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1. INTRODUCTION 

The object of the present paper is to consider the relationship between 
symmetries of different theories in physics. We shall be interested in dis- 
cussing such symmetry relationships from two points of view. Firstly there 
is the formal question of how the symmetries of two theories can be re- 
lated in virtue of correspondence relations that may exist between the 
theories. Secondly there is the heuristic aspect, how certain symmetries 
which project forward from an old theory to a new theory which replaces 
it serve as a heuristic guideline in the discovery of the new theory. 

To pursue the purely formal aspect we shall need to develop appropriate 
techniques for discussing arbitrary theories, their symmetries and their 
various correspondence relations. To elucidate the heuristic aspect we 
shall be concerned with the consideration of historical examples illustrat- 
ing the rble of symmetry principles in physics and our interest here will be 
to distinguish various different types of symmetry, and in the final section 
of the paper to attempt a broad classification of those symmetries which 
have heuristic potential. 

Firstly however we shall say something about the metaphysical 1 con- 
cept of symmetry in the widest context, so that the motivation for the 
rather precise definition of the symmetry of a physical theory we shall 
employ later (see Section 6) may become apparent. We begin by explaining 
that symmetry is basically a two-pronged concept. Formally we may write 
Symmetry= ({I}, {T}) expressing the symmetry of a physical system or 
situation as an ordered pair, {I} denoting the set ofinvariants, the features 
of the situation which remain unchanged, while ( T} is the set of trans- 
formations which express those changes for which the invariants remain 
fixed 2. The idea is fundamental because if we want to discuss change in a 
system we must be able to identify what it is that is changing, and this 
identification of a system during change is only possible by specifying the 
set of invariants which remain unchanged during the indicated trans- 
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formation - if there were no invariants we could not define 'iden- 
tity'3. 

In applying these ideas to understand what is meant by the symmetry of 
a physical law we remark informally that the invariant feature is the 
mathematical form of the law and the symmetry transformations are 
transformations affecting the variables in terms of which the law is 
formulated, which leave the form of the law unchanged. 

In order to discuss the fundamental significance of symmetry in physics 
the concept is often linked (see for example [42] and [7]) to two other 
notions. 

(1) Conservation Laws: In classical physics theories which can be 
derived from a variational principle possess the remarkable property that 
if the laws are invariant with respect to some continuous symmetry group, 
then quantities corresponding to the infinitesimal generators of the sym- 
metry are conserved in time, that is themselves display a special sort of 
symmetry, namely invariance under time-displacement. The connection 
between the symmetry of laws and conservation principles is even closer 
in quantum mechanics where discrete as well as continuous symmetries 
lead to associated conservation laws for the unitary operators which 
represent the symmetry transformations. 

(2) Non-observability of some feature of the physical situation: Clearly 
if the set of invariants {I} express all the structural features of a situation 
that can be observed, then we cannot distinguish observationally any 
change as having occurred if the system is subjected to a transformation 
which is an element of {T}, i.e. the features which do change under the 
transformations are non-observable in such a case. For example symmetry 
under displacement is related to the non-observability of absolute posi- 
tion, and so forth. 

We prefer to regard these two ideas of conservation 4 and non-observ- 
ability as essentially derivative. Our own approach, following Wigner [68], 
will be to consider a set of possible correlations, or 'solutions' as we shall 
term them, permitted by a physical theory as the invariant object, and to 
regard symmetry transformations as inducing a rearrangement of these 
solutions, which leaves their totality unchanged. This idea will provide an 
adequate framework for our formal discussion of symmetry and will 
enable us to analyse precisely the relationships between symmetries of 
different theories. 
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2. T H E  C H A N G I N G  R ~ L E  OF SYMMETRY IN THE H ISTO RY  OF 

PHYSICS 

We turn next to a consideration of the way in which the concept of sym- 
metry has been used in the history of physics, so that our subsequent re- 
marks may be seen in a proper historical context. The first application of 
a symmetry argument in physics appears to be the proof given by Anaxi- 
mander (see [3], p. 235) for the stability of the earth. Another example is 
Archimedes' proof of the laws of equilibrium for the lever [2]. In both 
cases there is an implicit argument in the account, the structure of which 
is to show that if equilibrium is not achieved then we can derive a logical 
contradiction, hence equilibrium follows by reductio ad absurdam. Thus 
Anaximander's reasoning can be very freely paraphrased as follows. If the 
earth moves up we conclude by symmetry it must equally move down, 
which is a contradiction. Hence it does not move up. Similarly if the earth 
moves down we prove that it must move up. Hence it does not move down. 
But if the earth moves neither up nor down it cannot be moving at all 5. 
Q.E.D. An interesting variation on this method of reasoning is provided 
by Stevin ([59], p. 177f.) in his discussion of the equilibrium of a chain of 
spheres on a double inclined plane. The conclusion of the argument is not 
here a logical contradiction, but the fact that the chain once set in motion 
would continue to revolve perpetually. Stevin comments "which is absurd", 
but the absurdity is not a logical one. It is perhaps counter-intuitive, but 
against this, perpetual motion, at that time, was not regarded as rationally 
impossible, so it seems clear that by absurd Stevin means simply contrary 
to empirical observation. In this example empirical observation is not 
directed at the symmetry itself (the invariance of the form of the chain as 
it slides round the wedge) but is used as an adjunct in the application of a 
symmetry argument. The idea that one could derive symmetry principles 
from observed laws, rather than laws from a priori symmetry principles 
can be traced to Galileo. In his Dialogue Concerning the Two Chief Worm 
Systems (see [24], pp. 186-7) Galileo derives the principle of invariance 
of physical laws with respect to the uniform motion of the reference frame 
by considering a variety of phenomena observed on board a moving ship. 
Further, in his Dialogues Concerning Two New Sciences [25] Galileo 
effectively considers the possibility of scale invariance for mechanical 
phenomena, and rejects this as conflicting with his laws of resistance to 
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fracture, pointing for example to limitations on the size of land animals, 
but it is interesting to note that Galileo clearly implies that scale invarian- 
ce would hold if the elastic properties of the bones of the animals were also 
appropriately scaled (see [25], p. 130). In this respect Galileo's view 
agrees with that of Fourier ([23], p. 66) who is usually credited with 
deriving a principle of scale invariance from a physical law, namely the 
phenomenon of heat conduction, but does this only on the assumption 
that the thermometric conductivity is appropriately scaled. Scale invarian- 
ce is important in the history of symmetry because it is a clear example of 
a symmetry which is empirically based and is also not universal in the 
sense that it applies to all phenomena - thus it does not apply to electro- 
magnetic phenomena, since the velocity of light, being, unlike conductivi- 
ty, a universal constant cannot be scaled. 

We have then two views on the r61e of symmetry in physics: (1) the a 
priori  approach which seeks to derive laws of nature from symmetry 
principles, which are in some sense self-evident, or at any rate more 
plausible than the phenomena which they seek to explain, (2) the empi- 
rical approach which derives symmetry principles from known laws of 
nature and expresses interesting mathematical properties of such laws. 
The a priori  approach is exemplified in the application of symmetry 
principles to derive the laws of probability, as in Bernoulli's Principle of 
Indifference [5] (see also Laplace [41]). Here the symmetry involved is 
not about the world but about our knowledge of the world. As our atten- 
tion turns from one face of the die to another our knowledge relating to 
the conditions under which the die is thrown remains unchanged, hence 
our belief that this face rather the first will emerge from the throw is also 
invariant, since for Bernoulli and Laplace knowledge rationally deter- 
mines belief. This example should be contrasted with Leibniz's Principle 
of Sufficient Reason [43] which, in its application to scientific phenomena, 
effectively contained a hidden assumption about the symmetry of the laws 
of nature, that is to say in Leibniz's case the symmetry applies to nature, 
not merely to our knowledge about nature. The opposition between the 
a priori and the empirical approaches to symmetry principles is seen most 
clearly in the development of the special theory of relativity. To Lorentz 
[44] and Poincar6 [50] the Lorentz transformations were mathematical 
properties of Maxwell's equations (symmetries derived from laws) but to 
Einstein [18] the true r61e of the Lorentz transformation was the reverse 
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one of deriving new laws of mechanics, and indeed every other branch of 
physics, from a symmetry with respect to uniformly moving frames of 
reference, the transformation laws being derived from a proper analysis 
of the rSle of electromagnetic waves in specifying simultaneity, and the 
invariance of the velocity of light under the proposed transformation. 
From a modern point of view it is clear that both approaches to symmetry 
are in order. We can distinguish two classes of symmetries which we shall 
refer to as universal and dynamical G. The universal symmetries are sup- 
posed to hold for all physical phenomena and hence can be used as con- 
straints when devising theories relating to any new branch of physics. 
According to Wigner [-69] the only universal symmetries of this kind are 
included among the so-called geometrical 7 symmetries, and are elements 
of the proper Poincar6 group comprising translations and proper 'rota- 
tions' in space-time. The dynamical symmetries hold only for special sorts 
of interaction, for example isospin invariance in nuclear physics is clearly 
broken by electromagnetic interactions which distinguish protons from 
neutrons by the presence of electric charge. However we can again sub- 
divide dynamical symmetries into those having heuristic potential, such as 
the case of isospin just referred to, in the sense that they can be used as 
constraints on the construction of theories for a wide class of phenomena, 
albeit not for all phenomena, and those we may term accidental in the 
sense that while expressing interesting features of some specialized pheno- 
menon, they are in a sense dynamical accidents having no fundamental 
physical significance. Examples of accidental dynamical symmetries might 
include the conformal invariance of Maxwell's equations in free space 
discovered by Bateman [4] and Cunningham [13], the Fock [21] sym- 
metry for the motion of an electron in a Coulomb potential, which ex- 
plains the degeneracy of the hydrogen spectrum with respect to angular 
momentum, or the SU(3) symmetry 1-34] of the three-dimensional har- 
monic oscillator. 

