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I. THE F U N C T I O N  OF MODELS IN THE E M P I R I C A L  SCIENCES 

Scientific research utilises models in many places, as instruments in the 
service of many different needs~ The first requirement a study of model- 
building in Science should satisfy is not to neglect this undeniable diver- 
sity (as has sometimes been done: I), and, when recognising this multiplic- 
ity, to realise that the same instrument cannot perform all those functions 
(often the multiplicity of function is recognised but either not to a full 
extent, or not with respect to the difference of structure it implies: 2) 
We are going to mention some of the main motives underlying the use of 
models: 
(A) For a certain domain of facts, let no theory be known. If we replace 
our study of this domain by the study of another set of facts for which a 
theory is well-known, and that has certain important characteristics in 
common with the field under investigation, then we use a model to develop 
our knowledge from a zero (or near zero) startiug-point. This is what 
happens in neurology: we replace the central nervous system by a digital 
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or anologue computer showing certain of the neurological peculiarities, 
and study this new object. 
(B) For a domain D of facts, we do have a full-fledged theory, but one too 
dufficult mathematically to yield solutions, given our present techniques. 
We then interpret the fundamental notions of the theory in a model, in 
such a way that simplifying assumptions can express this assignment: 
under these simplifying assumptions, the equations becoming soluble. 
Using the theory of harmonic oscillators in the study of heat conduction 
is an example of such a procedure. 
(C) If  two theories are without contact with each other we can try to use 
the one as a model for the other or to introduce a common model 
interpreting both and thus relating both languages to each other. 
(D) If  a theory is well confirmed but incomplete, we can assign a model 
in the hope of achieving completeness through the study of this model. 
Special cases of this procedure are: a qualitative theory is known for a 
field and the model introduces quantitative precision; or a quantitative 
theory is used for a field, but not securely established, and the model 
circumscribes the solid core of the theory in qualitative terms. 
(E) Conversely if new information is obtained about a domain, to assure 
ourselves that, the new and more general theory still concerns our earlier 
domain, we construct the earlier domain as a model of the later theory and 
show that all models of this theory are related to the initial domain, 
constructed as model, in a specific way. 
(F) Even if we have a theory about a set of facts, this does not mean that 
we have explained those facts. Models can yield such explanations 
(Particle or wave theories of light, or statistical mechanics, are important 
examples of explanation through model building). 
(G) Let a theory be needed about an object that is too big or too small 
or too far away or too dangerous to be observed or experimented upon. 
Systems are then constructed that can be used as practical models, 
experiments on which can be taken as sufficiently representative of the 
first system to yield the desired information. 
(H) Often we need to have a theory present to our mind as a whole for 
practical or theorethical purposes. A model realises this globalisation 
through either visualisation or realisation of a closed formal structure. 
(I) It often occurs that the theoretical level is far away from the ob- 
servational level; concepts cannot be immediately interpreted in terms of 
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observations. Models are then introduced to constitute the bridge between 
the theoretical and observational levels, the theoretical predicates being 
interpretable as predicates of the model and the observational predicates 
being also interpretable as predicates of the model, the model furnishing 
lawful relationships between the two interpretations. This intermediary 
model can be used to construct the abstract theory or, once it exists, to 
find for it domains of application. 
We are certain that still other functions could be found for models in 
empirical research. We are also certain that with the help of some sup- 
plementary assumptions, some of these functions of models could be redu- 
ced to some others. Still, it is true to say that the aims mentioned: 
theory formation, simplification, reduction, extension, adequation, 
explanation, concretisation, globalisation, action or experimentation, 
constitute a kind of system. It appears indeed that models have been 
introduced in function of relations between theories and theories, between 
experiments and theories, between experiments and experiments, between 
intellectual structures and the subjects using these structures, and in all 
these cases this has occurred in order dynamically to produce new results, 
or in order to tie up new ones with old ones as guarantees, or simply to 
establish relation. 
Most of these cases have occurred in the list above; while it is certain 
that the problem,solving behaviour of man knows other factors than those 
mentioned here, it seems to be true that the model as a tool mediating 
between some of these factors has here been adequately localised. 
What are now the questions we wish to ask about the model-concept in 
these various roles? Among others, the following: 
(i) Is it possible to derive from the description of the function to be 
fulfilled, the features a model should have to achieve this purpose? 
(ii) Will the type of model needed to fulfil a given function have differing 
structure for theories, facts or actions of different types? 
(iii) Can conditions be formulated determining when models can fulfil 
one of these functions, and when they cannot do so? When they are the 
only instruments or possible instruments among others? 
(iv) Can some common feature be distinguished, either among the various 
aims, or among the various eventual structures, thus unifying to some 
extent the family of models? 
The importance of these problems is clear. The concept of model will be 
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useless if we cannot deduce from its function a determinate structure. 
The scientist in his comments uses the 'model' concept in all the ways we 
described and thus discards the simple and clear language of model- 
theory in formal semantics or syntax. Can we give to his use of the term 
an adequate rational reconstruction, or are we prevented from doing so? 
We are convinced that it is possible to derive structural features from the 
functional characterisation, and it is to this attempt that we now 
immediately proceed. 

II. STRUCTURE AND PURPOSE 

Let then R(S,P,M,T) indicate the main variables of the modelling 
relationship. The subject S takes, in view of the purpose P, the entity M 
as a model for the prototype T. We saw above a classification of possible 
purpose, S of values for P. Let us now only mention classifications for 
M andT. 
Model and prototype can belong to the same class of entities or to dif- 
ferent classes of entities. The following possibilities immediately offer 
themselves: 
M or T are both images, or both perceptions, or both drawings, or both 
formalisms (caleuli),i or both languages, or both physical systems. 
All these possibilities have occurred. But we can also have the het- 
erogeneous case: M can bean  image, T a physical system, or inversely; 
M can be an image and T a perception; M can be a drawing and T a 
perception; M can be a calculus and T a theory or language; or inverse- 
ly. M can be a language and T a physical or biological system. 
Among each of these classes, a finer subdivision could and should be 
considered. If the model is a theory, this theory earl have all degrees of  
systematic unity, or of completeness, or of confirmation or confirma- 
bility; if the model is an image it can have all types of organisa6on, of 
vagueness, of closedness. 
Will there be an interaction between the multiplicity of values for P and 
the multiplicity of values for M and T? There can be no doubt about this. 
Can the model-prototype relationship that exists in formal semantics 
teach us anything about similar relations occurring in domains so widely 
different? It is, once more, our conviction that it can do so. More formal- 
ly: if L is the relation between M and T, then we claim that from R (S, P, 
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M, T) we can derive facts about L(M, T), depending upon the different 
values of P, M and T. 
To substantiate this claim, we will now analyse some special cases. 

A. Models and the progress of research. 

Each single purpose, among those we have mentioned, is in itself ambig- 
uous. It should not astonish us then, that a model could aid the progress 
of a scientfie system in many ways: the science in question could need 
only completion, or, alternatively, restructuration. If the science in 
question is to be completed, then the model used to lead it to its comple- 
tion should have properties not mentioned in the initially existent science. 
The study of these properties could then yield completion. For this to 
occur, a multiplicity of non-isomorphic models should exist and this is a 
perfectly normal ease, in the formal sciences. This type of progress through 
model construction has the following two limitations: (a) it cannot 
furnish transformation, but only addition of new details; (b) it is in- 
trinsically limited (when the final description of the model is completed, 
the process must stop). Those who wish to use model construction to 
rebuild their discipline or those who wish to guarantee indefinite evolu- 
tion should use another model concept. But let us for a moment restrict 
ourselves to the more modest task one could hope to achieve, when 
looking only for completion and not for restructuration. Why should we 
construct models to reach this aim? Why can we not simply consider the 
possible hypotheses we could add to our theory, consistent with the 
already accepted ones? Why should we use this devious procedure while 
a more direct one is at our disposal? If we compare, for a given language 
L, the set of possible complete languages L1 . . . .  Ln obtained through 
addition of supplementary hypotheses to the set of models of L, then 
this set of models should have in some sense a structure that makes 
selection between the models easier than selection between the for- 
malisms. 

