F/p 

(iv) [alp ^ [Blp = [ABlp 

(v) [a lp  = [~]p 

to form the algebraic structure FliP. Popper proves the following theorem. 

tl.1. Flip is a boolean algebra with 

[A]p ^ [B]p as meet and [A]p as 
complement for A, B in F. 

This theorem shows that the constraints on P are sufficient to impose 
boolean behaviour on the unstructured operation of F. 

In the classical treatment g must already be a boolean algebra, before 
M can be defined on it. As Popper points out, the algebraic structure of g 
is an additional assumption buried in the classical characterization of 
probability. The F of a Popper function need only be a minimal algebra, 
and the algebraic properties used in probability reasoning are generated 
by the explicit constraints on P. 

The introduction of Flip allows us to formulate some further connec- 
tions between Popper functions and classical probabilities. Let Pa be 
defined on F so that Pa(B)=P (B/A) and Ptal be the corresponding 
function on F//p so that Pta~([B]) =Pa(B). We have the following remarks 

rl.2. (i) If P (.~/A)~ 1, then Pta~ is a classical probability on F//p 
(ii) If P (.,t/A)= 1, then Pa (hence Ptal) is the incoherent con- 

stant function assigning 1 to every element. 

The absolute probability P (A) is simply Pr(A) and corresponds to the 
classical probability Ptr~ on F//T. 

Two elementary properties of the other extreme value for Popper 
functions are also of interest. 

r.l.3. (i) P (A/_~)= 1 iff P (A/C)= 1 for all C 
(ii)e(A/X)v~l iff P(A/C)=O forsome C. 

The first of these has the effect that the maximum of F]/p is the set of all A 
such thatP (A/~) = 1. We shall say that A is P-valid just in case P (A].~) = 1. 
The second remark is that whenever A is not P-valid there is some C 
such that P (A/C)= 0. This will be useful in showing P-validity by in- 
direct proof. 
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2. Stalnaker's Representation Theorem 

Robert Stalnaker has constructed a dutch book representation theorem 
for Popper functions as coherent extended conditional belief functions 
(Stalnaker [52] pp. 70-74). The representation is based on his idea that 
the relevant outcomes for strict coherence depend on what the agent 
accepts. The present treatment differs from Stalnaker's in formulation 
and in the details of the proof. The most important difference is the ex- 
plicit emphasis on the way the constraints on K (Pa)justify axioms 2 and 
3 for Popper functions. 

Let us extend the representation of rational belief so that P (B]A) is 
defined for every pair A, B in 6 ~. We want P (B/A) to represent the degree 
of belief that would be rational for the agent to assign to B were he to 
accept A as his total new input from experience. We shall think of Pa 
(the function defined on e* so that PA(B)=P (B/A)) as the absolute belief 
function the rational agent would have were he to minimally revise his 
beliefs to accept A. In light of this motivation certain general constraints 
on rational extended conditional belief functions seem warranted. 

Let 
A (Pa) = {B: P (B/A) = 1} 

and 
K(Pa) = ~ a ( P a ) .  

Just as with classical conditionalization A (Pa) is to be the set of proposi- 
tions the agent would accept if his absolute belief function were Pa and 
K (PA) is the set of worlds where all these propositions hold. Since PA is 
to be a belief function where A is accepted it is required that P (A/A) = 1. 
This gives the constraint 

(1) K (Pa) -~ A. 

We shall express the constraints in terms of K (Pa) where possible. 
Another obvious constraint is that K(Pa) be nonempty for at least 

some A. 

(2) (i) K(Pa) # O, for some A. 

If K (Pa) is empty then A is regarded as absurd in that there is no world 
consistent with all the propositions the agent would be committed to were 
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he to minimally revise his beliefs to accept A. It is convenient to have a 
convention for cases where K (Pa) is empty. 

(2)(ii) I f K ( P A ) = 0 ,  then P(B[A)=I for all a .  

This convention corresponds to the idea that anything follows from 
something that commits you to a contradiction. 

The main constraint is that Pa be coherent when the possible cases are 
restricted to K (Pa). 

(3) Pa is coherent relative to K (Pa) if K (Pa)50. 

The justification for this is the obvious one that Pa is to be a belief func- 
tion appropriate to guide the agent's decisions relative to partitions 
of r (PA). 

Our motivation that PA be a minimal revision to accept A and the 
classical conditionalization property that K(PA) = K ( P )  c~.4 when 
P (A) > 0 suggest a further constraint. 

(4) K(PaB) = K (PB) c~ A, provided K (P~) c~ A ~ 0. 

If K (PB)c~ A is non-empty then a minimal revision of K (P~) to accept 
A is simply to add A to what one already accepts. 

The justification of this last constraint corresponds to the principle 
applying to minimal revisions of belief functions. When revising your 
beliefs in order to accept A do not give up anything you already accept 
unless you need to. 

We shall take any function from ¢ × ¢ into the interval [0, 1] which 
satisfies 1-4 to be a suitable representation for an extended conditional 
belief function (ebf). 

THEOREM 2.1: If P is an extended condition belief function then P is a 
Popper function. 

Proof: The plan of the proof is to show that a violation of any of the 
axioms for Popper functions will also violate one of the constraints on 
extended conditional belief functions. Usually this will consist in showing 
a violation of coherence by means of one of the betting systems used in 
John Kemeny's version of the dutch book argument (Kemeny [26] 
pp. 263-266). 
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Axiom 1 for Popper functions, 

al .  0 < P (B/A) < P (A/A) ~ 1, 

is trivially required by constraint 1 on extended conditional belief func- 
tions. 

Consider axiom 3. 

a3. If  P ( C / A ) ¢ I  then P ( B / A ) = I - P ( B / A ) .  

When the hypothesis is satisfied for some C, constraint (2) (ii) on con- 
ditional belief functions requires that K ( P a )  be non-empty. Therefore, 
constraint 4 non-trivially requires coherence relative to K(PA). Unless 
P (B/A)= 1 - P  (B/A) coherence relative to K (Pa) will be violated. 

The situation with axiom 5 

a5. P (AB/C) <~ P (B/C) 

is similar. If  K(Pc)=O then both sides of the inequality are trivially 1. 
I l K  (Pc)# 0 then coherence with respect to K (Pc) is sut~cient to guaran- 
tee that the inequality holds. The axioms so far considered all fall out 
directly from the coherence requirement that Pa be a classical probability 
function on @/Pa. 

Axioms 2 and 4 involve relations between different K (Pa)'s. Let us 
deal with a4 first. 

a4. e (AB/C) = P (A/C)'P (B/AC) 

There are two cases to consider. 
Case I. K (Pc) n A = 0. When K (Pc) n A is empty then both sides of  a4 

must be zero. Since A is false in every world in K(Pc) both P (A/C) and 
P (AB/C) equal zero. 