It is clear that the distinction between heuristic and accidental sym- 
metries is not a categorical one. What may appear initially as an accidental 
symmetry may later transpire to have heuristic potential. The concept of 
a gauge symmetry (derived from a Lie symmetry group by replacing the 
infinitesimal parameters by arbitrary space-time functions) would be an 
example of such a change in status 8. Alternatively putative heuristic sym- 
metries may be downgraded to accidental status as has been suggested by 
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Dyson [17] in the case of unitary symmetries in hadron physics. Never- 
theless the distinction we have drawn is useful in assessing the r61e to be 
ascribed at any particular instant in the development of physical theories 
to a particular symmetry. 

3. C O R R E S P O N D E N C E  AND SYMMETRY 

The subject of intertheory relations has been discussed in several recent 
papers, for example Tisza [63], Strauss [61], Bunge [9] and Post [54]. 
There is the formal aspect of detailing the various sorts of correspondence 
which are possible between theories. But the practical results of such 
studies may be said to contribute to a methodology of heuristics in the 
sense of distinguishing the sorts of correspondence which do, or should, 
obtain between successive theories. The use of the phrase methodology of 
heuristics may stand in need of some clarification since modern philosophy 
of science has tended to regard heuristics as belonging properly to some 
other discipline, psychology or sociology 9. Thus Popper in a famous 
passage in The Logic of Scientific Discovery denies the possibility of a logic 
of scientific discovery ! As Popper puts it 10 "The question how it happens 
that a new idea occurs to a m a n -  whether it is a musical theme, a dramatic 
conflict, or a scientific theory - may be of great interest to empirical 
psychology; but it is irrelevant to the logical analysis of scientific knowl- 
edge". Or again Lakatos [40] "... Modern methodologies or 'logics of 
discovery' consist merely of a set of . . .  rules for the appraisal of ready, 
articulated theories... Outside the legislative domain of these normative 
rifles there is, of course, an empirical psychology and sociology of dis- 
covery". Nevertheless, while granting that the question of the mental 
processes involved in arriving at a 'discovery' in science belongs properly 
to psychology, we may argue that certain constraints may be placed on 
the untrammelled working of the creative imagination, which may provide 
what Post [54] refers to as heuristic guidelines. The important point to 
notice here is that, as detailed historical analysis shows, theories do not 
spring fitly-armed out  of nowhere, but evolve from existing theories with 
which they are linked by some relation of 'Correspondence' lz. One of the 
most fruitful methods for discovering a heuristic guideline is to examine 
the nature of this correspondence relation between successive theories, 
and this is clearly part of the general field of intertheory relations which 
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deals not only with the relations between old theories and new theories 
which replace them but also with the problem of comparing contempo- 
raneous theories relating to different, albeit overlapping, areas of scientific 
interest. 

We can distinguish then two ways in which we can usefully understand 
the phrase methodology of heuristics: (1) The empirical-historical ap- 
proach which is concerned with investigating how successive theories in 
the history of science have in fact been related. (2) A stronger normative 
or prescriptive sense of the term methodology which attempts to lay down 
heuristic guidelines, which may themselves be derived from the empirical- 
historical analysis referred to under (1). For a more complete discussion 
of the methodology of heuristics along the lines indicated reference may 
be made to the work of Koertge [37] who has considered a number of 
examples from the history of physics and chemistry, and of Redhead [55], 
who has examined the historical development of theories in modern ele- 
mentary particle physics. 

One of the most interesting features of intertheory relations is the 
question of comparing the symmetries of two theories which stand in 
different sorts of correspondence. The formal aspect of this problem was 
discussed by Post [54] who sought to apply Curie's Principle in this 
particular context. Curie's Principle [14] was originally formulated as a 
rule relating the symmetries of cause and effect in a physical phenomenon. 
In terms which are more succint than illuminating it states that a cause 
cannot be more symmetric than its effect, i.e., symmetries are always 
transmitted from cause to effect, although asymmetries need not necessar- 
ily be so transmitted. An excellent discussion of the significance of Curie's 
Principle has been given by Chalmers [11], to whose work reference may 
be made for an account of physical applications of the principle. 

Consider now the case of two theories L and S (we follow the termi- 
nology of Post [54]) such that S is followed chronologically by L which 
is regarded by 'any neutral observer' as the 'successor' of S. According to 
the General Correspondence Principle [54] L and S will stand in some 
non-trivial relation of correspondence 12. In a loose way we might regard 
L as the cause of S in the sense that L serves to explain the successful part 
of S (this well-confirmed part of S we denote by S* and assume the absence 
of so-called Kuhn losses 1~ shrinking S* to S**) and enables us to under- 
stand why it was successful. Thus at first sight we might apply Curie's 
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Principle at once in the form 

P 1 : the L-theory cannot be more symmetric than S*. 

Now one can easily think of examples where S* is equal in symmetry to L 
or is more symmetric than L, both of which possibilities are permitted by 
this formulation. Thus taking the transition classical mechanics (CM) 
relativistic mechanics (RM), both theories exhibit symmetry under spatial 
rotations or in the transition electrostatics (E)~  electromagnetism (EM) 
the S-theory E possesses scale invariance which is lacking in the L-theory 
EM described by the full Maxwell equations. But one can also easily 
produce examples which contradict our simple preliminary formulation. 
Referring once again to the transition CM ~ RM, the L-theory, RM, 
possesses a symmetry under pure Lorentz transformations which is 
lacking for the S-theory CM. Post 1-54] attempts to deal with this difficulty 
by imposing appropriate conditions on the sort of correspondence we are 
dealing with. He formulates therefore a modified principle which I shall 
refer to as the Curie-Post Principle, in the form 

P 2: the L-theory cannot be more symmetric than S* in the case 
where L and S stand in a relation of consistent correspondence. 

The precise explanation of the distinction between consistent and in- 
consistent correspondence will be taken up in Section 7, but broadly the 
case of inconsistent correspondence in which L only 'approximately' ex- 
plains S* would apply to the transition CM ~ RM (CM is derived from 
RM only in the limit of vanishingly small velocities). So this type of 
counterexample is eliminated in the formulation of the Curie-Post 
Principle. Nevertheless, as we shall find in Section 7, the Curie-Post 
Principle is not generally valid even in the case of consistent correspon- 
dence unless we further restrict the type of correspondence, or alternative- 
ly restrict the type of symmetry to be allowed in the formulation of the 
principle. But if we allow ourselves to restrict allowable symmetries we 
can now obtain a new version of the Curie-Post Principle which applies 
both in cases of consistent and inconsistent correspondence. We shall find 
in Section 7 that we can arrive at a suitable criterion for delimiting the 
allowable symmetries in terms of a precise analysis of the so-called Q 
conditions which play an important r61e in the formulation of the General 
Correspondence Principle. These Q conditions are restrictions on the L- 
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theory formulated in the language of L which must be applied before we 
establish the correspondence between L and S* via rules of a translation 
~" between the languages in which the L and S theories are formulated, so 
that Post summarizes the General Correspondence Principle in the form 