In principle, using the classical concept of model, the set of complete 
extensions of L and the set of models of L should be isomorphic. But if 
this is the case, then, in principle, models could be dispensed with. What 
then should be the concept of model that could make the use of models 
indispensable for the aim of simple achievement of a theory already 
started? Either there should be fewer models than possible additions of 
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hypotheses, or the relations between the models should be simpler than 
the relations between the consistent extensions. In the first case there should 
be stricter demands on the model concepts than in the formal sciences, 
in the second case, the distinctions between models should be clearer, 
and so again we should have requirements preventing some intermediary 
cases allowed by the classical model definitions, from appearing among the 
list of models. 
This being known, let us now ask how model.building could advance 
restructuration of a theory. If the so-called model is not really a complete 
model in the classical sense but only satisfies certain best-confirmed or 
most-used laws of the theory, then the model, not satisfying certain 
other less central features of the theory, could help us in replacing these 
by others that would be satisfied by the model. This type of partial 
correspondence and partial discrepancy between model and theory could 
eventually lead to indefinitely continuing development. 
But this is not the only way in which models could help towards restruc- 
turation. 
Let us suppose that we use a series of partial models, each of them rep- 
resenting part of the theory to be modelled, but none of them satisfying 
it as a whole, and some of them inconsistent with each other. Research 
into the extensions of these partial models that would include a maximum 
number of other partial models could equally lead to reformulation of the 
initial theory. 
Or let us use a multiplicity of complete models simultaneously; or a 
combination of complete models and partial models. In such a scheme 
arbitrariness of the exact selection of the entity representing a concept 
will lead to search for new requirements that will yield a non-arbitrary 
selection. 
A limit case of this situation is the use of a locally inconsistent model, In 
classical Rutherford atomic theory, it was clearly recognised that the 
nucleus of an atom should explode under the electromagnetic laws of the 
time (due to the internal repulsion of the positive charge). So everybody 
knew the model to be inconsistent. But this inconsistency was accepted 
because the nucleus could, in the applications where its charge was needed, 
be treated as a point, and where its dimensions were needed, its charge 
and the internal properties of it did not intervene. 
A final possibility to help restructuration is the use of undefined or vague 
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models, the unachievement and indefiniteness of which suggests and 
allows completion in given directions. 
We do not believe that this exhausts all possibilities, but it seems to us 
that the possibilities mentioned here form a systematic whole: models 
are used for system restructuration, because of their relations with the 
system (partial discrepancy); because of their relationship among each 
other (partial inconsistency, at least multiplicity); because of their 
relationships with themselves (locally inconsistent or locally vague). 
To summarise: models used for completion should satisfy more stringent 
requirements than the classical model in the formal sciences, while models 
used for system restructuration should simultaneously satisfy more strin- 
gent requirements (our inquiry as to the conditions that make the detour 
through model-building desirable remains valid in this last case), and more 
lenient ones (partly inadequate, vague, multiple and locally inconsistent 
models). 
Intuitively it thus appears that at least for one of the possible aims of 
model building, the bridge between the formal and the functional exists. 
Can we now build a formal theory about approximate, partial, multiple, 
locally inconsistent, or vague models? To inquire about this problem will 
be the task of our third section. 

B. Models and the Initiation of Research 

Let us have a set of data about a domain, either very unordedy and 
complex, or very incomplete. We wish to build a theory. We could try 
to tackle the data immediately themselves. But if we have some reason to 
suppose that they are grievously incomplete, or that they are very complex 
functions of the really independent variables, the following strategy seems 
fruitful: select one very specific law of the domain, try to build a mecha- 
anism, a model that satisfies this very specific law, and then, in view of 
this model, localise the form or structure of our data; the way in which 
they are complex and what supplementary data should be sought after 
if our initial ones are given functions of our model concepts. 
In order for this method to be fruitful, the basic law we represent in the 
model should be such as to have very few models satisfying it in a given 
range, or, if many satisfy it, should be such that in all those cases, the 
model of the data derivable from the model of the law allows analysis of 
these same data into entities of simpler and more regular structure. 
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Compared to the classical model situation, we have here a structure that 
should satisfy a requirement of correspondence with a theory T, of very 
elementary character, but should moreover satisfy a requirement of 
correspondence with one partial model of the elementary theory: namely 
the data, and this second requirement is such that the mapping of D into 
M should give an image M (D) having a more regular structure than 
D. The triangular relation between T, M and D, L (D, T) being itself 
approximately true is thus here an essential feature of the situation. 
We saw in (A) that for the needs of research composite models should be 
considered; now we see, in a symmetrical fashion, that other needs 
suggest the study of models of complexes of theories, ordered in certain 
ways. 

C. Models and experience 

Already in his 'Introduction to Semantics' a, Rudolf Carnap makes the 
distinction between a logical and a descriptive interpretation of a calculus. 
Without claiming that an empirical science is or can be a calculus in 
Carnap's sense, we should consider the considerations introduced in 
making this distinction. If we give for all signs of a calculus rules of 
designation, or, if we give for all sentences of a calculus rules of truth, we 
give an interpretation of this calculus. On p. 203-204 Carnap stresses that 
for application it is necessary to construct a bridge between 'the postulate 
set and the realm of objects' (p. 204) and that this is called 'constructing 
models or giving interpretations' (phrases he uses synonymously). An 
interpretation is a true interpretation if whenever a sentence implies 
another in the calculus, in the interpretation whenever the first sentence 
is true, the second is equally true, and whenever a sentence is refutable 
in the calculus, it is false in the model. Such a true interpretation is a 
logicaUy true interpretation, if the sentences that become true, become 
logically true. An interpretation is a factual interpretation if it is not a 
logical interpretation. An interpretation is a descriptive interpretation if 
at least one of the undefined signs of the calculus becomes in the interpreta- 
tion a descriptive sign, and while Carnap gives, p. 58-60, clear examples of 
descriptive signs: names of single things, of observable properties, he 
stresses on p, 59-60 that no general solution in general semantics is known 
for the problem of distinguishing between logical and descriptive signs. 
These definitions are important for us, because it is clear that the concept 
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of model in the empirical sciences, when it is used in the following context 
'the world is a model of our sciences, in as far as these sciences are true' 
(or conversely the aim of science is to construct a calculus for which 
reality is the only model) takes the concept 'model' in the sense of a factual 
and descriptive true interpretation. Here we realise that we are up against 
some of the main problems of recent logical research: the definition of 
logical truth and the definition of descriptive sign. But there are here still 
more problems that could not easily be treated by Carnap in 1946 but that 
have become especially prominent: it has been recognised that most 
calculi have many more models than they were intended to have (the 
existence of non-standard models is a case in point). When now we talk 
about 'models' in empirical sciences, we mean, if we want reality to be a 
model of our Science, to talk about an intended model. The only writer 
who has tried until now to introduce a general distinction between logical 
and descriptive constants, and to formalise some of the properties tha t  
distinguish intended from non-intended models, is Kemeny. 4 In the sense 
we are discussing here, a model in the empirical sciences is an intended 
factually-true descriptive interpretation. (Or, in some other contexts: a 
non intended arbitrary interpretation, used to clarify such intended 
factually-true descriptive interpretation.) If we now introduce, with 
Kemeny, as definition for logical truth, validity in all interpretations, 
and the property of being a descriptive constant as not being assigned the 
same value in all interpretations, and if moreover we accept (again from 
Kemeny) that all models are interpretations that have the same domain of 
individuals as the intendedone but other assignments for non-logical 
constants, then, if we are to study models for empirical sciences, we must 
study sets of structures having the same individuals, and varying for all 
undefined constants, their assignments in the models, (except for the 
classical logical constants) and not differring from at least one among them 
otherwise than through this variation. 
It is clear that we could very well consider other definitions for logical 
truth, or for descriptive constants (e.g.: not completely definable or appli- 
cable without ostensive definition), but our claim here is that, once general 
definitions for these key terms are provided a formal structure is given to 
the model concept in its function as relator of theory and experience, for- 
real structure that could be studied. 
Let us however stress one more feature about the semantics of the empir- 
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ical sciences: in the formal sciences model-building signifies mapping a 
calculus upon a fragment of set-theory. A formula F is true if there exists 
a set showing between its members certain relations. In order to apply 
this method to sentences taken from the empirical sciences, we should 
there also select some basic science in the language of which the truth 
conditions for the sentences of the empirical sciences could be formulated. 
But, (a) no empirical science could fulfil this function at present and 
(b) it is doubtful if set-theory could again fulfil its old function in this 
context. Certainly the tendency exists to reintroduce set-theory for the 
semantics of the empirical sciences and to have it serve these new needs. 
We can say that a system satisfies a given law L on certain variables, 
if the set of numbers representing measures of these variables exhibits 
a relationship derivable from a set of initial conditions I and from the 
law L. 
What happens in this definition is that we define M as model of T, if 
there exists a structure N, standing in a certain relation to M and if N is 
homomorphic with the elements of a class K of models of T, with respect 
to given predicates. The structure N is the set of measuring results, on M, 
the class K of models of T is the class of models in the classical sense of 
the theory, sharing certain initial conditions, and the predicates are the 
ones corresponding to the variables measured. This is already in consider- 
able deviation from the classical use of the model-concept, though 
definable with respect to it; but the essential departure is that here the 
model, at the limit, becomes a structure for which the propositions of the 
formalism are verified (not: are true). Semantics, which in the realm of 
formal languages was the foundation of theory of confirmation itself, here 
rests on the theory of confirmation (the more so, if we realise that we 
should add that the initial conditions under which the system obeys the 
law should be either the true initial conditions, or the verified or highly- 
confirmed ones). 
We should thus confess that either we must accept this consequence, and 
thus define first 'theory of measurement' and 'confirmation', and only 
later define 'model' and 'truth' for empirical sciences, or instead, select 
for the empirical sciences a basic language that could be used here in the 
same way in which set-theory is used for the formal sciences. The search 
for such a basic language should not be arbitrary, because set theory has 
a very specific place among the formal sciences; this place should be 
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defined, and once this is done we could look for the discipline that has 
an analogous place among the empirical disciplines. 
Let us now make a final point: as in the immediately preceding paragraph, 
we see the need to study the relationship between the model and a com- 
plex structure of theories. If the model should be the intermediary between 
either theory and experience, or theory and reality (we saw that in both 
directions we have a different modelling relationship), then this interme- 
diary character creates another problem. Let us say that a model is an 
intermediary between two formalisms if it is a model of both, and if the 
properties in the model that relate it to T1 are, in M, related to the other 
properties that relate it to T2. The number and kind of these relations could 
even be used to develop the notion of'degree of intermediacy'. Even if we 
want to avoid the problems of descriptive interpretation, we can study the 
properties of models of such a combination of theories. 
To summarise: the problem of descriptive interpretation, the problem of 
the empirical basic language, of the definition of interpretation through 
measurement and confirmation, and the final problem of intermediacy 
show us that here also, structure and purpose are related; definable with 
reference to the formal concepts but not indentical to them. 