Case II. K (Pc) n A # O. When K (Pc) n A is non-empty then condition 
4 on conditional belief functions requires that K (Pat) = K (Pc) n A. This 
has the effect that a conditional bet on B relative to A in K (Pc) at odds 
r : 1 - r and stake S has exactly the same outcomes as a straight bet on B 
at the same odds and stake in K (Pac)- Given this, bets on B in K (PAc) 
can be represented as conditional bets in K (Pc) so that all the degree of  
belief values can be represented in a system of bets all relative to the same 
partition of possible outcomes. If  a4 is not satisfied the incoherence of P 
will show up in the bets used by Kemeny to show the corresponding law 



238 W I L L I A M  L. H A R P E R  

for confirmation functions (Kemeny [1] pp. 265-266). Though axiom 2 
is not as familiar to students of probability as the other axioms it does 
follow from the constraints on extended conditional belief functions. 

a2. If P (B/A) = 1 = P (A/B) then P (C/A) = P (C/B) 

Assume P(B/A)=I=P(A/B) .  By condition 4 we have K(PaB)= 
= K  (Pa) n B  if K (Pa)~B~O, and K (P aB)=K (Pn)nA if K (PB) n A  ~O. 
Case I: K(Pa)c~B~O and K(PB)c~A¢O. Here both K(Pa) and K(Pn) 
equal K(Pan) so that a2 follows easily by coherence constraints on 
K (PaB). Case II: K (Pa) c~ B = 0. Here K (Pa) is empty, since by the 
hypotheses of the theorem P (B/A) = 1. Therefore, by constraint (2) (iii) 
P (`g/A)= 1 = p  (`g/S). 

The general constraint on Popper functions 

rl.3(i). I f P ( D ] D ) = I  then P ( D ] E ) = I  for all E 

follows from axioms al and a3-a5 and constraint I-4 on ebf's. 15 Since 
these already established axioms are sufficient for it, we may use rl.3 (i) 
to justify a2. Using this remark we have P (.4]B)= 1, since P (`g]A)= 1. 

We now have K (Pn) is empty, since both P (A[B) = 1 and P (`g[B) = 1. 
Thus, K (PB) = K (Pa) and both are empty. Case III K (PB) A = 0 is sym- 
metrical with what we showed for case II. This completes showing the 
validity of a2 and completes the proof of the theorem.II 

We say that Popper function P on field g is compact just in case for all A 

K (Va) = 0 only if P (.g/A) = I.  

If 8 allows filters A such that NA =0, but 0CA then there can be Popper 
functions on ~ that fail to be compact. Such Popper functions will 
violate condition 2ii on extended conditional belief functions. 

THEOREM 2.2: If P is a compact Popper function on ~ then P, is a 
suitable representation for an extended belief function on ~. 

Proof. Constraints 1-2ii are trivially met. Constraint 3 follows from 
the fact that Pa is a probability function whenever K(Pa)v~O together 
with Kemeny's result (p. 223 above). Constraint 4 follows by manipulation 
from the Popper function axioms.1611 

Stalnaker constructed extended belief functions and Popper functions 
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on sentences. Suppose S is a set of  sentences closed under syntactical 

operations ab and ~. Let T be the set of maps v from S into {0, 1 } such 
that v(ab)=v(a).v(b) and v(~)= 1 - v ( a )  for a, b in S. This is the set of  
truth valuations on S with ab as conjunction and ~ as negation. For  each 
a let A be the set o fv  in Tsuch  that v(a)=  1. The set # of  A such that a is 
in S is a field of  subsets of  T. 

A function P taking S x S into the reals is suitable as an extended con- 
ditional belief function on S just in case the corresponding function P '  
on 8 such that 

P' (B/A) = P (b/a) 

satisfies 1-4 with respect to 8. On this formulation there is a representation 
theorem. 

T H E O R E M  2.3: P is suitable as an extended conditional belief function 
on S iff P is a Popper function on S. 

Proof Just as in theorems 1 and 2 except that compactness now follows 
from compactness of truth functional logic.II 
Stalnaker's result is a general representation theorem for Popper func- 
tions. Any minimal algebra F can have a truth valuation put on it. The 
truth valuations provide a compact field within which to construct 
K(P[4). From Stalnaker's theorem we see that putting 1-4 on these 

K(P[4) will insure that P is a Popper function. 
This also indicates that when # is an algebra with structure we care 

about there will be many Popper functions on # that ignore and even 
clashwith the structural properties of #. This is an obvious result of  the fact 
that the Popper function is not based on the structure of 8 but  induces 
whatever structure it needs onto g. Because we cared about the structure 
of  the proposition space we made belief functions responsive to it by 
defining K (Pa) on the proposition field itself. This does not mean, how- 
ever, that Popper's important theorem about Popper function induced 
structure is not useful for representation of belief. In fact the equivalence 
classes induced by P play a very important role. 

3. Conceptual Frameworks 

Suppose that P is an extended belief function on a field # of  subsets of  T. 
The algebra of  equivalence classes induced by P on 8 corresponds to an 
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important conceptual structure for a P-agent. The P-equivalence relation, 

A T B  iff P(A/C)=P(B/C)  for all C, 

holds between just those pairs of propositions that, for a P-agent, are 
not distinguishable by means of any possible evidence. No assumption 
whatever counts as more evidence for one than the other. 

The maximum element of 8"//p is the set of all A such that P (A/,4) = 1. 
By remark 1.3i, P (A[A) = 1 if and only if P (A[C) = I for all C. Thus, A 
is P-valid just in case a P-agent would accept A relative to any assump- 
tion C. If A is P-valid then a P-agent will count nothing as evidence 
against A. The P-valid propositions can be regarded as postulates of the 
agent's conceptual framework. 

The basic constraints on extended belief functions insure that P- 
validity must conform to semantical possibility relative to 8". Let 

= {A: P = 1} 
and 

K*(P)  = N {A: e (A/X) = 1} 

From the axioms on Popper functions we have 

A*(P)~-A(PA) forall  A 
and, thus, 

K (PA) --- K* (P) for all A. 

From this it follows that 

K* (P) # 0 

by constraint 2ii on belief functions. If K* (P)=  0 then K (Pa)= 0 for all 
A which violates 2ii. 

The other natural assumption about K* (P) is that 

K* (e)  -- T 

so that P (A/~) = 1 only if A is true in every possible world of 8'. This 
does not follow from the constraints on extended conditional belief 
functions, and it should not be added. 17 One of the beauties of the Popper 
function representation is that part of the conceptual framework can be 
read off from the belief function. Nothing is lost by letting the structure 
of 8" be less specific than that given by 8"lIP. By letting K* (P) be less than 
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all of T we can impose whatever specific meaning postulates that may be 
peculiar to the agent's conceptual framework. Finally, when K*(P) is 
allowed to be less than all of T there is room for the kind of conceptual 
change would correspond to giving up some meaning postulate. 