S * = : ( L  I Q ). 
Before proceeding to a more detailed analysis we want to consider a 

quite different sort of objection to the Curie-Post Principle raised by 
Strauss (private communication based on the point of view expounded in 
[61]). The difficulty of comparing symmetries of theories according to 
Strauss is that the same theory may have different mathematical formula- 
tions, which may admit differing covariance groups, so that one could 
suggest an extreme counterexample to the Curie-Post Principle in the form 
of a theory which is more symmetric than itself! A particular example 
considered by Strauss is that of the Lagrangian and Hamiltonian formula- 
tions of classical mechanics. Hamilton's equations are invariant under the 
group of contact transformations, whereas the covariance group for 
Lagrange's equations is the more restricted group of point transforma- 
tions, which do not 'mix' coordinates and momenta. However, if we want 
to discuss symmetry in intertheory relations we want to distinguish sym- 
metries which are characteristic of a theory independent of any particular 
mathematical formulation from those symmetries which may depend on 
the particular formulation. The former class we shall call physical sym- 
metries which will comprise in general a proper subset of the more general 
class of mathematical symmetries. The Curie-Post Principle refers then to 
physical symmetries and not to mathematical symmetries which are not 
also physical symmetries. In particular the contact transformations of 
Hamiltonian mechanics are not physical symmetries in a sense which we 
shall make precise in Section 6, and in this manner we shall avoid the 
Strauss objection. 

The relationship between mathematical symmetries (MS), physical 
symmetries (PS), heuristic physical symmetries (HPS) and universal 
physical symmetries (UPS) is clarified in Figure 1. The class of accidental 
symmetries is the relative complement of HPS with respect to PS and the 
class of dynamical symmetries is the relative complement of UPS with 
respect to PS. The purely mathematical symmetries (i.e. the relative com- 
plement of PS with respect to MS) do not have heuristic potential in them- 
selves, but it is important to notice that a reformulation of an S-theory 
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may possess mathematical symmetries which project into the L-theory if 
the latter is obtained by 'stretching' the reformulated S-theory in the 
technical sense elaborated in [55]. Thus for example the transition Pois- 
sonian dynamics ~ quantum mechanics ~ la Dirac preserves contact 
transformations as a symmetry which now reappear as (in general time- 
dependent) unitary transformations which preserve commutation relations 

PS 

HPS 
UPS 

1 
Fig. 1. 

MS 

in the same way that contact transformations preserve Poisson brackets. 
Strauss refers to the Poissonian formulation of classical mechanics as a 
partial formal anticipation of quantum mechanics, but the mathematical 
symmetry is not here used heuristically as one might, for example, use 
Lorentz invariance as a constraint on any future theoretical development. 

In passing we may also notice the interesting possibility of a non-trivial 
mathematical symmetry which is trivially a physical symmetry (i.e. cor- 
responds to the identity automorphism in the physical structure). This is 
exemplified by the gauge symmetries which will be referred to in Section 8 
below. 

4. T H E  RELATION OF MATHEMATICS TO PHYSICS 

In order to explain precisely what is meant by a mathematical symmetry 
of a theory we must first address ourselves to a brief elucidation of the 
r61e of mathematics in theoretical physics. We begin by outlining a scheme 
for relating a mathematical structure to a physical theory. For the pur- 
poses of this discussion we shall have in mind a 'realist' approach and re- 
gard a physical theory as a collection of statements which refer to actual 
states of affairs in the real world. We may think of a theory as consisting 
of axioms and deductive chains flowing from these axioms to produce 
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theorems and finally empirical generalizations to be confronted with ex- 
periment as expressed in the form of singular observation statements, but 
we do not wish to enter into an explanation of exactly how we might 
distinguish theoretical from observation terms in a theory. We shall sim- 
ply assume that all the terms employed have some ontological reference. 
We shall also gloss over any discussion of how we might formalize a 
theory, i.e. express it in a formalized language, and the usual difficulties 
arising from the lack of expressive power of formalized languages which 
leads to well-known problems such as incompleteness and non-categorici- 
ty. We shall indeed suppose our theory to be presented and discussed as 
an informal axiomatic system in the terminology of Stoll [60]. This is not 
to say we decry formal methods, but their use is not necessary to highlight 
the problems in which we are presently interested. We regard it as an 
empirical-historical fact that theories in physics can be represented as 
mathematical structures. More generally we shall envisage the possibility 
of embedding a theory Tin a mathematical structure M'  in the sense that 
there exists an isomorphism 14 (a one-to-one structure-preserving cor- 
respondence) between T and a sub-structure M of M'. M'  is thus a non- 
simple conservative extension of M. The situation is represented schema- 
tically in Figure 2. 

T 

Ax i o r n s ~ E m p i  r ical 
~ general izat ions 

Fig. 2. 

If  we like we can introduce an uninterpreted calculus C of which T and M 
are regarded as isomorphic models, or we can introduce a calculus C' for 
M'  and introduce a new theory T' which is partially interpreted via the 
structure T. These ideas are illustrated schematically in Figure 3. 
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T 
I 

)T 

M' 

Fig. 3. 

The relative complement of T in T' we refer to as the surplus structure in 
the mathematical representation of the theory T. Now we can reverse our 
line of argument and starting with a given T' ask what is the correspon- 
ding/.9 To a positivist T would involve only observation terms but to a 
realist theoretical terms may also appear in T. Even to a realist it is not 
clear in some cases whether the surplus structure should or should not be 
accorded ontological reference - the concept of the SchrSdinger wave- 
function in quantum mechanics might be such a borderline example. In 
other cases terms in T' which start their life effectively as uninterpreted 
symbols may acquire a reference in reality as that particular branch of 
science develops - the kinetic theory of matter, as viewed by positivists 
like Ostwald or Mach, might be cited as an example, the molecules only 
acquiring a semblance of reality after the discovery of Brownian motion 
and its quantitative interpretation by Einstein and Smoluchowski. But in 
other cases the status of the surplus structure is quite unequivocal. The 
example of analytic S-matrix theory in modern elementary particle physics 
is an excellent example of the essential rSle that surplus structure, with no 
possibility of ontological reference, may play in the development of a 
physical theory. (A detailed study of this example is given in [55].) At all 
events we shall suppose in what follows that initial agreement has been 
reached as to what constitutes T and T'. There is a view emphasized by 
Hilbert and von Neumann [32] that theoretical physics should ideally 
proceed by a direct axiomatization of physical concepts, with the elimina- 
tion of all surplus structure. But other physicists, notably Jeans [35] and 
Chew [12] have stressed the importance of purely mathematical consider- 
ation in theoretical physics. Einstein's development of general relativity 
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is another example in this category. Opponents of the view that God is a 
mathematician are faced with the task of explaining the success of a great 
deal of theoretical physics, which has not generally developed in accor- 
dance with the programme of Hilbert and von Neumann. We do not need 
in our discussion to take sides in this argument but simply point to the 
empirical-historical fact that physical theories are always related to 
mathematical structures in the way we have indicated. 

In what follows we shall conveniently identify Twith M and T' with M' 
so that we can effectively reduce the problem of intertheory relations to 
one of relations between mathematical structures. Our next task will be to 
develop a method for representing an arbitrary theory in physics, i.e. to 
formulate a prototype for a natural law, so that we can use the resulting 
theoretical apparatus to discuss relations between symmetries of successive 
theories in full generality. We will be operating here on a meta-level and 
what we will be developing in the next section is a theory of theories. 

5. A THEORY OF THEORIES 

In order to exhibit the canonical theory in physics we can follow a number 
of different approaches. First of all we could follow the ideas of Birkhoff 
and yon Neumann [6] and exhibit a general theory as a lattice of proposi- 
tions. Symmetries of a theory appear then as automorphisms of the lattice 
structure. Quantum mechanics is distinguished from classical mechanics 
by requiring a non-distributive (i.e. non-Boolean) lattice of propositions. 
But this method of representing a canonical theory is not well adapted to 
our particular problem because there is no simple way of characterizing an 
arbitrary lattice, and it would be very difficult to investigate relationships 
between symmetries of different theories within the framework of this 
formulation. Another approach would be to follow the method of Hout- 
appel, van Dam and Wigner [33] who formulate theories in terms of a 
generalized conditional probability function which they call the/1 function 
which measures essentially the probability that results ill, fi2,.., for 
observations B1, B2 .... on a physical system will result if we know already 
results al, a2 .... for observations A1, A2 .... Symmetry transformations are 
simply transformations among the observables which leave the//function 
invariant. Clearly the motivation here is quantum-mechanical. Classical 
mechanics is handled somewhat awkwardly by introducing tS-functions 
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for the distributions so as effectively to yield a description in terms of 
classical orbits. We shall not ourselves follow this method which is very 
positivistic in its approach and is not well suited to discussing symmetry in 
classical physics, or symmetry relations between theories in general. Next 
we should mention Tarski's calculus of deductive systems [62] in which 
theories are represented as sets of sentences closed under the operation of 
logical consequence. The sentences or theorems are partially ordered by 
the relation of implication, but this ordering is of course only partial, 
which makes it impossible to give precision to Post's [54] informal dis- 
cussion of the horizontal slicing of a theory separating various levels of 
deducibility. The concept of passing from S to S* by stripping off a dis- 
pensable, not independently confirmed, superstructure is an important 
one, which we shall analyse carefully in Section 7, but Tarski's approach to 
the description of theories, which is essentially the one we used in Section 4, 
cannot help us here, nor with our problem of the analysis of symmetry. 