D. Models and experimentation 

We cannot afford to lose an airplane each time we wish to see if it is able 
to resist under certain velodties. Therefore we build model airplanes, 
that we test on model velocities or pressures. If the model is adequate we 
should be able to derive from these model experiments the desired informa- 
tion. Essentially we have changed scale and have tried to leave everything 
else invariant. The ditiiculty is that when I change scale I always change 
something else; the problem is how to correct for the changes introduced 
through the scale change, or how to find a series of variables that are 
perhaps in their relations affected by the scale change, but not with 
reference to the relation we are interested in. 
Two similar triangles have their sides in the same proportion even 
though their absolute magnitudes may be extremely different. We can 
generalise this concept of analogy, or proportionality, so important in 
Greek mathematics, and say that if a physical system is completely 
determined by n dimensions, as the triangles are by their sides, one system 
is a model for another system if the relations between these dimensions 
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remain the same, even though their values are changed. As mentioned 
before, I cannot hope to reach absolute similitude among physical systems, 
but I can hope to reach correctible dissimilitude, or approximate similitude. 
To generalise now (and not to let ourselves be tied down by the scale 
factor) let us say that in order to construct models for action, there must 
be at least one variable among those that determine the system that may 
be either arbitrarily varied, or at least varied in a wide range, without 
modifying, or without modifying too much, the relations between the 
other determining variables of the system. Let us try to show in general 
that structural properties can be derived from this demand. Let x be a 
function of two variables y and z. Let the three variables be quantitative 
variables. When will the value of x be independent from variations in the 
values o fy  and z? If x is an increasing function ofy  and a decreasing func- 
tion of z, and if the increase produced by an increase of y is exactly 
equal to the decrease produced by an accompanying increase of z (z and y 
being inversely related) then x will remain invariant. If  we want such a 
function in Boolean algebra (i.e. in an elementary fragment of set-theory, 
the general foundation of model-theory) we can look at the function Un. 
(Int(x, Cy), Int (y, Cx)) where Intersection indicates the common part of 
two classes, Union the sum of the two classes, C the complement of a 
class and where x and y are used here as variables for classes). 
This definition for a function of two variables can naturally be extended 
for n variables, and the quantitative nature is by no means needed, as 
shown in the example from Boolean algebra. If  our variables were rela- 
tions, we could construct the same example. We could now give in general 
the following definition: in our present sense of model, M is a model of 
T if both are relational structures and if the relations of both are invariant 
functions of the relations they do not share. The only new concept used 
here is the concept of 'invariant function' (and this concept, as stressed, 
is easily definable in general semantics). 
But now that we have reached this very structural and very special-looking 
concept (certainly much more demanding then the classical case), let us 
remind ourselves that we do not need to experiment upon a system if we 
know it completely. Not knowing a system completely, the form of all 
laws it obeys are afortiori not known to us either. The model concept we 
are then compelled to use is an approximation in two stages: 
(a) if a set of equations is given, and if these equations are invariant 
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under certain transformations, then two systems are models for each 
other if one of them satisfies the system of equations and if the second 
system can be produced by applying to the first some transformations 
under which the system equations are invariant. 
Nothing implies that the system of equations is thus a complete equation 
system of the system. 
(b) an approximation going in the other direction is this: let us know a 
priori what are the variables the knowledge of which completely deter- 
mines the system, even though we do not know how this determination 
occurs, and what is the exact form of the equations. 
Let there be given the way in which these variables depend upon the 
fundamental variables of our science. Then using these expressions, we 
shall say that M is a model of T if both have the same dimensions (here 

the defined variables should depend for all their values upon the undefined 
ones in a similar fashion). 
The first approximation to physical similitude forces us to ask: what type 
of transformations should we consider and how should we measure the 
approximation to completeness, and the second approach forces us to ask 
the question: how can I, without knowing the function that relates x and y, 
say that x depends upon y and how can I, from assertions about depend- 
ence or independence alone, infer the form of this dependence? Dimensional 
analysis has examined these and similar problems for many special cases, s 
but the essence of our task here is to show that the same questions should 
be asked for relations in general, as a part of the study of the specific 
model concept that is used in experimental action. Our earlier remarks 
about the general invariance of functions shows that indcpendcnce can be 
defined in a structural fashion. The formal problem is the foUowing: if i 
have a sequence of variables and relations among these variables, what 
circumstances make modelling-experiments possible or impossible? if I 
have x, y and z as variables and if the following relations all hold FI(xy), 
F2(xz), F3(yx), F4(yz), F5(zx), F6(zy), and if moreover F7(xyz), and if 
moreover higher order interactions F8(x, Fi(yz)) exist, then what type of 
modelling-experiments become possible if successively either some of the 

higher order interactions between relations and variables are eliminated 
(the dependence f (xy)=g (y) is the prototype of an obstacle against 
modelling), or some specific conditions are introduced? In view of this 
question, we reach the following definition of model: if two systems, ae- 
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cording to dependence-independence tests, are determined by the same 
fundamental variables, which, according to a given dimensional analysis, 
are determined by a set of equations where in a certain kind of interactions 
does not occur, then those two systems are models for each other. 
Let it then here be said that the double relativity'of the dependence tests 
that are not complete descriptions, the dimensional analyses that are not 
unique, and the syntactical characteristic about the existence of laws of 
certain forms, makes this model-concept extremely specific, both more 
severe and more lenient, as always, than the one we know so well from 
classical semantics. 

E. Models and explanation 

Models are given as explanations of the systems they are models of. 
Why should models be needed for this purpose and how can they explain? 
There is perhaps no clearer refutation of the so often heard thesis accord- 
ing to which to explain is to infer, then the fact that explanation occurs 
so often, or even nearly always, through model building. 
The definition of explanation is once again one of the unsolved problems 
of the philosophy of science. It is thus very difficult to determine the 
structural properties a model should possess in order to be able to explain. 
We only want here to propose our personal hypothesis, without claiming 
more than plausibility in its favour. If we look at the history of science, we 
see that, in physics at least, two major explanatory models have been 
dominant: the atom model and the field model, the discontinuous and the 
continuous, the pluralistic and the~onistic, notwithstanding the fact that 
neither atoms nor fields are familiar or simple entities. In the theory of 
gases, in the theory of light, in cosmogony, in the theory of electro- 
magnetism, in nuclear physics at the present moment, these two ex- 
planatory models have always been influential. To state this fact more 
formally: physics seems to try to reduce all law either to the laws of 
Newtonian mechanics, or to the laws of MaxweU's electromagnetism, 
and, if possible, to both. Can we extrapolate towards the future, or 
towards other sciences? We could try in various ways to understand this 
tendency: if explanation is the derivation of the observed facts (always 
presenting a mixture of foreground atomism and background continuity) 
from premisses at a maximum distance from these observed facts, then we 
could claim these to be the two extremes. If explanation is analysis, then 
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we could try to prove that the two extreme poles of analysis are the 
reduction of all plurality to the unity of the field, whose features will have 
to be responsible for the observed universe, or the reduction of all order 
and unity to the pluralism of the particle, on whose disorder our order is 
to be built. If  to explain is to make anthropomorphically understandable, 
the world of the discontinuous is the world of the tool, and the world of 
the field is the world of the environment. We can only offer these sugges- 
tions as guesses; our only excuse is that nobody seems to have better 
ones. At least these guesses explain why we need model building to 
explain. In terms of this hypothesis, an explanatory model is rep- 
resentation of a theory in the theory of complete or partial differential 
equations. The philosopher of science should certainly describe in more 
general terms what distinguishes these two theories from other ones, in 
order to understand their privileged position. But even before undertaking 
this task he can state that approximate models will have to be introduced 
in order to provide for systems having a very different structure a model in 
terms of these differential concepts. 
Once more, we find a very specific addition to the classical theory of 
semantics and also a very specific generalisation. 