Let h map o ~ into subsets of K*(P) so that for all A, 

h (A) = A n K* ( f )  

and let ~* be the range of h. 
Remark 3.1. g~ is isomorphic to @//P. 
Proof: What we must show is that 

(i) h (A)=h(B)  iff P(A/C)=P(B/C)  forall C. 

Suppose h(A)=h(B) and note that K ( P c ) n A = K ( P c ) n B ,  since 
K(Pc)~K*(P).  Thus, every bet for A relative to K(Pc) has exactly the 
same consequences as a bet for B relative to K (Pc). Suppose P (A/C) = 
=e  (B/C) for all C 

A n  U K ( P c ) = B n  U K(Pc) 
Ce~ C E 8  

Therefore A n K* (P) = B n K* (P). 
The reduced field @~ can do the job of ~ in that every ~PA is isomorphic 

to a quotient algebra of ~[/P modulo the filter corresponding to A (Pa). 
If P (A/.~) # 1 then ~,~ cannot do this job, because for any B such that 
P (B/A) = O, K (PA) n K(PB) = O. 

4. Expected Utility and Measurement 

The basic assumption here is that if the agent can conceive of evidence 
that would support A then he ought to be able to make hypothetical 
choices relative to the assumption that A holds. Thus, I assume that 
whenever P (A/A)# 1 the agent has expected utilities defined for K (PA)- 

One of the standard puzzles about counterfactual assumptions is that 
there are often incompatible alternative ways to alter one's background 
knowledge to accommodate the assumption. In the framework of partial 
belief this problem is not crucial. As we have been expounding the heuris- 
tics for it, A (Pa) will include only those propositions that the agent is sure 
he ought to hold if he were to accept A. The agent will not choose between 
alternatives unless he is sure of one of them. This in no way affects the 
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construction K (Pa). There is no need to choose one of them since the 
agent can utilize finer partitions of K (Pa) to define his expected utilities 
for it. 

No general method for constructing exactly what K (Pa) ought to be, 
given what K (PT) and A are, has been provided. What has been done is 
to provide constraints 1-4 on what K (Pa) constructions are permissible. 
These constraints have been shown to be sut~cient to have P a Popper 
function. 

Though I do not present the details here, the outline of a treatment of 
expected utility appropriate to the Popper function representation of 
belief is not difficult. Expected utility is relativized to assumptions. Where 
B0...B,-1 is a partition of K (Pa) and ao...ak-1 are hypothetical acts to be 
decided upon and for all aj and Bi P (BJA) is independent of a j; then 

E a (at) = ~, U (ajB~). e (BJA). 
i < n  

More generally when Bo...B,-x is a partition of K*(P) 

E.4 (a j) = ~, U (aiB i c~ K (P.4))" P (Bi/A).  
i < n  

Appropriate modifications for any of the present axiomatic treatments of 
expected utility should be fairly routine. The main change is that K (PA) 
rather than A is the appropriate proposition to relativize to when ac- 
cessing Ea(aj). 

Measurement of  counterfactual conditional probabilities is made by 
relativizing the Ramsey measuring choice to K (Pa)- 

Assume that it were that A, then relative to this assumption choose 
between 

(a) receive prize x if B and nothing if not 
(b) receive prize x if any one of m of the n random outcomes of 

gambling device comes up, nothing otherwise. 

This choice involves making a hypothetical assumption that may conflict 
with what the agent accepts, but the ordinary Ramsey measurement may 
do so as well. For many propositions I am quite sure that there is no way 
of making sure that receipt of the prize attaches to the truth of B. I doubt 
whether the counterfactual choices my measurements would require need 
be any worse off than some of those Savage's framework would require. 
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Once again, the most important idea supporting the extension of ex- 
pected utility reasoning to cover assumptions that conflict with what the 
agent accepts is this: To the extent that the agent can conceive of possible 
evidence that would lead him to accept something that conflicts with 
what he now accepts he ought to be able to make hypothetical judgments 
about what actions would be appropriate if it were the case. In a nut 
shell, to the extent the agent seriously allows for the possibility that some- 
thing he accepts may be mistaken he should be able to plan for such 
contingencies. 

I I I .  C O U N T E R F A C T U A L S  A N D  I T E R A T E D  C O N D I T I O N A L I Z A T I O N  

1. Iterative Probability Models 

One motivation for extending belief functions from classical probabilities 
to Popper functions is to be able to revise previously accepted evidence. 
When belief functions are represented only as classical probabilities 
previously accepted evidence cannot be revised by conditionalization on 
later inputs. 

If P is only a classical probability and P (A)= 1 then P (A/C)= 1 for 
every C such that P (C) > 0 and P (A/C) is not defined when P (C) = 0. 
f f P  is a Popper function P (A/C) can be non-trivially defined even when 
P (C)=P  (C/T)=O. This goes part of the way toward a solution. 

It is not hard to see, however, that extension to Popper functions can- 
not be the whole solution. Even though Pc may be well defined when 
P (C)=0 so that the agent can shift his absolute belief function from 
PT to Pc many of the new conditional belief assignments are not specified. 
For any B such that Pc(B)=O, no values for Pc(H/B) are specified. 
Failure to specify these conditional beliefs can result in later failure to 
specify absolute degrees of belief. If after having found reason to accept 
C one were to later find reason to accept some further proposition B such 
that Pc(B)=0, then his appropriate new absolute belief function would 
not be specified. Introducing the Popper function representation does 
allow corrigibility; but, without some further apparatus, this only extends 
as far as one correction. 

The problem with iterated shifts would be solved if one were able to 
specify not only the new absolute belief function Pc but also the rest of the 
values for an appropriate new Popper function P<c>- ff  such a P<c> is 



244 W I L L I A M  L. HARPER 

defined for each extended belief function P and proposition C such that 
P(C/C)¢I, then the appropriate shifts in belief as one accepts new 
evidence can be iterated even when there are iterated clashes of evidence. 
The shift from P to P<c> will give all the Pc values so that Pc(B)= 
=P<c>(B/T), and it will define P<c>(H/B) when P<c>(B/T)=O. Upon 
being confronted with B as a new input, a new shift from P<c> to P<c> <B> 
is made. In order to achieve a representation with this kind of richness 
additional apparatus is needed. 

In order to see how to go about doing this, it will be helpful to re- 
consider Carnap's confirmation and credence functions. If  K expresses 
everything a rational agent accepts, then, according to Carnap, his 
credence function cg(x) should conform to the confirmation function cg 
so that 

~(K) (B/A) = ~ (B/K n a ) .  