In order to discuss our particular problem most conveniently we shall 
seek to represent the canonical theory as a unary relation on a generalized 
function space. This approach will have a number of advantages. Firstly 
we keep close to classical physics. The method effectively generalizes such 
familiar examples of physical laws as Maxwell's equations, Newtonian 
dynamics or equations of state in thermodynamics. Secondly we shall find 
that arbitrary theories can be represented in a simple diagrammatic fashion 
and intertheory relations and symmetry properties can be exhibited in a 
direct and comprehensive way. Thirdly quantum mechanics can easily be 
handled by using the Heisenberg picture and regarding the range of our 
functions as linear operators in a Hilbert space. We will in fact follow 
closely here Heisenberg's original view [31] of quantum mechanics as 
retaining the dynamical laws of classical mechanics but altering the inter- 
pretation of mechanical quantities from real numbers to (effectively) 
matrices. We follow essentially Wigner's approach [68], that laws in 
physics serve to establish correlations between events - as Wigner puts it 
"The laws of nature permit us to foresee events on the basis of the knowl- 
edge of other events". We shall represent an event by the value 0(~) of a 
field ~, whose argument ~ denotes in general position in space and time 
and also characterizes the tensor]spinor component 1~ and type of field we 
are concerned with in any particular theory. For example, to fix our ideas, 
we might consider Maxwell's equations in which case 0(~) would be the 
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value of some component of the electric or magnetic field at a particular 
space-time point and the value of 4 would give use the information as 
to which space-time point we are referring to and also tell us whether we 
are considering the electric or the magnetic field and which vector com- 
ponent is being evaluated. To express our ideas more precisely we intro- 
duce a generalized function ~(4) 16 which is in general a many-one mapping 
from a set {4}, the domain of the function, into a set {~}, the possible 
range of the function. We denote the function space of all functions from 
{~} into {~} by F = {~b(4)}. In general {~} is a set of ordered quintuples, 
so we write {4} = {x, y, z, t; i; k} where xyzt  denote coordinates in space- 
time, i is a tensor or spinor index and k a label for the type of field. Thus 
for the case of Maxwell's equations i runs from 1 to 3 giving the three 
vector components, and k takes values 1 or 2 distinguishing the electric 
and magnetic fields. So, for example, E~(x, y, z, t) ~ ~b(x, y, z, t; 1; 1) and 
n , ( x ,  y, z, t) ~ O(x, y, z, t; 2; 2). In this case {4}=R 4 x {3} x {2} and 
{0} = R where R denotes the real line and {n} an n-element index set. To 
take two other simple examples from classical physics, for the dynamical 
motion of a particle in one dimension, taken to be the x-axis, {4} =R,  
{~b} = R  and O(4)--*x(t), while for the equation of state of a gas {4} is a 
3-element index set {1, 2, 3}, {0} =R+ and we identify O(1)=P, 0(2)=T,  
0(3) = V, where P, T and V are the pressure, absolute temperature and 
volume of the gas. In the case of quantum mechanics {O} will no longer 
comprise a set of real numbers but is now a set of linear operators in a 
Hilbert space, the space of possible state vectors for the system. The func- 
tion of the commutation relations in quantum mechanics is to determine 
the possible set of such operators which may be associated with a particu- 
lar observable. 

We are led then to distinguish two kinds of law in physics. In the first 
place there are constitutive laws which are laws governing the structure of 
the sets {4} and {0}- In the example of Maxwell's equations the transitive 
law for the strength of the field which tells us that if field A is stronger than 
field B and field B than field C, then field A is stronger than field C, would be 
a constitutive law in our sense. Similarly the commutation relations for 
operators in quantum mechanics belong to this category. Then in contrast 
there are correlative laws which tell us how different events are correlated, 
i.e., how one event determines another. This is the familiar sense in which 
Wigner uses the term law of nature to tell us how initial or boundary con- 
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ditions determine the values of ~k(4) for all values of 4, that is to say the 
correlative laws tell us the possible forms for the function ~(4). This is just 
the function of Maxwell's equations in electromagnetism or the equation 
of state in thermodynamics. From the analogy with the example of New- 
tonian mechanics we shall refer to correlative laws collectively as general- 
ized equations of  motion. Now the great advantage of introducing the 
function space F is apparent. Take the case of the equation of state. This 
is a 3-place relation between the sets &possible values for P, T and V, but 
in our notation this 3-place relation is replaced by a unary relation (pro- 
perty or subset) defined on the function space F with {4} = {1, 2, 3} as 
index set, i.e., each allowed set of concurrent (correlated) values of P, T 
and V permitted by the equation of  state is represented by a point in the 
function space, and the totality of such points is a subset of the function 
space, which we may conveniently term the solution space ~ associated 
with the correlative law in question. In general we see that ~ is simply the 
set of all possible 'solutions' of our generalized equations of notion, while 
F is the set of all possible functions, whether they satisfy the equations of 
motion or not. All we have done in fact is to employ the general process 
well-known to mathematicians whereby one can exhibit an n-place rela- 
tion on a set by a unary relation on a function space defined over an n- 
point index set. Thus quite generally if R(X1, X2,..., X,) is an n-place 
relation between sets X~, X2 ... .  ,2-,, i.e. a set of ordered n-tuples x =  
(xl, x2, .... x,) where x~ eX~, then we take an index set I =  {1, 2, ..., n} and 
identify x with a function on I such that x(i) = x~ ~ X~ and the relation R 
is then represented simply by a subset of all possible functions from I into 
X1 u X2 u . . . .  [.J i X~. (See for example Simmons [58], p. 24.) 

There are basically three ways of representing a particular function 
!p(Q: (1) we can illustrate its graph, i.e., the set of all pairs of values for 4 
and ~,k(4), (2) we can view the function as a vector whose components are 
the values of ~k for each value of ~, i.e., the coordinate axes are labelled by 
the value of 4, (3) we can simply represent a particular t,k(4) by a point in 
the function space F. This third method will provide us with a simple 
diagrammatic method of representing theories. A theory is simply to be 
identified with the solution space 7 of a suitable function space F as 
illustrated in Figure 4. 

We are now in a position to discuss very simply what is meant by a 
symmetry of a theory and to distinguish mathematical and physical sym- 
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metries, but  first we note some ways in which we may need to extend our 
analysis of  the canonical theory in order to meet with the full range of  
examples presented by theoretical physics. In the first place, referring to 
the dependence of ~k on the index ~ specifying the type of field, we may 

Fig. 4. 

have to allow for the possibility that ~k(Y) takes values in a set Xt depen- 
dent on ~. In this case the range of our function space {~} may be iden- 
tified with U~xt or in some cases it may be appropriate to use the product 
space P,~X,~. This latter possibility is what is done in the quantum mecha- 
nics of many-particle systems in which the state vector space is formed as 
the tensor product  of spaces relating to the individual particles. In the 
second place we might want to consider the case of nonlocal fields in 
quantum field theory, i.e., fields which are not diagonal in the coordinate 
representation of space-time. Such fields are functions of two sets of space- 
time coordinates, and this is very easily handled in our notation by in- 
cluding an extra 2-valued indexj  for labelling the domain of our function 
space, which is used to distinguish these two sets of space-time coordina- 
tes. 17 Finally we note that we may extend F to comprise all functions from 
subsets of  {¢} into {~}, i.e. F comprises all possible functions ~(~) and all 
restrictions of  such functions. ? as usual denotes the set of all physically 
allowable members of this enlarged function space. This extension is 
important if we want to consider a restricted domain of validity for a 
theory. A suitable defined restriction of a particular function may be valid 
as a law even if the unrestricted function is not valid. Our account of in- 
consistent correspondence between theories in Section 7 will involve this 
point. None of these extensions requires any modification in our diagram- 
matic representation of theories and we believe that our method of ex- 
hibiting theories in physics as unary relations on generalized function 
spaces is in fact a comprehensive one. 
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6. T H E  D I S T I N C T I O N  BETWEEN MATHEMATICAL AND P H Y S I C A L  