F. Simplification and model building 

• It is rather paradoxical to realise that when a picture, a drawing, a 
diagram is called a model for a physical system, it is for the same reason 
that a formal set of postulates is called a model for a physical system. This 
reason can be indicated in one word: simplification. The mind needs in 
one act to have an overview of the essential characteristics of a domain, 
therefore either the domain is represented by a set of equations; or by a 
picture or by a diagram. The mind needs to see the system in opposition 
and distinction to all others; therefore the separation of the system from 
others is made more complete than it is in reality. The system is viewed 
from a certain scale; details that are too microscopical or too global are 
of  no interest to us. Therefore they are left out. The system is known or 
controlled within certain limits of approximation. Therefore effects 
that do not reach this level of approximation are neglected. The system 
is studied with a certain purpose in mind; everything that does not affect 
this purpose is eliminated. The various features of the system need to be 
known as aspects of one identical whole: therefore their unity is exag- 
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gerated. When isolation, clarity, unity, closedness, essentiality and homo- 
geneity of perspective and viewpoint are reached, an adequate model 
either expressed in equations or in a drawing is formed. 
Moreover, both in the verbal and in the pictorial model, we represent 
either parts of the system and their connections, or states of the system and 
their connections, or simultaneously parts and states and their connections. 
The aim Of simplification and globalisation will however be more accu- 
rately served through concentration on one of our two main sub-goals, 
Let it be clear that here the model should not be richer than the system 
it is a model of, but poorer. The model in the service of the progress of 
science should be more complex; this one should be more completely 
focussed. It is in this sense that the ethical meaning of the word model 
meets the epistemological meaning. For certain ethical systems (not for 
all) the ideal man is the model of man, in this sense of the word model (an 
exaggeration of idiosyncrasy, a clarification of internal structure). We 
think that it is easy to recognise that the features of elimination of certain 
predicates, elimiuation of certain parts, closure for parts and states, reg- 
ularisation of the overall structure are structural demands that can be 
defined for very general relational systems in a truly general semantics. 
The importance of isolating this type of model concept lies in the fact 
that it cuts through the opposition of image and word, and explains why 
(as so often in economy) a system of equations is called a model, where 
a few pages earlier or later, a picture had the same attribute. 
Here we want to close our review of the structural correspondents of our 
functional characterisation for models in the empirical sciences. We claim 
that we have made it plausible that a thorough analysis of the different aims 
of model-building shows us that very definite structures are needed to 
achieve these aims and moreover (and this is centrally important) 
(i) that these structures depart from the classical concept of model in 
many different ways but (ii) that they can be studied and ordered, using this 
same classical concept of  model as a centre of  perspective. 
We now want in our third section to show that if we start from the classical 
concept of model and if we apply to it certain natural operations of strengt- 
hening and weakening, We reach from the opposite direction the structures 
we tried to define from a functional point of view before. We shall thus be 
able to a certain extent to show that the science of formal semantics could 
still fruitfully be studied with reference to these more general models. 
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IlL CLASSICAL AND GENERAL MODELS 

Conceptually if model and prototype are both general systems or struc. 
tures, we have the most abstract case. If we impose on one of the terms 
of the relationship the demand that it should be a language, we have a 
more special case, and if both terms should be languages we have the 
most special case. The natural order then to study generalisations of clas- 
sical model concepts is to take the algebraical model concept first, to 
proeede afterwards to the study of the semantic concept of model (relating 
a language to an arbitrary domain) and to finish finally with the syntactical 
concept (relating two languages to each other). 