Where K n A  is empty, cg(m is undefined. 
Let us investigate what happens when we represent rational credence 

by means of Popper functions. Since we shall want to speak of A (P<c>, A) 
we shift our notation from A (Pa) to A (P, A). We understand A (P, A) = 
= {B: P (B]A) = 1} to be the set of propositions a P-agent would accept 
were he to minimally revise his beliefs to accept A. If  the set K (P, A) = 
= c~ A (P, A) is a member of g, then it is a single proposition expressing 
the total evidence accepted after the shift to accept A. This suggests that 
the appropriate relationship between the Popper function representation 
of  rational credence and its corresponding confirmation function ought 
to be 

P (B/A) = cd (B/K (P, A)) 

provided K(P, A) is non-empty. When K(P, A) is empty, P(.,t/A)= 1 
and A is regarded as absurd A is not a possible candidate for being ac- 
cepted as a new input. Thus, there is no loss from having ~ undefined 
for the empty proposition 0. 

Our constraints on g do not ensure that K (P, A) will be a member of 6 °. 
I f  K (P, A) were denumerable and g were not closed under denumerable 
intersections, then we could have it that K (P, A) is not in g. We shall 
assume that g is closed under the formation of K (P, A) for every A, and 
that c~ is defined on g. 
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The connection between P and 8 allows P<c> (B/A) to be specified in 
terms of K (P<c>, A) so that 

P(c> (B/A) = W (B/K (P<c>, A)). 

We are assuming that Cg(B/K (P(c>, A)) represents the degree of belief in 
B appropriate to a rational agent with K (P(c>, A) as his total evidence, 
and that K (P(c>, A) is the total evidence accepted by a P<c> agent who 
minimally revises his beliefs to accept A. 

This goes part of the way toward solving the shifting problem because 
K (P<c>, A) can be defined in terms of acceptance alone. No values of 
P<c> except those where P<c> (B/A) = 1 need be considered. I f #  were closed 
under a binary propositional function f such that 

e<c > (f(AB)) = 1 iff P<c> (B/A) = 1 

then K(Pic),  A) could be defined in terms of P. We have P(c>(A)= 
=P (A/C) so that 

A (P<c>, A) = (B: P (f(AB)/C) = 1}, 
and 

K(P(c>, A) = ~ {B: P (f(AB)/C) = 1}. 

Given all this, P<c> could be defined in terms of c~ and P. 
One paradigm for counterfactual conditionals is characterized by 

acceptability conditions that meet the requirements we want f o r f  I call 
this the Ramsey test paradigm because it is characterized by a version of 
Ramsey's test for acceptability of hypotheticals (Ramsey [47] p. 24. 
Robert Stalnaker is responsible for the specific version of the test. He 
uses it to characterize the use of conditionals he intends his theory to 
explicate (Stalnaker [53]. The test is summed up in the following slogan. 
Accept AE]--+B (the conditional with antecedent A and consequent B) if 
and only if the minimal revision of your system of beliefs needed to accept 
A also requires accepting B. On the Popper function representation of 
belief, this comes to: 

A c c e p t A E ] ~ B  iff K(P,A)~_B.  

Any conditional with these acceptability conditions for rational belief 
functions will satisfy the constraints o n f  
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Let us augment ¢ to include closure under A[]---~B. We assume that 
both P and cg are defined on the augmented ~. For each C such that 
P (C/C) # 1 we have, for all A and B 

I. (i) A(P<c>,A) = {B:P(A[S]--->B/C)= 1} 
(ii) K (P<c>, A) = OA (P(c>, A) 
(iii) P<c>(B[A) = ~(B/K(P<c>, A)), if K(e<c>, A) ~ 0 

and e<c> (B/A) = 1 if K (P<c>, A) = 0. 

We are interested in iterated shifts. Write 'P<c>,' for "P(co>...<c,_ 1>' and 
let 'P<c>o' denote P. A Popper function adequate for iterated shifting 
must have P<c>n+~ adequate for shifting whenever P<c.>(Cn/Cn)~ 1. To 
this end we give the following definition of an iterative probability model 
relative to cg. 

II. P is Ip(~¢)  (P is an iterative probability model for ~ relative 
to q~). 

iff P is a Popper function on ~, c# is a confirmation function that agrees 
with P, and for any n + 1 length sequence C of propositions such that 
P ( C./ C.) # I 

(a) P<c>,(A I--1---~B/T) = 1 iff P<c>,(B/A) = 1 
(b) P<c>~ is a Popper function on g 
(c) e<c>.÷l (B/T) = e<c>n(B/C~) 

One least elementary remark. 

(d) Ifeislp(g) andP<c>.(C./C.)#l thenP(c>~+, is Ip(N). 

Each non-trivial P(c>, is itself an iterative probability model. 
In the presence of  (a) the requirement that P<c>, be a Popper function 

is equivalent to three constraints on P<c>~ assignments to conditionals. 
R.I.1. P<c>, is a Popper function iff 

(1) P<c>.(A [S]---~A) = 1 
(2) P<c>.(A[~--~B)#I fo r some A a n d B ,  and 
(3) IfP<c>~(A[-q--~B)# 1 then 

P<c>(AB[~---~D) = 1 iff P<c>~(AI-7---~(B~ D) = 1. 

Proof: The most important step is that (3) is equivalent to 
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(4) K (P<c>., AB) = K (P<c>., A) n B, 
provided K (P<c>,, A) n B # 0. 

That (3) and (4) are, thus, equivalent follows quite straight-forwardly 
from definition I and (a). To show that (1)-(3) are sufficient to have 
P<c>, be a Popper function we need only note that (1) and (2) together 
with definition I and (a) yield that P<c>, satisfies constraints cl-c3 on 
extended conditional belief functions. Since (4) is just constraint c4 
applied to P<c>. theorem II 2.1 yields the desired result. To show that 
ifP<c>, is a Popper function then (1)-(3) are satisfied note that by (a), (I) 
and (2) follow trivially from the basic constraints on Popper functions. 
Since c4, also, holds for Popper functions we have (3) as weU.I 

2. Ip-validity and Conditional Logic 

Let us investigate validity relative to iterative probability models. Assume 
that g is a countable field of propositions closed under conditionals, so 
that A []--,B is in @ for every A and B in g. We define iterative probability 
validity for A in 8. 

IV. A is Ip-valid iff for every iterative probability model P on @ 
P (A/C)= 1 for every C in g. 

For a given probability model P we already had a notion of P-validity 
in that A is P-valid just in case P (A/C) = 1 for all C. Our stronger notion 
of Ip-validity is the obvious one that A be P-valid relative to every iterative 
probability model P. 

The following axiomatization characterizes validity for David Lewis' 
basic logic VC for counter-factual conditionals, is Where A, B, C and D 
are any propositions in g the following are the rules and axioms: 

Rules (1) Modus Ponens 
(2) Deduction within conditionals: for any n/> 1, 

I- (N A3 = B 
f<n 

(N (c  E1-~ A,)) ~ (C D - ,  8) 
i<n  

Axioms (1) All truth functional tautologies 

(2) A[-']--~A 
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(3) (.41-]--~A)~ (B[~--.A) 
(4) (A []--,B) D (((AB [-]--*D) - (A ~--~ (B ~ D))) 
(5) (A[]--+B)= (A = 8 )  
(6) AB= (AVi---~B) 

The class V(T) of VC-valid propositions of # is the smallest subset of 8 
containing every instance of each axiom and closed under the rules. 
The axiomatization also characterizes valid consequence for VC-logic. 
Suppose A is a subset of 8. The class V(A) of VC-valid consequences of 
A is the smallest subset of 8 which includes A u V(T) and is closed under 
Modus Ponens. VC-consistency is defined in the usual way, i.e. A is VC- 
consistent just in case there is no B such that B and/~ are both in V(A). 