SYMMETRIES 

Consider an arbitrary unary relation R defined on F, i.e. R is an arbitrary 
subset of F. We define an R-automorphism of F as a one-to-one mapping 
0 of points of  F onto itself which preserves the relation R, i.e., if  under 0 
x--* O(x) where x, O(x) e F then R(O(x)) iff R(x). Thus 0 maps points of R 
onto points of R and points not in R onto points not in R. In the previous 
section we have already introduced the unary relation V, the solution space 
corresponding to the generalized equations of  motion. We now define a 
physical symmetry of  a theory as a v-automorphism of  the generalized 
function space F associated with the theory. A mathematical symmetry of  
a theory is any R-automorphism of F for a mathematical relation R that 
may be of  interest ot us. The concept of  a mathematical symmetry need 
not  be restricted to the case where R is a unary relation, the concept of an 
R-automorphism can clearly be immediately extended to an arbitrary 
n-place relation. But in practice the unary relations, which single out a 
subset of possible solutions (i.e. functions) for our theory are the ones we 
shall be concerned with in the examples which we shall give. 

Furthermore, our discussion so far has been confined to a physical 
theory and its related isomorphic structure M in the notation of  Section 4. 
But if  we regard M as embedded in a wider structure M ' ,  as described in 
Section 4, then we can extend the concept of mathematical symmetry 
further to include an R-automorphism of M '  where R is now on arbitrary 
relation defined on the set of mathematical objects which constitute the 
universe of  discourse for the mathematical theory M' .  It  is interesting to 
note that the set of  all mathematical symmetries which preserve a relation 
R itself possesses in general the structure of a group, to which the concept 
of  symmetry can again be applied (i.e. automorphisms of the group of  
symmetry transformations) and indeed this process can be continued in 
an infinite regress of symmetries of  symmetries of symmetries .... (cf. Weyl 
[65], p. 145). 

We can represent symmetries diagramatically as follows. We indicate 
the motion of a point in F-space under a purported symmetry transforma- 
tion by an arrow. A physical symmetry would be represented as in Figure 
5(a) where the tip of  the arrow originating at a typical point in ~ remains 
in ],. 



S Y M M E T R Y  IN I N T E R T H E O R Y  R E L A T I O N S  95 

(a) (b) (c) 

Fig. 5. 

But if the tip of the arrow moves outside ~ for some point originally in ~, 
then the physical symmetry is broken by the transformation, as illustrated 
in Figure 5(b). We have already noted that since the mapping is supposed 
to be one-one, then in the case of a transformation which is a physical 
symmetry arrows must lie wholly inside or wholly outside V. The situation 
illustrated in Figure 5(c) is clearly impossible for the case of a physical 
symmetry. 

In passing we may note that our approach to physical symmetries cor- 
responds to the second active view in the classification of Fonda and 
Ghirardi [22] in that we look at different systems (solutions) from the 
point of view of a single observer. This is in fact the most general ap- 
proach as stressed in [22] since the other approaches, the passive in which 
the same system is viewed by different observers, and the first active in 
which different systems and different observers are in the same relative 
state, both involve changing the observer, which may not, in general, have 
physical significance. Houtappel, van Dam and Wigner [33] refer to the 
point of view that universal geometrical symmetries are limited to those 
for which the concept of a changing observer is valid but we by no means 
wish to confine our discussion of symmetry to this particular class. 

We note also that we do not require that a particular solution (point in 
V) should itself be invariant under the symmetry transformation. In 
general particular solutions are singled out by specifying boundary (in- 
eluding initial) conditions. If these boundary conditions are themselves 
invariant under the symmetry transformation then the particular solution 
~k(~) uniquely determined by these invariant boundary conditions must be 
itself invariant, i.e. ~(¢)~  ~k'(~)= ~k(~). The particular case where we are 
dealing with the invariance of one particular solution is the one originally 
studied by Curie in the formulation of his principle (see Curie [14] and 
Chalmers [11]). The boundary conditions are to be regarded as the cause 
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and the solution the effect. Symmetry in the former is transmitted to the 
latter, but lack of symmetry in boundary conditions does not necessitate 
an asymmetric solution is. As Chalmers has stressed Curie never directly 
discussed or called in question the symmetry of laws as distinct from the 
symmetry of boundary conditions. 

We may notice further that a symmetry transformation must map the 
range of the function space onto itself and hence preserve the constitutive 
laws which determine the structure of this range. For example in quantum 
mechanics physical symmetries preserve not only the form of the equations 
of motion of the operators in the Heisenberg picture, but also preserve 
the commutation relations between the operators. 19 

Reverting to the distinction between mathematical symmetries and 
physical symmetries it is clearly possible to have mathematical symmetries 
which are not physical symmetries, the case of contact transformations in 
Hamiltonian dynamics would furnish an example, but of course every 
physical symmetry is a mathematical symmetry. We have already noticed 
in Section 2 that the class of physical symmetries is much wider than the 
philosophically more interesting class of heuristic physical symmetries. If 
we start from an arbitrary point in 7 we can always define a physical sym- 
metry which moves this point (solution) to any other selected point (solu- 
tion) or in other words given one solution of the theory we can generate 
all other solutions if we know the set of all physical symmetries (cf. Hout- 
appel, van Dam and Wigner [33]). But the majority of such symmetries 
are entirely concerned with the particular theory in question and have no 
universal validity or heuristic potential - we referred to them in Section 2 
as being accidental. In Section 8 we shall consider the question of de- 
limiting the heuristic physical symmetries but in the next section we shall 
analyse intertheory relations in terms of the more general class of physical 
symmetries, although clearly everything we say about this class will apply 
also to the more interesting subclass of heuristic physical symmetries. 

Firstly however we shall conclude this section by giving a number of 
simple mathematical examples which should serve to clarify the pre- 
ceding rather abstract discussion: 

(i) Consider a function space F =  {y(x)} with {x} = {y} =R and we take 
for 7 the solution space (or primitive as it is usually called in this context) 
of the differential equation (dy/dx) - x = 0. This equation is invariant under 
the symmetry transformation x ~ - x which induces in F the transforma- 
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tion y(x) ~ y'(x) = y ( -  x). The general solution of the differential equation 
is of  course y = A  +½x 2 for arbitrary values of the parameter A, and the 
primitive is simply a set of parallel parabolas displaced along the y-axis 
by an amount  A. Each individual solution (or characteristic) is itself dear-  
ly invariant under our symmetry transformation (i.e. y'(x)=y(x)).  

(ii) To illustrate the more general situation in which a symmetry trans- 
formation of  a differential equation maps any solution not onto itself but  
onto some other solution we can take the example (d2y/dx2)-y=O with 
primitive y = A eX+ Be -x and consider again the transformation x ~ - x  
which, for example, carries e ~ into e -x, i.e. one solution into another. 

(iii) We give now a very simple mathematical example of  Curie's 
Principle. The equation (dy /dx ) - y=O lacks symmetry under the trans- 
formation x-+ - x .  The general solution y =Ae ~ also lacks symmetry but  
there exists a particular solution, viz. y = 0, which is invariant with respect 
to the transformation we are considering, so we have here the situation 
that a particular solution of a differential equation may be more symme- 
tric than the equation itself 20 which is the 'cause' 21 of that solution, and 
this exemplifies the situation envisaged in Curie's Principle which allows 
that an effect may be more symmetric than its cause. 

(iv) We now give a simple example of a physical symmetry which is not 
a symmetry of a mathematical structure in which the physical theory is 
embedded. Consider a physical theory which says that two variables x 
and y are linked by an equation 

(1) x 2 + y 2 = l .  

We now 'explain' this relation (a circle in the xy plane) as the intersection 
of two surfaces in a three-dimensional space, For  example we can consider 
the circle as the intersection of a cylinder and a plane 

(2) ~ x2 _]_y2 = 1 

z = 0 .  