A. Algebraic models 

Our purpose in this section will be to define several approximate or 
strengthened forms of isomorphism. To reach this aim let us first realise 
what is included in the notion of isomorphism. 
Two sets D1 and D2 are isomorphic with respect to relations R and S, 
defined respectively on D1 and D2 at least, if the following situation oc- 
curs: there exists a mapping function F such that to each member of D1 
there corresponds one and only" one member of D2 under F, and ~f more, 
over whenever members of D1 stand in the relation R, their F.images 
stand in the relation S, and inversely, then we say that the two domains are 
isomorphic under the two relations R and S. Two sets will be completely 
isomorphic if they are isomorphic under all their relations. Two relations 
will be completely isomorphic if they are isomorphic on all their domains. 
Two sets will be called isomorphic with reference to a class K of relations 
if the relations under which they are isomorphic have to belong to the 
class K. Two sets will be called isomorphic under a set K of relations if the 
mapping relations that correlate the relations on the two sets have to 
belong tO a given class K. 
A well-known and much-used generalisation of isomorphism is homo- 
morphism. Here the correlator has not to be one-one but is allowed to be 
many-one. As for the rest, the relations remain the same. 
We wish to consider approximative isomorphisms and homomorphisms 
and take some steps towards ordering or even measuring these approxima- 
tions. 
We give some possible forms of approximation. 
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Approximation I: The correlator may be such that this function does not 
map the whole of the domain of R on S, nor the whole of the domain of 
S on R. We then have an approximate direct or inverse correlator. A 
correlator A will be a closer approximation than a correlator B if the class 
of members of the field of R that is not mapped upon the field of S by A is 
a proper subset of the class of members of the field of R not mapped 
upon the field of S by B. If we possess a measure on our sets we can define 
one approximation to a correlator as better than the other one, if the 
measure of the non-mapped set is smaller in the first case. 
Approximation IL The correspondence may be such that not always 
when R exists in D1 between some elements, S exists in D2 between the 
images of these elements. The correspondence Ca is a closer approxima- 
tion than the correspondence C~ if for C, the n-uples where the images 
have not the corresponding relations are a proper subset of the set of 
n-uples which for C~ do not have the corresponding relations. 
We shall say that an App. II-neighbourhood-relation isomorphism 
exists if for all cases in which the correspondence does not hold a relation 
lying in the neighbourhood (provided such a concept is defined) of the 
relation that should occur, holds. We shall say that an App. II-neigh- 
bourhood-element isomorphis exists if for all cases in which the corre- 
spondence does not hold, some elements in the neighbourhood of the 
image elements present the desired relation. 
We wish to stress that approximation-neighbourhood isomorphisms of 
type I (both of relation and element kind) can be defined in the same way. 
If the definition of neighbourhood for one approximation is a refinement 
of the definition of neighbourhood for another approximation then the 
first is a closer neighbourhood element or relation approximation than 
the second. 
Approximation IIL An App. III-isomorphism is both an App. I and an 
App. II isomorphism. 
Approximation IV. In all preceding approximations we have considered 
the set D and the relation R to be classical sets or relations, defined 
everywhere, and precise everywhere. Let us now introduce for sets and 
for relations indetermination domains; i,e.: elements for which it is not 
decidable if they belong to a set or not and couples for which it is not 
decidable if they belong to a relation or not D' 1 is a closer approximation 
to D1 than D"I if the determination domain of D'I has a larger inter- 
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section with D1 than that of D"I (if no measure is available: if the first 
intersection includes the second). D'I is moreover a tighter approxima- 
tion to D1 than D"I if the indetermination domain of the first is included 
in the indetermination domain of the second. Finally D'I is a more 
adequate approximation to D1 than D"I if the intersection of the indeter- 
mination domain of D'I with D1 is included as a proper part in the inter- 
section of the indetermination domain of D"I with D1. It is important to 
understand that a closer, a tighter and a more adequate approximation to 
the same set are by no means always identical. Moreover, we have sup- 
posed here the set D1 to be exact. It is obvious that we should also 
consider approximations to inexact sets. 
A relation can have an indetermination region for its domain, and for its 
co-domain. If we want to consider isomorphism between approximate sets 
and approximate relations we meet first the problem of the intersection 
of the indetermination region for relations and for sets. Either one of 
both can be zero, or both can exist; if they both exist they can intersect 
(even be included in each other) or be disjunct from each other. It is 
obvious that the case in which they coincide wiU be the easiest one for 
our purpose. 
Let us say that if we have a set with an indetermination domain, and on 
this set a relation R with again an indetermination domain, then there 
is exact isomophism between both if there is a corrclator mapping 
members of the kernel of D1 on members of the kernel of D2, members 
of the indetermination domain of D1 on members of the indetermination 
domain of D2, and such that if R holds between elements of D1, S holds 
between elements of D2 and if a n-uple is in D in the indetermination 
domain of R, the images of it are in D2 in the indetermination domain of 
S. This strict isomorphism immediately gives birth to a series of approxi- 
mations: we may call alpha IV approximation the case where the eorre- 
lator maps elements of the kernel of D1 on elements of the indeter- 
mination domain of D2, (or inversely), beta IV where elements of in 
determination domains are mapped on elements of kernels, gamma IV 
where elements of indetermination domains are not mapped (and thus 
in a sense mapped on complements), delta IV approximation where 
n-uples in the kernel of R are mapped on n-uples in the indetermination 
domain of S. 
We shall call one isomorphism closer or tighter or more adequate if a 
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closer, tighter or more adequate approximate to both D1 and R is corre- 
lated with a closer, tighter or more adequate correlate to both D2 or S. 
This definition again gives us the occasion to develop a sequence of 
isomorphisms: we can map namely a closer approximation to D1 on a 
non-closer approximation to D2, or we can have the approximations to 
D1 and D2 closer but not the approximations to R and S, or we can have 
all closer but only some tighter and so forth. 
Approximation V isomorphism: let us be aware of the fact that in approx- 
imation IV both correlator and correspondence were exact relations. The 
great multiplicity of cases already encountered was due to the indeter- 
mination of D, R and S and not to that of correlator or correspondence. 
It is now the place to mention that we can combine any form of approxi- 
mation IV, with approximations I, II or III. Here the situation becomes 
extremely complex and we can only stress this feature. Let it also be 
stressed that even in approximation I, II and III, the correlator and the 
correspondence had no indetermination domains. The two features we 
are thus liberalizing here, in V, are radically independent: we consider 
imprecise correlators and correspondences, and we consider moreover 
partial correlators and correspondences. It is perhaps best that we 
distinguish approximation V, alpha (subspecies: I, II and III), approxi- 
mation V beta (subspecies: all subspecies of IV) and approximation 
gamma (both alpha and beta). 
Approximation VL Let it now be stated that in all the previous cases, 
even if we depart very strongly from the simple classical picture, we have 
been presupposing that a system earl be described as a relational structure 
with given clear.cut relations and elements, the system having perhaps 
indetermination domains and the relations also, but these entities them- 
selves being given and the wholes being built up out of these parts. It 
seems clear that this is a radical dependence on a type of logical atomism 
that geometry precisely tries to overcome through the construction of a 
geometry without points (6). An algebra without elements seems as 
urgent a desideratum if we want to develop the model theory for natural 
systems. Let n systems be given. We do not presuppose the concept of 
element or of relation, but we define them with respect to ttiese systems. 
An element is the smallest system that systems can have in common (as 
always in these topics, we presuppose the part-whole relationship and 
some of its properties,) and a relation is a minimal system of sequences 
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that systems can have in common. The definition of what is to be called 
element or relation should thus be a funetian of the intersection of systems. 
We cannot hope to develop here a complete theory for these approximate 
concepts. We  hope to have shown that they exhibit interesting com, 
plexities. 
Before we try to apply them in the domain of semantics proper, let us 
point out one direction in which the study of our approximate isomor- 
phisms might profitably develop. 
Alfred Tarski in his 'Contributions to the theory of Models' 7 has 
defined the concepts of relational system, subsystems of relational sys- 
tems, similarity of relational systems, homomorphism and isomorphism 
of relational systems, union and cardinal product of relational systems, and 
finally the concept of elementary or arithmetical classes of relational 
systems. The first task of the generalisation of formal semantics that seems 
necessary in the light of our study of empirical models in the empirical 
sciences, would be the application of some of the simpler forms of 
approximation defined above to the definition of these concepts. This is 
the more necessary because empirical models, as we have seen, are very 
often models through certain of their subsystems, and they are models of 
unions or cardinal products of other systems, all these concepts taken in 
some approximate sense. This task is not only necessary but possible. 
If a relational system is an arbitrary sequence consisting of a set, and of a 
series of finitary relations of given rank, all defined on the elements of 
this set, then an approximate relational system is also a sequence where 
the first element is a set with an indetermination domain, where there 
follows a series of relations with indetermination domains, nearly all of 
them nearly everywhere defined on the set, having all of them ranks 
withing certain intervals, and having nearly all of them finite rank. 
The phrase 'nearly all' can either be replaced by some quantitative provi- 
sion (giving the length of intervals, or the measure of sets), or by some 
qualitative provision (stating that intervals or sets are included as proper 
parts in certain others). Two relational systems will be approximately 
similar, if they are approximately of the same order (difference between 
order ~ing in a certain region), and if the relations can be correlated with 
each other so that the correlated ones have not too large differences of 
rank in too many cases (again, we do not indicate here the precise way 
in which we could write these phrases). A relational system is a subsystem 
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of another one to which it is similar (one could replace this by 'approxi- 
mately similar') if the set of the one is nearly completely included in the 
set of the other (the intersection of the first with the complement of the 
second being sufficiently small in metric or inclusion terms), and if the 
relations of the first are nearly all nearly identical to restrictions of the 
second to one of its subdomains. In terms of approximate subsystems, it 
is no longer true that SS(K) -- S(K) as it is true for precise subdomains, 
(though S(K) will be included in SS(K), where S is the set of subsystems 
of its argument and where K is any relational system). We do not have 
to repeat the definitions of isomorphism. There are as many generalisa- 
tions of isomorphism as there are approximations mentioned. The 
approximate union of two precise relational systems (to be opposed to the 
precise union of two approximate relational systems and to the approxi- 
mate union of two approximate relational systems) is the relational 
system that has, as set, an approximation to the union of the two sets~ 
and as relations art approximation to the unions of the corresponding 
relations. The set of the cardinal product of two relational systems con- 
sists nearly completely of nearly all pairs of nearly this form (a-b), with a 
in R and b in S, and where the relations take, for nearly all their element% 
pairs with nearly all their first members from R in the corresponding 
place and nearly all their second elements from S in the corresponding 
place. Here also a detailed investigation of the theorems about isomorphs 
(of different degrees of approximation) for unions and products (of 
different degrees of approximation) will yield necessary and interesting 
results. 
Let us now however make a general remark: it is easy to define strict 
isomorphism for abstract relational systems given by their fundamental 
operations. For a group the relation to be preserved under mapping 
should be multiplication, for a ring addition and multiplication, for an 
ordered set, the ordering relation, and so forth. 
If we have however two physical systems, or two languages, how are 
we going to pick out the relationship that is to be preserved under 
mapping? 
It may be shown that even for physical systems a natural isomorphism 
concept can be defined. It has been recently most clearly explained by 
Ross Ashby, in the paragraphs on models occurring in his recent book. s 
Let us however stress that Hertz's definition of dynamical similarity is 
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close to Ashby's (9). The relation that is required to remain invariant 
under the mapping is here the relation of 'going from one state into 
another under the influence of an input'. We characterize a physical 
system by an input-output matrix, or by a matrix giving for every input 
and present state the following output, or giving for every input and 
every state the next state. All these possibilities are open, and mostly 
equivalent. On p. 98 Ashby then states 'the canonical representations of 
two machines are isomorphic if a one-one transformation of the states 
of one machine into those of the other can convert the one representation 
into the other'. Only for strictly deterministic systems, however did, 
Ashby provide his definition (i.e. for systems we know completely, and 
we are interested in for their complete behaviour). We have seen re- 
peatedly in our second section that only when systems are partly known 
is modelling needed. We shall thus have to adopt definitions of physical 
isomorphism for systems whose input-output (or state, or input-state, or 
output-state) matrix we cannot completely write down. We shall have 
to consider probabilistic systems (for which I can only give the probability 
for a given input to have a given output), or even weaker ones (for which 
I can only sometimes say that one output is more probable than another 
for given input and state. Ashby is aware that he must liberalize the 
relation between prototype and model and cannot identify it with the 
relation between isomorphs. However the only way he succeeds in doing 
so is to say that a model M is such that one of its homomorphs is isomor- 
phic to one homomorph of the prototype. This liberalisation still obliges 
us to know the complete deterministic state matrix of both model and 
prototype, and thus does not yield the desired result. 
It is clear that we can always represent a relation by a matrix and that the 
approximations to isomorphism we have been considering should find 
their adequate translation in conditions on the reciprocal relationships 
of matrices. These reciprocal relationships will be the real translation of 
the modelling relationship between physical or biological systems, as it 
occurs in physics and biology. The contribution of Ashby consists how- 
ever in having shown that the state matrix is the adequate tool to define 
isomorphism between natural systems, even if the liberalisation he pro- 
poses for the classical relationship is not one we can adopt. His approach 
allows us to assert that our approximate isomorphisms will easily find 
application in this domain. 