Theorem 2.1 A is Ip-valid iff A is VC-valid. 
Proof. From right to left. We show that the VC-axioms are Ip-valid 

and that the VC-rules preserve Ip-validity. Thus, we show the soundness 
of the VC-axiomatization for Ip-models. This is facilitated by Remark 
1.3 on Popper functions. 

1.3(i) P(A/.g)=I iff P(A/C)=I for all C 
(ii) P(A/A')~I iff P(A]C)=I forsome C. 

If we cannot consistently assume that P (A/C) = 0 for some Ip-model P 
and proposition C then A is Ip-valid. By remark d (this section) we have 
that P<c> is an Ip-model if P is and P (C/C)# 1. Therefore, to show A is 
Ip-valid it suffices to show that there is no Ip-model P such that P (A)= 
= e (A/T) = O. 

That modus-ponens preserves Ip-validity follows trivially from the fact 
that when P (~v0 B)= 1 then P (A)<~P (B). Consider Rule 2: Assume 
(['-~<, A~)=B is Ip-valid and that P is an Ip-model such that 

P ( ( N  (c  []--+ A,)) = (C []--+ n)) = 0. 
i<n  

We have P (Ai/C) = 1 for all Ai and, thus, that P (('li<n AI/C) = 1. We also 
have P (B/C)=O. But, by the Ip-validity of (("h<nAi)~B we also have 
P (B/C)= 1 which is impossible. The Ip-validity of the axioms is estab- 
lished similarly. This completes showing the soundness of the VC-axiomati- 
zation for Ip-validity. 
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It is worth pointing out, however, that some of Lewis' axioms corre- 
spond directly to salient features of Ip-models. Axiom 3, (~[-q---~A)D 

(B[-]--*A), corresponds to R 1.3 (i) (above) and axiom 1, AI-I-->A, 
corresponds to the Popper function constraint that P (A/A) = 1. The most 
striking case is axiom 4, 

( A [ ] ~ n )  = (((AB[]-.D) -= (A -~ (B= D))), 

which corresponds to constraint (3) on acceptability of conditionals, 

I f  P(A[~-~B)#I, then 
P (AB VT-~ D) = 1 iff P (A [~--~ (B = C)) = 1, 

and, thus, also to the main K (PA) condition, 

K (P, AB) = K (P, A) c~ B, provided K (P, A) n B ~ 0, 

on extended conditional belief functions. Lewis apologizes for having to 
use such a long and unintuitive axiom. There is some interest in seeing that 
in the IP-framework this axiom corresponds directly to a very natural 
constraint on acceptance. 

Let us turn now to the other half of the theorem and show that each 
Ip-valid A is also VC-valid. What we show here is that the Ve-axiomati- 
zation is complete with respect to Ip-validity. I f  A is Ip-valid then P (A) = 0 
for every Ip-model P. Therefore, if for each VC-consistent proposition 
A there is an Ip-model P such that P (A)= 1 then every Ip-valid proposi- 
tion is a theorem of the VC-axiomatization. Thus, the standard Henkin- 
Lindenbaum procedure for showing completeness is applicable. 

Suppose that A is VC-consistent (i.e. {A} is VC-consistent). Linden- 
baum's lemma holds for VC-consistency (Lewis [37] p. 125). Therefore, 
there is a maximal VC-consistent subset A of d ~ such that A cA. We use A 
to define that part of P where P (B/A)= 1 so that for every A, B in 

P(B/A) = 1 iff Af-]---.BeA. 

One VC-theorem is (T[]--+A)=-A. Since AeA so is T[~--*A. Thus, 
P (A)=P  (A/T)= 1. For any sequence C s # "  and A e 5  ° we have 

K(P<c>,, A) -- c~ {B: (Co []---~ ... (C,-1 [-]--~B)) ...)cA} 
and 

K ( P < c > , , A ) = 0  iff P<c>,(B[A)= 1 for all B. 
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These follow straight forwardly from the basic properties of VC-con- 
sistency and definition I. 

Let g* be the ~;-field generated by #. Since ~* is countable there exist 
classical measures M on g* that assign M (A)> 0 to every A in 4"* such 
that A ~ 0. Any such M generates a regular confirmation function cg on 
g* x jo, _ {0} where 

(H/E) = M (H • E)/M (E). 

Let cg be any such confirmation function on o ~*. 
The rest of the P-values can be defined relative to c# in the manner of 

definition I. For all A, B in jo let 

e (B/A) = c# (B/K (e, A)) 

provided K (P, A)# 0. What remains is to show that P is an Ip-model 
for ~ relative to cg. The basic constraint that P (A[[]--+B/T)=I iff 
P (B/A)= 1 results from the VC-validity of 

(T1) (T[~-->B)) --- (a [-1--~B). 

One of the VC-axioms (VC2) is A[-]---~A. Therefore A[]---~A~A, for 
every A in g and 

(1) P ( A / A ) = I  forall  A. 

The maximal consistent set A cannot have T[3--~T in it or it would not 
be VC-consistent. Therefore, 

(2) P (B[A) ~ 1 for some A and B. 

Finally Lewis' axiom 

(VC4) (A Vq---> B) = (((AB []--, D) = (A [-]--> (B = D))) 

insures that 

(3) If P (A []---~/~) # 1 then 
P (AB [ ] - - .  C) = I iff P (• []--, (B ~ 9 ) )  = 1. 

Therefore since the basic constraint holds for P remark R.1.1 yields that 
P is a Popper function. 

Assume C is a sequence of propositions of length n+ 1, and that 
P<c>,,(C,,/C,,)#I. The following derived inference rules hold for any 
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sequence C. 

(DR1) I f A E V ( T )  then 
(Co [ ] ~  ... ( C.  [ ] ~  A)  . . . ) e  V ( T )  . 

(DR2) If(A =-B)eV(T) then 
(Co [3--, ... (C.-1 D - + A )  ...) -- (Co El--" ... (c ._1 r l - ,  B) . . .  
. . . ) ~ V ( T ) .  

When (DR2) is applied to T1) we have 

(a) P<c>.+,(A[]--*B/T)=I iff 

When (DR2) is applied to 

P<c>.+~(B/A) = 1. 

(T2) (C. E]---~(TD--~B)) - (T[-]--~ (C. []-+B)) 

we have 
K (P<c>., 1, T) = K (P<c>., Cn) 

which yields clause 

(c) e<c>. +1 (B/T) = e<c>. (B/C,). 