Under a rotation about the z-axis both the physical law (1) and the 
mathematical representation (2) are clearly invariant. But in algebraic 
geometry we can consider a circle as the intersection of two surfaces in 
many different ways. Suppose for example we represent the circle (1) as 
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the intersection of the two surfaces 

(3) ~ xZ + yZ + 2xyz= 1 
Z~0 .  

The mathematical representation (3) no longer possesses symmetry under 
rotations about the z-axis, the sections of the first surface by planes per- 
pendicular to the z-axis being conic sections which dearly lack rotational 
symmetry except in the plane z = 0. 

(v) Finally we give an example of a mathematical symmetry which is 
not a physical symmetry. The example is constructed as a simple soluble 
analogue of the more complicated case of contact transformations in 
Hamiltonian and Lagrangian dynamics. Consider a single coordinate q 
which satisfies an equation of motion 

(4) ~ = 1/q. 

The solution of this equation is clearly 

(5) q=+_x/2(t+c) 

where c is an arbitrary constant. Consider a transformation 

(6) q ~ q' = ~q 

where e is a scale factor unequal to unity. This transformation is clearly 
not a symmetry of Equation (4). Indeed q' satisfies the different equation 

(7) O'=~z2/q ' 

Now we set up a new mathematical formulation to describe our equation 
of motion. Introduce a function H(q) such that 

d H  
(8 )  - 1 / ~ .  

dq 

Clearly the choice H(q)=½q 2 yields Equation (4). Now suppose that H is 
a scalar function under the transformation (6) so that H transforms thus, 
H'(q')=H(q). Equation (8) is now easily seen to be invariant in form 
under the transformation (6), i.e H '  satisfies the identical Equation (8) 
with q replaced by q'. So we have a mathematical symmetry which, as we 
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have seen, is not a physical symmetry. To pursue our analogue a little 
further, if we had introduced a function L(q) such that 

(9) dZ 
dq 

for which the choice L(q) = In q yields the equation of motion (4), then this 
formulation is easily seen to lack symmetry under the transformation (6). 
Indeed L'(q') now satisfies the equation 

(10) dL' ~' 
dq' ~2" 

So the behaviour of our two formulations under the transformation (6) is 
clearly analogous to the case of Hamiltonian and Lagrangian dynamics 
under contact transformations. In passing we may notice that a true 
physical symmetry of our equation of motion would be given by q ~q '  = 
- q ,  which simply exchanges the two solutions with the positive and 
negative signs as given in Equation (5). We can say if we like that the two 
possibilities represented by the ambiguity in sign in Equation (5) 'generate' 
each other under the symmetry transformation q ~ - q .  

7. Q C O N D I T I T I O N S  A N D  T H E  C U R I E - P O S T  P R I N C I P L E  

We are now going to consider two theories L and S and investigate their 
possible relations of correspondence and the relations between their 
respective symmetries. In order to achieve correspondence we will have 
in general to introduce appropriate restrictions on the L-theory which we 
term Q conditions, and also possibly restrictions on the S-theory, which 
we distinguish as P conditions. 

In order to analyse these ideas we begin by introducing the concept of 
a derived function space. Consider a set of functionals ~ i  each of which 
maps the function space F into a set we denote by {¢} and we define A to 
be a derived function space with respect to F, where A is the set of all 
functions ~b(j) defined on the index set {j} which carryj into ~'~(~b(~)), for 
all the functions ~(~) in F. We note that j  may well be itself a continuous 
variable. There is clearly in general a many-one mapping from points of 
F onto points of A which carries ~k(~) to ¢(j). 
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As a very simple example take again the case where {4} is a 3-element 
index set {1, 2, 3} and write ~-1(~9(¢))=~k(1), ~'2(~//(¢))=~(2). Then the 
mapping of F onto a carries ~(¢) in F into ~b(j) in A where ff(1)=~(a), 
~b(2) = ~(2). Thus our formal device has effectively contracted the function 
space F by projecting parallel to the 3-axis. In the example of the equation 
of state we have gone from the phase space of P, Tand Vto the contracted 
phase space of P and T alone. 

To take another example we can describe the transition from the N- 
particle function space of the statistical mechanics of an ideal gas to a 
derived function space of thermodynamic variables by defining tem- 
perature T as the functional T=  (1/3NA)~= lm(k~ +P~ + ~ )  where ~ is 
Boltzmann's constant and m the mass of a molecule. Similarly we take for 
the pressure P the functional P = (1/3 V)Z~= l m ( ~  +P~ + 2~) where the 
functional V is itself just the volume of the subset of R 3 defined by the 
range of ~(~). 

We notice that the generalized equations of motion which define the 
solution space in ~ in F now induce, under our mapping of F onto A, a 
restriction on the permitted solutions for the correlations described by the 
~b(j) to a subset 2 of A. That is to say the equations of motion determine 
both a solution space ~ in F and an associated solution space 2 in A. 

We now revert to the case of the two theories L and S which we identify 
as solution spaces of appropriate generalized function spaces which we 
conveniently denote by L'  and S' .  We attempt to match these two theories, 
i.e. to establish a relation of correspondence between them, in a series of 
stages. I f  we fail to achieve a match at one stage we must proceed to the 
next and we shall in fact distinguish three different stages or levels of 
correspondence at which we may expect a match to occur. Firstly we 
choose appropriate derived spaces with respect to L'  and S '  which we 
denote by (L[ Qa)' and (S[P1)' with corresponding solution spaces (LI Q1) 
and (siP1). By appropriate we will certainly mean that ( r  [ Q1)' and (S[P1)' 
can be placed in one-to-one correspondence so that the derived theories 
may be seen to be talking about the same objects under an appropriate 
scheme of translation. We now see if we can match (L[ 01) and (S[P1) 
by this translation, i.e. if the correspondence between (Z [ al)' and (siP1)' 
maps (L] ai) onto (siP1). If  this is possible for some choice of the derived 
spaces obtained by the mapping processes designated by the symbols Q1 
and P1, then we have achieved correspondence at the first leveL But this 
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matching may by no means be possible at this stage. If not we introduce 
restrictions designated by Q2 and P2 on the spaces L' and S' which restrict 
(L[ Q1) to a subset (L[ 01105) and (SIP0 to a subset (S]Pt IP2). If we can 
now match (L[ 0x 102) and (S[P1 ]P2) for some choice of 01, Q2, P1, Pz 
we have achieved correspondence at the second level If we have corres- 
pondence at the first or second level we shall speak of consistent corre- 
spondence. If consistent correspondence fails we may yet notice the fol- 
lowing situation. Points in (L[ Q1 ]Q2) and (SIP1 [e2) may be found to 
agree under appropriate translation in a certain subregion but to diverge 
in a controlled way as we move to other regions of these function spaces. 
(We here assume the function spaces to be extended so as to include 
restrictions of functions as described at the end of Section 5.) Now we 
may be able to introduce restrictions Qa and Pa on L' and S' in such a 
way that the corresponding restrictions on the spaces (L[Q~ 102) and 
(sle~ Ie2) which we denote by (LIQ1 ]Q2 [Qa) and (s[el le2 [e3) satisfy 

(LI Q1 I I Q )"  °x(SIP1 IP ) 

where ap~ox indicates that the mapping between the two spaces is ap- 

proximately valid in a sense which could be made precise by introducing 
an appropriate metric in the function spaces, but such a refinement ap- 
pears to be inessential to our analysis. This situation we describe as 
correspondence at the third level or inconsistent correspondence following 
the terminology of Post [54]. In passing we notice an important special 
case of correspondence, viz. reduction. This occurs when we have con- 
sistent correspondence with no P1 o r  P2  conditions so that (L[ Q1 [ 02) 
'explains' the whole of SY' 

Informally we may say that the Q1 condition restricts what the L-theory 
talks about, while the Q~ condition specifies in the language of L the 
conditions under which the S-theory is intended to apply to phenomena 
comprehended under (L[Q1), and the Qa condition specifies conditions 
under which (L[ Q1 [ 02) will give approximately the same account of a 
common group of phenomena as the S-theory. Similarly mutatis mutandis 
for the S-theory and the varieties of P condition. The different levels of 
correspondence can be illustrated in the following simple way. We re- 
present the solution spaces (Z] Ol) and (S ]el) by a collection of red and 
green dots in a single space, when the function spaces (L[ a~)' and (siPs)' 
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have been identified under a translation J ' .  If all the different coloured 
dots coincide with their appropriate partners then we have correspon- 
dence at the first level. But correspondence at the second level is achieved 
if by applying Q2 and P2 conditions we can eliminate all pairs of dots 
which do not match leaving only matching pairs. Correspondence at the 
third level arises when after all attempts at the first and second level have 
failed, nevertheless the dots coincide very closely in some region of the 
space and diverge on a controlled way as we depart from this region. 