147 



LEO APOSTEL 

B. Semantical Models 

The concepts of truth, designation, satisfaction and definition are closely 
related to each other and the search for a liberalised version of one of 
them will be reducible to the search for a liberalised version of some others 
in this series. Let us mention in this context that Herbert ~imon, in his 
recent paper 'Definable Terms and Primitives in Axiom Systems' (10), 
proposes two generalisations of the concept of definability that correspond 
immediately to generalisations of the concept of satisfiability. A language 
L, according to Simon, has a generic definition for an individual a, if in 
L we can write down the definition for a class to which a belongs (i.e.: 
a necessary condition for a). A language has an approximate definition 
for a if in L we can write down a necessary and sufficient condition for 
any x to be a, except if x belongs to a certain set of measure zero. 
A domain generically satisfies a certain statement or set of statements if it 
satisfies certain statements belonging to the same class as these, or if 
some model belonging to a class K with the present one, satisfies the set 
of statements. 
A domain satisfies approximately a set of statements if every part of it, 
except a subset of measure zero, satisfies this set of statements. 
It is clear that our transposition of Simon's general definitions for 
definability towards definitions of satisfiability is perfectly possible. It is 
however difficult to believe that the two concepts Simon introduces are 
the only or most fruitful ones: generic definability or satisfiability is 
extremely weak and completely depends on the criterion of class member- 
ship chosen; approximate definability or satisfiability strongly depends 
upon the existence of a measure function, and on infinity and continuity 
considerations (all denumerable sets havifig measure zero). 
We feel encouraged by this attempt in our search for an enlarged and 
liberalised relation of satisfaction, but we do not think the main task is 
already done. 
In 'Logic, Semantics and Metamathematics' (p. 416) A. Tarski xl defines 
the concept of model. Let in language L to every extra logical constant 
correspond a correlated variable in L, in such a way that every sentence 
becomes a sentential function if the constants are replaced by the varia- 
bles. An arbitrary sequence of objects satisfying these functions will be 
said to be a model or a realisation of that class of sentences. The seman- 
tical model concept is thus both akin to and very different from the ideal 
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of modelling relationship as isomorphism. The prototype-model re- 
lationship is here by definition anti-reflexive, anti-symmetrical, but 
transitive; while in its algebraic version it is reflexive, symmetrical and 
transitive. But whenever n systems are models of the same)anguage L, 
there exists between these systems, or between parts of them, relations of 
isomorphism. This implies that to the generalisations for isomorphism 
we have introduced, there must correspond generaiisations of the satis- 
faction relation. The main problem of this section is: if we claim that 
among n domains some specific approximate isomorphism exists, is 
there (a) a language they then all strictly satisfy or (b) is there a language 
they all approximately satisfy? The solution of these two problems will 
not be given here; we only ask the question. But a step towards the 
solution will certainly be taken if we define some of the natural liberalised 
versions of satisfaction itself. Let us give the following definitions: 
A set factually satisfies a sentence p of a language L if and only if the 
variables o fp  range over the set S, the predicate s o fp  over subsets of S, 
the logical constants are interpreted as usual, and the sentence becomes 
true for S. 
We shall say that approximate satisfaction can be defined with reference 
to assignments for individual variables, for predicate variables, for logical 
constants, or for truth. 
We shall number these types of approximate semantical satisfaction as 
Approximate satisfaction 1, 2, 3 or 4. 
A set appr. 1 satisfies a sentence if for variables ranging over some subset 
or superset of S, not too distinct from S, all other properties remain 
identical. 
The closeness of the approximation will again be measured by the 
inclusion relations of the Inters (Range Variable, Complement S). 
A set appr. 2 satisfies a sentence p if the predicates ofp  range over a class 
of subsets of S plus or minus certain elements, and all other properties 
hold true. 
Logical constants could be otherwise defined than usual (through the 
rules of propositional calculus and functional logic). Here, in order to 
define what is the ordering principle of the approximation, we should 
be able to define what is a closer approximation either to negation or 
conjuction itself or to the classical interpretation of these constants. 
Finally approximation 4 replaces true by an approximation to true (the 
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one that comes immediately to the mind is: probable, but we are by no 
means forced to select this type of approximation.) 
It is obvious that if we give ourselves weaker conditions and preserve the 
same conclusion, we then obtain a strengthened version of the satisfac- 
tion requirements. 
In this respect however, it is, we think, interesting to refer to certain 
approximate but strengthened forms of satisfiability. 
Let us say that a domain constructively satisfies a language L if for every 
sentence of L we have a procedure that allows us to construct the domain 
in question and the various individuals and classes needed for the 
verification of the truth of the sentences. This procedure for geometrical 
concepts is even expressed in L when everything is so defined that the 
postulates given realise a method of measurement for these concepts. 
This constructive feature may now only approximately exist, either as a 
procedure given in most but not in all cases, or as a procedure yielding 
close but not completely exact correspondence. This we should like to 
call the approximate constructive satisfaction relation. 
Let us say that a domain necessarily satisfies a sentence if many possible 
assignments within this domain, or many possible extensions of this 
domain, or many possible other domains satisfy this sentence. The 
degree of necessity could easily be ordered. We can then speak about 
necessarily approximate interpretations and approximately necessary 
interpretations; the approximate interpretation can hold perhaps in many 
other selections or domains; or in most but not all of a class of chosen 
domains. 
The relationship between formal languages and domains in which they 
have models must in the empirical sciences necessarily be guided by two 
considerations that are by no means as important in the formal sciences: 
(a) the relationship between the language and the domain must be closer 
because they are in a sense produced through and for each other; (b) 
extensions of formalisms and models must necessarily be considered 
because everything introduced is introduced to make progress in the 
description of the objects studied. Therefore we should say that the 
formalisation of the concept of approximate constructive necessary 
satisfaction is the main task of the semantical study of models in the 
empirical sciences. Here however, once more, we should stress all the 
difficulties of the undertaking: approximate modalities and approximate 
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recursiveness should be the basic tools of this enterprise, basic tools that 
should then be applied to the model-prototype relationship. 
We meet here another major problem for our generalised semantics: 
if we decrease the requirements a system has to satisfy in order to be a 
model for a language (as we are constantly doing, when we apply approxi- 
mate concepts), and if we apply simultaneously strengthened model 
concepts (as we do when we speak about recursive and necessary rep- 
resentations) can we in some sense compensate our first loss of properties 
by a corresponding gain, so that our results are either identical or at least 
equal in power of deduction? This is perhaps the deepest problem we 
should try to solve in building up these approximate systems of semantics. 
Let us give some more details about liberalisations of semantical concepts, 
details whose function it is to apply the notions of our section IIIa  to the 
most popular model definition. Usually, a model is defined in two steps, 
the first of which defines what is called a semi-model and the second of 
which gives the full model. 
The domain 1 is circumscribed on the one hand, the language L on the 
other hand. Simple expressions are defined in L, classes of elements are 
defined in D. Rules are then given to assign to each non-Complete ex- 
pression in the language an element, a class or a sequence of elements in 
the domain (these elements, classes or sequences may belong to very 
many different categories, first defined). It is then shown that every term 
has an assignment. This assignment or semi-model is moreover a model if 
all asserted sentences in that language are assigned in their category to one 
definite sub-category, in which nothing else but these asserted sentences 
is assigned the truth. The recursive building-up of higher-order categories 
and of higher-order complex sentences is thus essential for the definition 
of model. This being the general description of what it means to define a 
model (as stated for instance by Kemeny and Tarski 12) it is now clear 
what will be the dimensions along which approximations will have to be 
defined: 
(1) approximations to the language on the one hand, the domain on the 
other hand, (2) approximations to the category of simple signs on the one 
hand to elements of the domain on the other hand; (3) approximations 
to the subdivision of the domain of simple signs in L, of the domain of 
simple dements in D; (4) approximations in language and domain to the 
several complexity-creating operations; (5) approximations to the vertical 
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division in expression-classes or element-categories; (6) approximations 
to the various assignment rules that have to be combined with all the 
other types of approximation. To be brief, we could say that all the earlier 
categories of an algebraical nature can here be applied but that we must 
apply them to two hierarchised structures built up out of  a given basis by a 
few iterated operations. The semantical approximation should thus be 
approximation to a correspondence between two hierarchies. This is the 
only new and important feature that occurs. But along all the mentioned 
dimensions of approximation, all forms of approximation distinguished 
have to be applied, and moreover they have to be combined (the major 
problem being: How is the approximation form and degree at a higher or 
later stage dependent on the approximation level and degree at a lower 
level and stage?) 
We should however be aware of the fact that it is difficult to discuss in 
general liberalisations of the satisfaction or model concept. Only for 
specific languages can this concept be defined, because the sentences 
stating what types of entities satisfy what simple sentences are purely 
relative to the language in which we find ourselves. We should thus in 
fact select a given language and produce a liberalised version for the 
satisfaction concept there. This cannot be our aim here, but the broad 
outlines of such an undertaking have, we think, sufficiently been sketched. 
To summarize our results: the more complex an entity, the more difficult 
it is to define an approximation to that entity, because so many different 
dimensions exist along which the approximation should be defined. A 
language is such a complex structure, and defining approximate semantic- 
al isomorphism means defining an approximate relation of correspond- 
ence between approximations to a language and approximations to a 
domain (set). 
We see that the difficulties we encounter could in some sense depend upon 
the notion: approximation to a language. 
This is the central concept of the last part of this section. 