By (c) and the assumption we have P<c>.+t(C,/T)#I and thus that 
(2) holds for P<c>.+,. That (1) holds for P<c>.+, follows from applying 
(DR1) to axiom VC-2. Similarly, that (3) holds follows from applying 
(DR1) to axiom (VC-4). Thus, we have shown that P is an Ip-model for 
d relative to cg.[] 

3. Construction of  Non-Trivial Ip-Models 

In the course of the completeness proof we showed that the constraints 
on Ip-models are consistent by constructing one, but, we did not show 
that there exist significantly non-trivial Ip-models. The Ip-model we 
constructed need not have more than the two values 0 and 1. In fact, the 
construction used can be generalized to produce Ip-models of significant 
complexity. 

Suppose that g is a countable Lewis o'-field. We say that g is a Lewis 
field (o--field) just in case 

(1) @ is a field (o--field) of subsets of a non-empty set T. 
(2) 6 ~ is closed under a binary operator A[~--+B which satisfies 

the VC-axiomatization, (i.e. every instance of a VC-valid 
scheme equals T). 



252 W I L L I A M  L. H A R P E R  

Since do is a countable a-field it is an atomic boolean algebra where each 
atom a is the intersection A u  of an ultrafilter u of  do. 

The class of regular confirmation functions on do is the class of con- 
ditional probability functions given by classical probabilities on do which 
assign positive probability to every atom. When the number of atoms is 
countable one can use classical probability measures to construct a- 
additive regular confirmation functions. An elementary result in measure 
theory is the following construction for each such probability measure. 
Let g be a function which assigns positive real numbers to atoms of do 
so that the sum for all atoms is 1. The function m on d ° defined so that 

(3) m (A) = ~ g (a) 
a=_A 

for atoms a is a classical probability measure on do which assigns positive 
probability to each atom. Moreover, every such measure m is generated 
by some such g. Thus, a very large variety of regular confirmation func- 
tions can be constructed. 

For  any VC-consistent set s of propositions in do the set VC(s) of 
consequences of s is a filter in do and every filter in do is VC(s) for some 
VC-consistent set of propositions. For  each f f i t e r fand  regular confirma- 
tion function c# there is an Ip-model on do relative to c#. 

T H E O R E M  3.1: If  %" is a regular confirmation function covering do 
a n d f i s  a filter of  do then the function P defined on dox do so that 

P (B/A) = C#(B/c~ {D: (A D---~D)ef}) ,  provided 

n {D:(A[[]----~D)~f} ~ 0 
P (B/A) = 1, otherwise 

is an Ip-model for do relative to 5 .  
Proof: The proof  is a duplicate of that used in showing that the P 

constructed in the completeness proof  is an I p - m o d e l I  
This theorem shows that non-trivial Ip-models exist. Whatever com- 

plexity is built into c#t~(p,,a ) will also characterize P~ where P '  is any 
P<c>, given by P. There is no difficulty in having P~ quite rich even though 
P ' ( A ) = 0 .  

4. Getting Rid of  the Confirmation Function 

In the definition of Ip-model confirmation functions were appealed to. 
The idea was that there should be some probability function ~g such that 
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the agents beliefs were as though they conformed to c~ by 

(1) P (B/A) = ~(B/K(P,  A)). 

Suppose that g is closed under formation of K (P<c>,, A), and consider 
the following condition. 

(2) K (P<c>., K (P<c>.. 1, A)) = K (P<c>.+ 1, A). 

If this holds for every P<c>. then each P<c>.+l is definable in terms of 
P<c>. by 

(3) e<c>. ÷1 (B/A) = e<c>. (B/K (e<c>. +1, A)). 

There is no need to use any confirmation function, since the P values 
with K (P, A) second arguments do the same job. In Part I it was sug- 
gested that credence and confirmation correspond to two different heuris- 
tics for conditional probability. Where P (B/A) is the degree of belief in B 
appropriate to minimally revising to add A and nothing further to what 
one already has, if(B/A) is the degree of belief appropriate to a minimal 
revision to reduce everything one accepts to just A. 

The idea behind (2) is that for K (P<c>,, A) these two procedures should 
come to the same thing. If K (P, A) is the minimal revision to add A then 
the minimal revision to add K (P, A) should just be K (P, A) itself. Thus, 
 (B/X (P, A)=P (B/X (P, A)). 

5. Probability of Conditionals 

Except for the basic constraints on acceptance of conditionals Ip-models 
leave open what P (A[~---~B) should be. The inspiration for the present 
treatment was a system of Stalnaker's (Stalnaker [52] pp. 74-79) based 
on the hypothesis 

(SH) P (.4 [~--~ B) = P (B/A) all A and B. 

David Lewis has shown that Stalnaker's system trivialized in that it can 
take at most only four values. (Lewis [39] pp. 4-7). Lewis' result applies 
to any system with (SH) together with 

(Ip) P (A --*B/C) = P (B/AC) all A, B and C 

provided P (A C)>  0. Since (Ip) holds for Ip-models Lewis' result insures 



254 W I L L I A M  L. H A R P E R  

that all significantly non-trivial Ip-models do not satisfy the Stalnaker 
hypothesis. 19 

6. Conceptual Change 

With the addition of the conditional operator the agent can use certain 
propositions to represent that other propositions are postulates of his 
conceptual framework. By the basic constraint on probability assignments 
to conditionals 

(1) P (A [-q---* A) = 1 iff P (A/A-) = 1 

Let 'DA'  abbreviate .4V-q--*A'. The following rule and axioms for this 
defined necessity operator are Ip-valid. 

bA 
(K1) 

FE]A 
(ml) DA = A 
(m2) [] (a = B) = (DA = EIB). 

These together with truth functional tautologies characterize necessity 
in modal system M, the weakest of Kripke's standard modal systems 
(Kripke [30]). The S4-axiom 

(S4) I'qA = I-'IDA 

is not Ip-valid, because one can have both 

P (AI.,~) = 1 
and 

P(AE]--> A/~[Z]--> A) # 1. 

Thus, system M is the modal logic that corresponds to P-validity in 
Ip-models. 

Having Ip-models where the $4 axiom fails allows for the representation 
of conceptual change. We represent the minimal revision to add A as a 
new postulate as 

P<Da>. 

We represent the minimal revision to remove postulate A from P-valid 
status as 

P<--~a5 
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One interesting property of this is that 

P<--ff~(a) = 1 

though of course P<--ffaS(I-1A)=0. This is as it should be. 
I think that being able to represent conceptual change in this way is a 

strong argument in favour of using M-necessity rather than $4 as the 
necessity induced by the conditional3 ° 

7. Stalnaker vs. Lewis 

Stalnaker's logic of counterfactuals VC-S is equivalent to the result of 
adding a single axiom 

(7) (a VI-~ B) = (A El-, n) 

to Lewis' VC (Stalnaker [53], Stalnaker and Thomason [54], Lewis [37], 
[40]). There is now considerable controversy over the merits of Stalnaker's 
axiom (e.g. Lewis [37], [38], [39], van Fraassen [57], [60], Pollock [42]). 
If one adds the constraint 

(7*) P (A [S]--*B) = 0 iff P (B/A) = 0 

to those imposed on Ip-models then (7) would be valid and Stalnaker's 
logic would capture Ip-validity. 