If we assume the absence of Kuhn losses then (SIP1 ]P2[P3) will cor- 
respond to S* the well-confirmed part of S (or in the presence of Kulm 
losses to S**) in the terminology of Post [54]. Our analysis of the passage 
from S to S* in terms of P conditions replaces the informal analysis of 
Post in terms of horizontal slicing, which we have already had occasion to 
criticise in Section 5. In point of fact P2 conditions do not appear to be 
required in standard historical examples. But Q2 conditions on the L- 
theory are often of paramount importance in achieving correspondence. 
We shall give a detailed example later in this section. But first we illustrate 
the general situation by the diagram shown in Figure 6. 

&3 Q~ 

p3 C~ ] { L I Q 'I ) 

Pl 

IS[ P1 } Fig. 6. 

The region of overlap C represents the set of solutions in the derived spaces 
(Z[ al) and (S]P1) which are in (in general approximate) correspondence. 

We can now easily assess the effect of symmetry transformations per- 
formed on the L or S theories. In the first place we note that a symmetry 
transformation on the function space F induces a corresponding sym- 
metry transformation in the derived space A so that a physical symmetry 
of L' is also a physical symmetry of (L[ Q~)', similarly for symmetries of 
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S '  and (S]P1)'. But with regard to the 02 and Qa conditions the situation 
is quite different. A physical symmetry of (L I Q1) may or may not break 
either the Q2 or the Q3 condition. This arises because an automorphism 
of a mathematical structure is by no means necessarily an automorphism 
of  a substructure. This is the reason why the Curie Principle cannot be 
applied directly to our problem. In sufficient generality for this purpose 
we take the case of reduction, and consider the situation depicted in 
Figure 7. 

Qz 

(LI;Zl) 

Fig. 7. 

The symmetry of (L[ Qt) (and hence of  L) is not a symmetry of S since the 
Q2 condition is broken by the indicated symmetry transformation. This 
is a clear counterexample to the Curie-Post Principle which asserts that 
in cases of  reduction the L-theory cannot be more symmetric than the 
S-theory. 

We proceed to give a simple example to clarify the analysis we have 
given. For  the L-theory we take the set of Maxwell's equations for the 
electromagnetic field in free space, viz. 

c u d H  = aE/at 
div I-I = 0 
cu r i e  = - ~H/at 
d ive  = 0. 

For  the S-theory we take the equations governing an electrostatic field, viz. 

a E/at = 0 ) 
curiE = 0 
d ive  = 0. 

To achieve the reduction of the S-theory to the L-theory we first contract 
the function space involved in Maxwell's theory by projecting out the 
magnetic field and arriving at a derived function space involving only the 
electric field. This is our Q1 condition. We then apply the restriction H = 0  
to arrive at the electrostatic equations. This is the Q2 condition which 
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clearly has no effect on the function space (L I Q1)' which is here the space 
of all functions E(x, y, z, t), but which does restrict the solution space to 
just the class of  electrostatic fields. 23 Consider now a pure Lorentz trans- 
formation which is of course a symmetry of the L-theory. This induces a 
new electric field which may no longer satisfy the equations of  electro- 
statics since it is in general time-dependent. Thus a Lorentz transformation 
may break the symmetry of the S-theory. But the Q2 condition has now 
been broken since the magnetic field is no longer in general zero after a 
pure Lorentz transformation. For  example if the original electric field is 
the field of a stationary point charge then the new field will be the electric 
field of a moving point charge which no longer satisfies the equations of  
electrostatics since it is time-dependent and is also associated with a non- 
zero magnetic field arising in part  from the convection current represented 
by the moving charge, in the new frame, and in part  from the displace- 
ment current produced by the time-variation of the electric field. 

It should now be clear that if we want to restore the validity of the 
Curie-Post Principle we can revise the formulation in either of two ways. 
In the first place we could further restrict the type of correspondence 
envisaged so as exclude cases which involve a Q2 condition. Thus we 
arrive at the formulation 

P2': The L-theory cannot be more symmetric than S* in the case 
where L and S stand in a relation of consistent correspondence 
which does not involve a Q2 condition. 

Alternatively we can restrict the allowable symmetry transformations 
to those which do not violate the Q2 condition. However in the case of  in- 
consistent correspondence those symmetry transformations which de- 
monstrate an L-theory which is more symmetric than S* include ones 
which break the Q3 condition.Z4 Thus if we permit ourselves to restrict 
allowable symmetries we can obtain a new version of  the Curie-Post 
Principle which applies both in cases of  consistent and inconsistent cor- 
respondence, namely 

P3: The L-theory cannot be more symmetric than S* provided the 
symmetry transformations considered do not break the Q con- 
ditions used in formulating the correspondence relation. 25 

Clearly P2' is included as a special case of  P3. 
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We have now gone as far as we can in analysing the formal relationships 
between the symmetries of successive theories. In the concluding section 
we shall return to discussing the heuristic r61e of symmetries, and how one 
might classify heuristic physical symmetries. 

8. H E U R I S T I C  SYMMETRIES 

We may be content to follow Houtappel, van Dam and Wigner [33] when 
they refer to the point of view that those physical symmetries which 
possess heuristic potential comprise "all transformations which leave the 
known laws of nature invariant and the simplicity of which suggest their 
universal validity" although we would want to replace the qualification 
'universal' by something like 'wide-ranging'. We are confronted here with 
essentially an aesthetic consideration. But we may prefer to adopt a more 
metaphysical approach and the explication of symmetry in terms of non- 
observability already referred to in Section 1 may be useful here (cf. Lee 
[42]). But in fact any metaphysical speculation or intuition regarding the 
essentially non-observable features of a physical situation is notoriously 
unreliable. The discovery that in the weak interactions of elementary 
particles nature provides an ultimate distinction between right-handed and 
left-handed reference frames reminds us that the superlaws of symmetry, 
as Wigner calls them, are as liable to empirical revision as other laws of 
physics having a less obviously intuitive character. 

In these circumstances we shall employ a purely taxonomic approach, 
and using the empirical-historical method, attempt a simple classification 
of the heuristic physical symmetries already revealed to us by the history 
of theoretical physics. We note the limitation on the objective - we make 
no claim to classify physical symmetries so as to reveal those with heuristic 
potential, we are concerned with the classification of the heuristic sym- 
metries themselves so as to introduce some order into their bewildering 
variety. If  we represent our canonical theory as usual in terms of a space 
of possible functions ff(~)=~(x, y, z, t; i; k) where xyzt are coordinates 
in space-time, i is a tensor or spinor index and k a label for the type of 
field, then a purported heuristic symmetry transformation will induce a 
transformation in this function space carrying ~k(~) into ~'(~), where we 
distinguish three different categories or classes for the transformed field 
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Class 1: ~k'(~) describes the same event at a different location in space- 
time, and suitably 'rotated' in the space of the tensor]spinor index i. 

By the same type of event we mean that the transformation leaves the 
k-label unaffected. Examples in this class are Wigner's geometrical sym- 
metries, notably spatial rotations, pure Lorentz transformations, dis- 
placements in space and time and also reflections and time inversions. 

Class 2: ~k'(~) describes different events at the same location. 
Examples would include charge conjugation and the SU(2) (isospin) 

and SU(3) symmetries of particle physics. 26 Permutational symmetry for 
identical particles also belongs to this class. 27 

Class 3: ~0'(~) describes a different event at a different location. 
Examples of this class include the mixing of class 1 and class 2 symme- 

tries in a non-trivial way as in Wigner's SU(4) symmetry in nuclear physics 
[66] or the SU(6) symmetry introduced by Gfirsey and Radicati [29] and 
by Sakita [-56] in particle physics. Another example of a rather different 
sort is crossing symmetry 28 in particle physics in which space-time loca- 
tion is replaced by relativistically invariant parameters (the so-caned 
Mandelstam parameters) in terms of which scattering cross-sections for 
various related processes can be expressed. 

We must also note the interesting possibility that a mathematical sym- 
metry which is trivially a physical symmetry (see remark at end of Section 
3) may have heuristic potential. We may thus introduce a fourth category 
of heuristic symmetries. 