C. Syntactical models 

Here we are going to study the relation between model and prototype as a 
relation between two languages. We consider as languages the different 
sciences, and this forces us immediately to consider certain generalisations 
with respect to formal calculi. For most scientific systems, the distinction 
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between axioms and rules of inference for instance is not dear. The series 
of definitions is not closed and it is not a mechanical procedure to know 
if a given sentence belongs to the system or not. Most scientific systems 
do not have a clear distinction between logical and descriptive constants. 
In fact a science seems to be written in a mixture of everyday language 
describing experiments, mathematical equations describing calculations 
and semi-formalised deduction if the science is sufficiently advanced to 
contain a theoretical part. 
We neglect all semantical and pragmatical features, because we consider 
here only the syntactical aspects. 
In opposition to this very complex mixture that is a science (when this 
science is taken as it is and not transformed for philosophical or logical 
reasons into something else), what is a calculus? A calculus is a sequence 
of the following entities: a set of signs, a set of sequences of these signs 
that are well-formed formulae, a set of well-formed formulae that are 
theorems, and a set of axioms (or, equivalently, a set of sequences of 
well-formed formulae that are rules of inference). The sequence (S, F, 
T, A) is thus a calculus. We can assert certain evident relations between 
the different elements of this foor-term sequence and one of the most 
interesting properties is that S, F, A ought to be recursive and T recur- 
sively enumerable. 
The facts just mentioned about an empirical science seem to indicate 
that there the elements of this sequence are not reeursive, that each of 
them has indetermination ranges, and that moreover the four ingredients 
of the calculus have indetermination regions in common. This leads us 
to believe that if we start with the general concept of calculus and if we 
define various types and degrees of approximation to calculi (and 
mixtures of calculi), we shall probably have among them the specific 
features of our empirical sciences. 
A language L will be called a closer approximation to a calculus than a 
language K if and only if (a) there are more signs in L that are indisputably 
simple and belonging to the calculi than in K where either fewer signs are 
indisputably simple or fewer simple ones are decidably elements of the 
calculus; (b) there are more sequences in L than in K that completely 
consist of signs of S and that are moreover indisputably well-formed 
(against cases in which sequences have as elements border-line signs or are 
themselves on the borderline of well-formedness); (c) there are more 
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sequences that completely fall into the kernel of the set F and that are in 
the kernel of T; (d) there are more sequences indisputably consisting of 
members of S, indisputably in F and T, and members of A. This defines 
the general idea of approximation of a language to a calculus in general. 
When now is a language an approximation to a given calculus in partic- 
ular? We think that we could here give a fairly general answer. In fact, a 
calculus is dependent upon a classification of signs, of sequences of signs, 
of sequences of such sequences and sub-classifications of these. It is an 
ordered sequence having as elements classes chosen from such classifi- 
cations. The principle of the order exhibited in this sequence is given by the 
properties: T lies inside F, A lies inside T, all parts of members of F are 
members of S, and none of the inverse characteristics hold. We can say 
that a classification is an approximation to another classification the 
more classes of the first coincide more completely with classes of the 
second. 
A hierarchy of classifications is the more an approximation to another 
hierarchy, the more each level corresponds to the corresponding level, 
and the more the relations between each pair of successive levels mirror 
the relations between the other pairs of corresponding levels. The degree 
of approximation of one hierarchy to another depending thus on at least 
two factors (and on the definition of corresponding level), the same 
degree of approximation could correspond to very different situations. 
Presumably proper weights should be chosen to determine the importance 
of each factor in the determination of the closeness of approximation to a 
given calculus. A calculus being essentially a selection from a given 
hierarchy of classification, this trend of thinking can lead to a definition 
of the ordinal degree of approximation of one calculus to another. 
The limit of a class with respect to a relation (in Principia Mathematica) 
is an element such that it stands in the converse of R to every element of 
that class and such that for every element in the class there is another 
element in it such that the first has the relation R to the second. If we 
now take a as elements classes and as the relation a relatioa of inclusion 
we can define the limit of a series of classes; and, as a consequence, also the 
limit of classifications and of hierarchies of classifications. Once this is done 
nothing can prevent us from defining limits of languages. We certainly 
could solve the problem of ordering approximations to languages without 
defining limits for sequences ot" languages, but it is certain that if we 
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could define such limits, our ordination difficulty would most nearly be 
solved. We must however limit ourselves here, more than ever, to tentative 
non-formal remarks. 
Let us repeat that we could define neighbourhoods for languages and 
calculi in function of the neighbourhoods eventually defined for S, F, T 
and A (the classical neighbourhood-axioms could presumably easily be 
satisfied). 
The syntactical model concept is defined in Tarski's book Undecidable 
theories essentially for 'systems in standard formalisation'. These systems 
are calculi in the sense we have just discussed with very careful sub- 
classifications of the series of signs, and of sequences of signs, and of the 
series of axioms. We can neglect the particular nature of these sub-classi- 
fications as the general problem of approximation remains the same for all 
these refined versions. 
Having thus understood how we can relate systems in standard formalisa- 
tion to languages in science, we can now come to our main topic, the 
study of the syntactical interpretation relation as defined among standard 
formalisms, and its approximations; this will be an introduction to the 
study of generalisations of this syntactical relation as defined among 
approximations to standard systems. 
Tarski tells us, on p. 20-22, for systems in standard formalisation that a 
system is interpretable (13) in another one if we find in this other system 
a series of definitions for the basic terms of the first that give to these 
basic terms their usual properties. 
Tarski, using his distinction between logical and non-logical constants, 
applies this first to the case where only for non-logical constants are 
definitions contemplated, and where among the descriptive terms, only 
constants are to be interpreted. Later he admits, in a footnote on p. 22, 
that logical constants may also be interpreted, and in his method for the 
relativisation of quantifiers he in fact also reinterprets variables. We shall 
come to this later. 
How might we consider weakened forms of these situations? We could 
envisage only partial definitions, or definitions of only part of the basic 
terms, or definitions giving to these basic terms only part of their earlier 
properties; or definitions that are not partial but multiple and probabilist- 
ic (every sign receiving a sequence of definitions with different cardinal or 
ordinal probabilities). These three directions of generalisation still 
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presuppose that the system to be interpreted and the interpreting system 
are both in standard formalisation! Only the interpretation relation is 
weakened. 
Let T1 and T2 not have any non-logical constants in common, then T2 
is interpretable in T1, if and only if there is a theory T and a set D, 
satisfying the following conditions: (a) T is a common extension of T 1 
and T2, every constant of T being a constant either of T1 or of T2; 
(b) D is a recursive set of sentences, valid in T, and possible definitions in 
T1 of non-logical constants of T2; (c) every non-logical constant of T2 
occurs in at least and at most one sentence of D; (d) all valid sentences of 
T are either those of T1, or of D. (Tarski, 13). To understand the force of 
the definition it is necessary to understand that a theory is an extension 
of another one if every sentence of this other one that is valid (we should 
try to find some syntactical equivalent for this term) is also valid in the 
first. 
Tarski himself weakens his definition in one direction, but let us first 
stress the following points: 
- T might not be a common extension of T1 and T2; in other words: in 
order for the interpretation to be possible, certain properties that hold 
for T1 would cease to hold; 
- the set D might not be recursive; its contents might not be possible 
definitions for the constants ofT2 but only partial ones, or only properties, 
or only probabilistic sentences; 

- the non-logical constants of T2 might occur in more than one sentence 
of D (over-determination) and not all of them might occur; 