Even without this, Stalnaker's axiom is valid for 2-valued Ip-models. 
Since P (B • B/A) = 1 we cannot have both P (B/A) = 0 and P (B/A) = O. 
Therefore, either P (B/A)= 1 or P (B/A)= 1 and in neither case can (7) 
be assigned zero 

8. Ellis on the Logic of  Subjective Belief 

In a very interesting investigation of the logic of subjective belief Brian 
Ellis argues that the correct logic of truth for a system of propositions 
ought to correspond to what would hold in every admissible two-valued 
probability system for those propositions (Ellis [11] p. 127). He gives the 
following reasons: 

For if we are certain of  the premises of a valid argument, we ought to be certain of its 
conclusion, and if we are not certain of  the conclusion of a valid argument, then we 
ought not to be certain of  all its premises .... 

Consequently, if there is any divergence between our logics of truth and certainty, then 
either something is wrong with our probability theory or with the way we have applied 
it to the analysis of arguments or something is wrong with our logic of  truth. 
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If  Ellis' principle were right Stalnaker's logic would be the correct logic 
of subjective belief. The argument he gives however, only supports the 
weaker principle that the truth logic should capture just those arguments 
where for any admissible probability system where all the premises 
receive probability 1.0 the conclusion must also receive probability 1.0. 
This weaker principle is just Ip argument-validity. 

Ellis opens his concluding remarks as follows: 

We have as yet no adequate logic of subjective probability. The classical probability 
calculus is not an adequate logic of subjective probability because 

(a) it is not capable of handling subjective probability claims concerning 
subjunctive conditions, and 

(b) it is not strong enough to deal with compound conditionals. 

The present system of Ip-models has been constructed to answer just 
these needs. 

9. Concluding Remarks 

This is a good place to make it clear that Ip models and Ip-validity are 
not intended as a theory of rational belief change. The Ip-constraints 
characterize coherence and coherent shifting given an input. What they 
do not specify is what inputs are rational under what circumstances. 
Clearly, a full theory of rational belief change would have to include a 
theory of inputs. 

I think that some discussions between Bayesians and classical testing 
theorists are confused by the fact that the testing theorist is talking about 
rational inputs while the Bayesian is talking about coherence. The ortho- 
dox Baysian may say that no theory of inputs is needed because the only 
appropriate inputs are observations and they are so obvious as to requires 
no theory. Taking seriously the idea that observations are fallible, which 
can be done in the Ip-framework, indicates that some theory of inputs is 
needed. Working out the details of one might help bring together some 
of the good points in the two traditions. 

Finally, I should like to point out that Ip-models are very much ideali- 
zations. No actual agent can be expected to have his belief function 
defined for all the propositions in a Lewis algebra, nor is any actual agent 
expected to attain the semantical omniscience built into the characteriza- 
tion of belief functions. There are two comments to be made on this. 
First the fragment for which an actual agent's belief function is defined 
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c a n  be  e x p e c t e d  to  i nc lude  c o n d i t i o n a l s  a n d  c o u n t e r f a c t u a l  cond i t i ons .  

S e c o n d  the  I p - m o d e l  is a c o n s t r a i n t  o n  ac tua l  r a t i o n a l  degrees  o f  be l i e f  

in  m u c h  the  w a y  t h a t  o r d i n a r y  log ic  is a c o n s t r a i n t  o n  accep tance .  T o  

the  ex ten t  t h a t  the  be l i e f  f u n c t i o n  is de f ined  a n d  fails  to  m e e t  the  Ip -  

cons t r a in t s  i t  is i ncohe ren t .  

University of Western Ontario 

N O T E S  

1 Ramsey [46], De Finetti [12] and Savage [49]. This orthodox tradition is a salient 
subclass of I. J. Good's 46656 (Good [17]) variations on the Bayesian theme. It is charac- 
terized by the representation of belief functions as point probability functions and by 
its emphasis on the role of belief in guiding decisions. 
2 One of the most ingenious alternative approaches is that of Cox and Good where 
certain modest assumptions about belief require that there exists as probability func- 
tion representing the beliefs. See Cox [10], Good [15]. For the most explicit treatment 
of the mathematical details see Aczel [1] pp. 319-24. See Shimony [51] for a recent ap- 
plication of this argument. 
3 Often the field of propositions can be restricted to what Savage calls a small world 
situation, Savage [49] pp. 87-90. Where each possible world can be regarded as no 
more than one of the alternative specifications of those factors that would be relevant 
to the decision problem. 
a Everything I shall say about expected utility in this paper can be relativized to such 
situations. In fact I do not believe that the current treatments for cases where P(AO 
depends on ay are entirely adequate. 
5 The result would be more interesting if it applied to ordinary coherence as well as 
strict coherence. As we shall see strict coherence is a bit odd anyway. 
6 Originally Carnap's goal was to iliad constraints that would make cc completely deter- 
mined by the semantical properties of o °. Thus, (~ would represent the logical probabili- 
ty function generated by the field of propositions o °. This goal of a single logical cg. 
function now seems unattainable and has been largely given up. For a discussion of the 
changes in Carnap's program from a basically Popperian point of view see Lakatos 
[32]. The best statement of the new more modest goals of the Carnapian program is 
Jeffrey [25]. 

Carnap defines regularity so that certain propositions are exempt. This is a mistake 
on his part for the following two reasons. First, the strict coherence argument he ex- 
plicitly claims as the justification for regularity allows no such exceptions. Secondly, 
violations of full regularity clash with the basic heuristic that guides the program (see 
text). 
8 Thus, Carnap's objections to acceptance of hypotheses (Carnap [8] pp. 28-31) do not 
rest on strict coherence. Indeed the discussion of credence suggests strongly that Carnap 
allows acceptance of evidence claims. 
9 See May and Harper [41] for discussing the minimum change idea together with some 
metrics and optimization techniques. 
10 If  we replace conditional bets by conditional expected utility and the assumption 
that the bets-beliefs postulate holds for both Po and P1 by the assumption that utility 
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assignments relative to propositions in K(Po) N K(P1) remain unchanged, my version 
of the dutch book argument is transformed into a version of Savage's conditional ex- 
pected utility argument for conditionalization. 
11 (Popper [43] pp. 318-358). Popper's published work on this subject is given in a 
series of papers starting in 1938. Most of these papers together with bibliographic 
material are included in the pages cited. 
12 A minimal algebra is simply a set closed under a unary and a binary relation. 
13 Popper's main axiomatization uses the weaker 

a2'. IfP(A/D)=P(B/D) for all D, then 
P(C/A) = P(C/B). 