Class 4: ~k'(¢) is a redescription of the same event at the same location. 
The most familiar example of such a redescription is the case of gauge 

transformations of the first and second kind [49] in quantum electro- 
dynamics. What we are actually concerned with here is a transformation 
affecting the surplus structure of the mathematical system used for de- 
scribing the theory, and the consideration of such a class of symmetry 
principles underlines the importance of surplus structure and its physical 
repercussions. As is well known the requirement of gauge invariance 
essentially constrains the type of interaction that is possible between a 
charged particle and an electromagnetic field. General covariance also 
appears to belong to this class, in view of the analogy with a gauge sym- 
metry suggested by Utiyama [64] (for further discussion see Wigner [-69]). 

With regard to class 4 we note an important distinction between the 
familiar gauge invariance of electrodynamics and the more recent non- 
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Abelian gauge symmetries (compare for example Yang and Mills [71]). 

These latter symmetries are usually introduced as a straightforward 

generalization of the Abelian symmetries derived from U(1), but in our 
classification the non-Abelian symmetries, being related to isospin (SU(2)), 

belong to class 2 rather than class 4. We may also note the point of view 
of  Melvin [46] who seeks to describe all symmetries in terms of redescrip- 

tions, but the general applicability of this passive approach to symmetry 

has been effectively criticised by Houtappel, van Dam and Wigner [33] 
and Fonda and Ghirardi [22] (see also Section 6 above). 

In conclusion we should wish to emphasize the point that heuristic 

symmetries are in general constraints on new theories. They may just 

possibly constrain them so strongly as to characterize them completely, 

but in general other principles, such as unitarity and analyticity in particle 

physics, may be required. Indeed if we knew a final complete theory sym- 
metry principles would be seen merely as interesting properties derivable 

from it. This attitude to symmetry has also motivated the attempts such 

as Cutcosky's [15] to bootstrap the SU(3) symmetry in particle physics, 

i.e. to derive the symmetry from other self-consistency conditions imposed 
on the theory. But in the absence of a knowledge of  such a theory heuristic 

physical symmetries of the various sorts we have discussed have provided 
very fruitful guidelines in our suggested methodology of heuristics. 

Chelsea College, University of London 

NOTES 

* A previous version of this paper was presented in Professor Post's seminar at Chelsea 
College, London, in October 1974. 

I am grateful to Professor H. R. Post, Professor N. Koertge, Dr. D. A. Gillies, Dr. 
M. Machover and Mr. J. Dorling for their valuable comments on my work, although 
they cannot of course be held responsible for any of the views expressed. 
1 The attributive metaphysical may be taken in two quite distinct senses as applied to 
the concept of symmetry. In the first place, as stressed by Wigner [68] symmetry 
principles operate on a meta-level as compared with ordinary laws of physics. They 
serve to correlate laws in the same way that laws correlate events. (Note that Wigner 
here uses the term law not as a synonym for a theory, but as referring to some particular 
correlation or coordination of events.) The significance of Wigner's remarks will become 
clear as we proceed. But we may also take the more usual sense of metaphysics in the 
philosophy of science as being concerned with the analysis of concepts and ultimate 
presuppositions. This is the sense we shall employ in this section. 

We can regard our definition of symmetry as a Carnapian explication (see [10], 
Chapter I) in which the concept is sharpened so as to express just those features which 
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are of importance in science, the vaguer aesthetic connotations being eliminated. See 
also Popper ([51], p. 9ft.) for a relevant discussion of the r61e of definitions in philoso- 
phy of science. 
3 For  the particular case of temporal change this problem of identity is of course an 
ancient philosophical one, and underlies the distinction between essential and accidental 
attributes of an object. Two answers have traditionally been given to the question, can 
essential attributes, the candidates for invariants, change? One is typified by Greek 
atomism, for which the atoms are immutable, only their accidental configurations 
change. The other sort of answer is the view of Aristotle that  essences can alter in the 
sense that  they can be actualized but notice in this case it is the potentiality of their 
presence which plays the r61e of the invariant, so the twofold distinction of invariant 
and transformation in fact underlies all philosophical analysis of change. The concept 
of symmetry has very wide applications. For  example the object of interest may be 
simply a mathematical structure and one can raise the question for a given set of in- 
variants what is the widest set of transformations for which the invariants do not  
change? Or conversely for a given set of transformations can one list a complete set of 
invariants such that  two systems which have the same values for all the invariants must  
be connected by some element of the transformation set? The first question leads 
naturally to the consideration of sets of transformations which possess a group 
structure, and hence to the prevalence of group-theoretic methods in discussions of 
symmetry. 
4 Reservations about  linking symmetry to conservation laws are discussed in [67] and 
[28]. 

Sideways motion is of course dealt with by a similar argument. 
6 The reader is warned that the term dynamical symmetry is used in quite a different 
sense from ours by other authors. See, for example, Pals [48]. 
7 Wigner contrasts geometrical and dynamical symmetries, using the latter term in a 
different sense from ours. See note 6 above. 
8 Cf. Yang and Mills [71], Utiyama [64] and Sakurai [57]. 
9 A notable exception is Hanson who writes, for example, [30] "We must attend as 
much to how scientific hypotheses &re caught, as to how they are cooked". 
10 See [53] Chapter I, p. 31. 
11 This point  of view is contrary to that  of  Feyerabend ([19] and [20]) who has ex- 
pounded the incommensurability of theories. For  a reply to Feyerabend see for example 
Post [54], Koertge [37] or Achinstein [1]. 
13 The use of the term correspondence in this context is due to Popper [52] by analogy 
with Bohr's Correspondence Principle in the quantum theory. 
1~ Kuhn losses refer to those well-confirmed parts of the S-theory which are not  com- 
prehended under the L-theory, i.e. the loss of explanatory power that  may occur in 
replacing the S-theory by the L-theory. See [39], p. 169. 
14 The existence of such an isomorphism has been challenged by K6rner  ([38], Chapter 
VIII) who describes the relationship between mathematics and physics in terms of the 
replacement of the  inexact concepts of the latter discipline by exact concepts of the 
former, rather than in terms of the identification of concepts, In our account the ad- 
mitted idealization of mathematical concepts reflects the existence of surplus structure 
in the mathematical description of the physical theory as discussed below in the text. 
1~ The possibility that  the field supports a non-linear realization of a space-time sym- 
metry would not affect our subsequent analysis. 
16 We use the same notat ion for a function and one of its values, which is usual in 
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physics and should cause no confusion as the meaning of our notation will always be 
clear from the context. 
lr A more general concept of nonlocal field has recently been discussed [36] in which, 
in our description, the index j would itself label a function space, representing the 
'shape' of the nonlocal objects subsumed under the field. 
18 Chalmers gives the very nice example of an irregular block of ice melting in a 
spherical container to give a sperically symmetric distribution of gas. 
19 In quantum mechanics there is another sort of correlative law quite dlstinct from 
that expressed by the equations of motion for operators, viz. the correlation between 
states, represented by a density operator W, observables Q and expectation values <Q> 
subsumed under the formula <Q> = T r  WQ. The solution space of correlated values of  
<Q>, W and Q is clearly invariant with respect to transformations of the operators Q 
which define the physical symmetry in the sense of preserving the equations of motion 
for observables and their commutation relations. 
20 This is a clear counterexample to Bunge [8] who in discussing time reversal writes 
" I f  a process is T-invariant then its laws are T-invariant". 
21 We use the word 'cause' here in a different sense from Curie (see discussion above) 
but the example is I believe a cogent one. 
23 For  a discussion of reduction see Nagel [47]. 
23 Clearly we may often choose an appropriate Q2 condition in a number of different 
ways. For example we could apply the condition 8E/St=OH/Ot=O, which yields the 
same set of electric fields, although a stationary magnetic field is now permitted. Notice 

• L how with this choice of Q2 condition both (L [ Q1) and ( [ Q1) are subject to restriction. 
34 We are assmning continuity of the symmetry transformations with respect to the 
suggested metric in terms of which approximate, inconsistent, correspondence is 
defined. For  transformations which do not break the Q3 condition S* will be approxi- 
mately symmetric in a sense that could be specified in terms of the metric. 
25 Notice that symmetry transformations of L never break the Q1 condition. 
36 An excellent account of these examples is given by Gasiorowicz [26]. For SU(3) see 
also the collection of, and commentary on, the original papers by Gell-Mann and 
Ne'eman [27]. 
2r The closely related symmetry trader place permutations (see [16], Chapter IX) 
would belong to class 1. 
28 For a clear discussion of crossing the text by Martin and Spearman [45] may be 
consulted. 
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