- there might be valid sentences of T neither in T1 nor in D (i.e. certain 
properties of the defined signs are no longer derivable in the interpretation 
and must be added independently). 
These possibilities all go in the direction of the weakenings we contem- 
plated informally above. 
Tarski's own 'weak interpretability' goes in the direction of our last 
possibility (extension is preserved, all constants must be the same, but 
new truths about the same topics might be needed. Our last possibility is 
wider than his weak interpretability because it considers interpretation in 
a super-theory, not having necessarily the same constants. 
If we now cease to consider only formalisms in standard formalisation 
and if we try to introduce approximations to the standard formalisation, 
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we encounter two very divergent cases that have to be studied: (a) can 
we adapt Tarski's 'strict' definition of interpretation to the case of 
approximations to standard formalisations? and 
(b) can we adapt the weakened forms of it we just suggested to approxima- 
tions to standard formalisations? 
The first case covers two different situations; it may be that both the 
systems T1 and T2 are approximations to systems in standard formalisa- 
tion, or that one of them is a standard formalised system (more generally: 
the mode and degree of formalisation in both cases may be the same or 
different). 
If, for instance, instead of knowing or not knowing that signs belong to 
T1 or T2, we have a continuous spectrum of probabilities and know that 
the probability that they are in T1 belongs to a given probability interval, 
we might paraphrase the first condition Tarski puts forward for inter- 
pretation to exist, as follows: if a given sign lies in a probability interval i, 
regarding T, then it lies in the same probability interval regarding either 
T1 or T2. (we could loosen this up by saying that there is at least one 
among the two languages such that the probability interval of this sign 
in this language is not too far away from the corresponding interval in T.) 
This probability might be ordinal. 
Such a scheme tries to keep between two not completely formalised 
systems the same strict relationship that was asked for in the case of two 
completely formalised systems. 
Let us try to look for a similar transcription of the first demand for another 
type of approximation: let it be given that a lump of signs or sign sequen- 
ces belong to a language, there being no method available to dissect this 
union, the elements of which remain undiscriminated. This entails the 
presence of a union of sentences equally indistinguishable and speaking 
about the given signs. We could now, by analogy with the earlier proce- 
dure, say that the lumps in T should be such that they coincide either with 
some in T1 or with some in T2 (or we could say that every element 
present in a lump of T should be also present in some lump of T1 or of 
T2). It is obvious that we here try to apply to the concept 'formal system' 
in the first place and the concept 'interpretation' in the second place, 
some of the concepts of approximate geomtry introduced by Hjelmslev 
and applied already by Menger to the calculus of relations. 
This analogy suggests that exactly as in the geometry of solids, the point 
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is defined by a series of approximations, we should develop a syntax and 
semantics of approximately defined systems that might take over some 
of the techniques of this geometry of solids, the problem that has been 
tackled in both cases being the same: starting from a formally clear 
situation approach reality by generalisation that makes lesser demands on 
powers of discrimination. 
The situation we have encountered in our attempts to preserve the strict 
modelling relationship for not-strictly-defined systems is a situation we 
have by no means exhausted (we should stress that for each of the 
rules of interpretation and for each of the modes of approximation new 
difficulties arise). To see what type of difficulties might present themselves, 
let us look at a closely related case: suppose we admit logical constants 
themselves to be interpreted. How then to interpret the demand that the 
logical relations of the interpreted symbol of descriptive nature should be 
the same as those of the initial symbol? 
So also the interpretation rule for signs must be formulated so as not to 
contrast with the interpretation rule for sequences and so forth. 
Let an approximate interpretation be called adapted to the mode of 
approximation of the languages that are model and prototype, if the 
dimensions along which the interpretation approaches a formally complete 
interpretation are the same as those along which both languages approach 
the status of formal calculi. An interpretation can certainly be unilaterally 
adapted, because the mode of approach of model and prototype is not 
necessarily the same. An interpretation can certainly be of different 
degrees of inadaptation. For instance let model and prototype be close to 
formal calculi except for n signs, whose belonging to the system is un- 
certain. An interpretation is then adapted if it is a formal interpretation 
except for n rules of assignment for simple signs, that remain equally 
uncertain. If the form of uncertainty is specified (as a degree or through 
a disjunction) we can even require closer analogy. Let it be said however 
that the signs for which the assignation rules are undetermined are not 
necessarily those for which uncertainty of belonging exists. Even for 
approximate interpretations that are adapted to their terms such a 
multiplicity subsists. What will not be the complexity of approximate 
interpretations not adapted to the mode of approximation of their terms? 
We want now to complete our survey of modes of syntactical interpreta- 
tion by the study of Tarski's relative interpretation. 
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Given a theory and a unary predicate P we construct an interpretation 
by relativisation with respect to P if we replace all sentences quantified 
and including x, by sentences quantified and having the hypothesis that 
their x'es have the predicate P. Relativisation with respect to a predicate 
of the domain of individuals should perhaps be more generally defined as: 
relativisation of a domain of entities (propositions, predicates themselves, 
relations), with respect to an element of a domain of entities that they 
can be applied to or that can be applied to them by admissible operations 
(in a propositional calculus we might replace every p by a clause (qIp) 
for instance; similar changes might occur in higher functional calculus). 
It begins to be rather tiresome when we stress that the relativisation 
clause might be imposed only on certain predicates, or might be imposed 
diversely with diverse probabilities, or might concern a non-unique 
predicate but the union of a sequence of predicates. 
The relationship between interpretation by relativisation in the strict 
case and interpretation by definition is not yet completely clear; it should 
not astonish us that afortiori the relationship between approximations 
to these two types of interpretation on the syntactical level is a topic 
still awaiting investigation. 
If a science is really something rather different from a formal system, it 
should meet not only weaker demands, but also stronger demands. Here 
our problem is much more undetermined than elsewhere: we know from 
long experience how to generalise certain conditions; but it is not clear 
how we should strenghten them. 
Certainly, from the syntactical point of view, a science is not only any 
axiomatisable or unaxiomatisable formal system but has some stronger 
type of unity. The axioms should not be unrelated. They should in some 
sense be 'about the same topic'; moreover the set of theorems should 
present first some type of symmetry, second some type of mutual involve- 
ment. How formally to represent this type of symmetry, unity or involve- 
ment as strengthened versions of the requirements for 'systems in standard 
formalisation' is far from clear. Moreover, it is quite true that the usual 
models, even from a syntactical point of view, are not given by arbitrary 
rules of definition for the constants of T2 in T1. The definitions should 
delimit a domain of objects that in T1 itself is necessary as a separate 
domain, having sufficient distinctness and standing out against other 
parts of T1 having similar distinctness; to derive from the rules in D the 
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properties of the defined terms, the derivations should also have some 
sufficient unity, showing that the defining characteristics are in some 
sense grasping the nature of the constants in question. How to define 
the naturalness of this inference and thus of the definition is however 
difficult to see. 
Heuristically we could follow two directions: we could ask what are the 
strengthenings of the definitions that could in some sense compensate for 
the weakenings we proposed earlier? And we could ask: if we consider the 
given definitions as obtained by generalisation from other more demand- 
ing ones in the same way as we obtained our generalisations, what could 
be our starting points? 
Let us be satisfied that here too there is a purely formal way of reaching 
the more restricted relationships that we need for reasons of adequacy. 
It is here that we must abandon the topic of approximate model building 
for purely syntactical systems. We think that the three dimensions we 
have explored each show its own direction of generalisation: generalising 
the isomorphism of arbitrary relational structures, or the satisfying of a 
language by a domain, or the translatability of a language into another 
are three fundamentally different operations. 

IV. ATTEMPTS T O W A R D S  R E U N I F I C A T I O N  

The results of the study presented in this paper show that we cannot hope 
to give one unique structural definition for models in the empirical 
sciences. I f  a unification is still to be possible, we should go back to our 
starting point: the function of models. If  we can give a strict and formal 
definition for the function of a model, we can - this is our final impres- 
sion - ,  hope to reach on new grounds a general description of our multi- 
form concept. It is here that our attention should turn towards formal 
pragmaties (14). A subject uses a language to reach certain aims. If  this 
notion can be formalised, it is also possible to formalise the notion that a 
subject uses a language to obtain information about another one, or uses 
a physical system to obtain information about another one. This will be 
our final and most general hint towards the definition of model: any 
subject using a system A that is neither directly nor indirectly interacting 
with a system B, to obtain information about the system B, is using A as a 
mt~del for B. The definition of 'using' 'purpose' and 'information about' 
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are problems formal pragmatics is already beginning to tackle. While 

we do not think that this type of  definition of  the model concept is very 
fruitful (the syntactical, algebraic and semantical study of the various 
special model concepts seem to us immensely more fruitful) we are 
convinced at least that a general definition along these lines is possible, 
adequate and formal. 
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