The present a2 is given as an alternative stronger version on p. 335 of Popper [1]. Pop- 
per uses the much weaker assumption 

P(A/A) =P(B/B) 

in place of al. I use al only to make things more perspicuous. 
14 In the standard Kolmogorov treatment classical probabilities are defined in a-fields 
and are a-additive. I f  A is a denumerable sequence of pairwise disjoint sets then 

We may, also, have a-additive Popper functions. Nothing I shall say in the present 
paper will turn on the difference between finite additively and a-additivity. In future 
work developing the measure theory for Popper functions a-additivity will be impor- 
tant. 

A very nice construction for Popper measures by combining even non-denumerably 
many classical probability measures has been developed by Bas C. van Fraassen [59]. 
15 Proof  of al. 3 (i): We proceed by first showing a lemma. The proof  of this is essen- 
tially that given in Popper [1] p. 352. In the present version a2 is not  appealed to. 

LEMMA.  If P(d/C) ~ 1 then P(AB/C) + P(AB/C) =P(A/C). 
Assume P(C/C) = 1 and note 

(1) P(B/AC) +P(B/AC) =P(C/AC) +P(C/AC). 

holds in case P(AC]AC) = 1 by constraint 2ii and in case P(AC[AC) ~ 1 by a3. Multip- 
ly both sides of 1 by P(A/C). 

(2) P(A/C).P(B/AC) + P(A/C).P(.B/AC) = 
= P(A/C).P(C/AC) + P(a/C).P(C/AC). 

Using a4 on 2 we get: 

(3) P(AB/C) + P(AI~/C) =P(AC/C) + P(AC]C). 
Coherence (or a4, a5 and a4) yields P(AC[C) =P(A/C), and P(AC/C) =0. 

We turn now to the main result. 

R1.30) If  P(A/~f) = 1 then P(A/B) = 1 all B. 

Assume P(A[~) = 1, and note that P(A/B) = 1 trivially ifP(l~]B) = 1 (by constraint 2ii). 
Assume P(B/B) # 1 and use the lemma. 

(1) P(AA/B) + P(A~f/B) =P(A/B) 
Use a4 on 1 : 

(2) P(A/B).P(A/AB) + P(,,~/B)..P(A],4B) = P(A/B). 
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By al ,  a5 P(A/AB) = 1. Since P(A/e[) = 1 we have P(.,f/X) = 1 and by 2ii P(BA/A') = 1 
which yields P(A/.,~B) = 1 by a4. Thus, 

(3) P(A/B) +P(,,I/B) =P(A /B)  

which completes the proof. 
16 Assume K(PB) ,-" A ~ d?. Thus, P(B/B) ¢ 1 and P(A/B) ¢ O. To see that  K(PaB) 

K(PB) n A assume P(C/B)  = 1. P(AC/B) = 0, therefore P(A/B).P(d/AB) = 0 and 
P ( C / A B ) =  1. To see that  K ( P . n ) n A  ~_K(Pan) assume P ( C / A B ) =  1 and note that 
P ( A  U C/B)= 1. 
17 Hughes Leblanc attempted to show that  Popper functions on sentences are equiva- 
lent to a natural extension of Carnap's  treatment of confirmation functions for sen- 
tences (Leblane [33]). The following definitions of a deducibility relation E- and extended 
confirmation function c¢ are equivalent to ones Leblanc gives (Leblanc [33] ). 

cO. ba iff a is a tautology 
e l .  0 ~ C~(b/a) <~ if(a/a) = 1 
c2. I f  [-a --=b and }'c ~ d  then ~(a/c) = Cg(b/d) 
c3. I f  not ~-d then cg(b/a) = 1 = ~'(b/a) 
cA.. C~(ab/c) = Cg(a/e).~(b/ac) 

Leblanc gives the following axioms for Popper functions 

a l .  0 ~ P(b[a) <~ P(a/a) = 1 
a2. I f  a ~,, b then P(e/a) = P(c/b) 
a3. I f  P(c/a) ~ 1 then P(b/a) = 1 =.P(b/a) 
a4. P(ab/c) = P(a/c).P(b/ac) 
a5. P(ab/c) = P(ba/c), 

to which he adds 

a6. I-pa iff P(a/,~) = 1. 

He then shows 

(1) Any ~- and rg satisfying c0--c4 also satisfy al-a6. 

He also claims to show 

(2) Any P and Fp that satisfy a l - a 6  also satisfy c0--c4. 

The second claim is false, because }-e need not  capture only tautologies. This was first 
pointed out by Stalnaker (Stalnaker [52] footnote p. 70). I include these remarks, be- 
cause Stalnaker did not indicate how Leblanc went wrong, nor  what was actually 
proved. Indeed one can have a Popper function where P(a/a) = 1 or P(d/a) = 1 for all 
a. Leblanc misleads himself by using the axiomatization that is supposed to recursively 
define ~- as simple constraints on b. 

What  Leblanc actually succeeds in proving is that  any Popper function P satisfies c l -  
c4 relative to }-p and that  [-p captures at least all tautologies. Furthermore, his proof  of 
the converse is actually a proof  of  the stronger claim that any k which captures at least 
all tautologies and rg which satisfies cl--c4 relative to J- also satisfy a l -a6 .  
is Lewis [37] p. t32. 
1~ After Lewis' trivialization [39], Stalnaker has given up (SH). (Comment delivered 
by Stalnaker at CPA 1972). Bas van Fraassen, however, has been developing ingenious 
attempts to circumvent Lewis' results (van Fraassen [57], [58]). These attempts all re- 
ject (lp). Since (Ip) corresponds to iterated conditionalization I think that the price van 
Fraassen pays to keep (SH) is too high. 
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~0 This point was the motivation for developing the method of handling universal in- 
stantiation for M-versions of conditional logic given in Harper [19]. 
2x See next section. 
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Note added in proof: 

Robert Stalnaker has shown that Ip-models trivialize so that P<a>(B/B)= 1 whenever 
P(A)>0 and P(B/A)=O. (Letter to Author.) Theorem 3.1 of Section III is false. The 
construction only works when f is an ultrafilter, as in the completeness proof. 

In order to meet this serious difficulty the system is revised so that a conditional 
proposition A []-+B is allowed to vary with changes in the relevant acceptance context. 
In evaluating P(A []-->B/C) the relevant acceptance context is K(P, C). In evaluating 
P((A[S]~(BTq-->(C[]->D)))/E) the relevant acceptance context varies with nesting to 
the right so that K(P, E), K(P<E>, A) and K(P<E> <a>, B) are the contexts relevant for 
the respective nested conditionals. 

Having nearness relativized to acceptance contexts in this way promises to be of 
some interest in understanding conditionals as well as rational belief. 


