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1. THE PROBLEM 

It is evident that where the conclusion of a deductive inference depends on 
its premises, the conclusion will not be a logical certainty unless the premi- 
ses themselves are logically certain, which is rare, and uncertainties in 
the premises will be in some measure passed on, or transmitted, to the 
conclusion. Moreover, the Lottery Paradox 1 shows that there are deduct- 
ively sound inferences whose premises are individually very highly prob- 
able, while their conclusions are totally improbable. The aim of this paper 
is to initiate systematic inquiry into the circumstances in which this sort of 
phenomenon can occur, and more generally into the question as to how 

high a probability is guaranteed in the conclusion of a deductively sound 
inference, given plausible bounds on the uncertainties of the premises. 
This question is important to applied logical theory, because it is not 
normally the case that persons making inferences are satisfied merely to 
know that their conclusions are entailed by premises which they accept, 
but they also want some assurance that their conclusions are probable. 
The following section will present results bearing on maximum conclusion 
uncertainties compatible with given premise uncertainties in certain kinds 
of deductively sound inferences, and the final sections make some in- 
formal remarks on the methodological significance of probability conside- 
rations in deductive logic. 

Before starting we state two elementary theorems of probability theory 
which throw some light on our problem, and which suggest the direction 
of the inquiry to follow. Define the uncertainty of a proposition to be the 
probability that it is false (this uncertainty is not to be confused with the 
entropic uncertainty measure of Information Theory). The first theorem 
states that the uncertainty of the conclusion of a deductively sound infer- 
rence cannot exceed the sum of the uncertainties of the premises. 2 Hence, 
the dependence of a conclusion on many premises, as in the Lottery 
Paradox example, is essential if high probabilities of the individual pre- 
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raises are to be compatible with zero probability of conclusions. Conver- 
sely, persons reasoning from only two, three or four premises, which are 
typical in textbook applications, will not be likely to arrive at highly im- 
probable conclusions - though the premise uncertainty sum might be 
'unacceptably high'. 

The second theorem, a partial converse of the first, says that if all of the 
premises of a deductive inference are essential to the inference, then for 
given premise uncertainties it is logically possible either that the conclu- 
sion uncertainty should equal the sum of the premise uncertainties, or, if 
that sum is greater than 1, that the probability of the conclusion should be 
zero. A consequence of this theorem is that if persons are to guarantee 
better than total improbability in the conclusions they draw from premi- 
ses of a priori uncertainty e, they must either restrict themselves to 
inferences with 1/~ or fewer premises or else introduce some redundancy 
into their reasoning, so that their conclusions do not depend on all of  
their premises. In what follows we will be largely concerned with the latter 
possibility, since it appears that a certain amount of redundancy is charac- 
teristic of real life reasoning from many premises, where uncertainties 
cannot be neglected. 

Consider the following example. A telephone survey is made of the 
political party affiliations of 1,000 people, which results in the collection 
of  'data' of the form 'person 1 is a Democrat', 'person 2 is a Republican', 
and so on up to person 1,000. 629 of the persons interviewed report them- 
selves to be Democrats: i.e., exactly 629 'data items' are of the form 'per- 
son i is a Democrat'. It is intuitively evident, however, that given the un- 
certainties typical of data collected in this way, it would be unsafe to 
conclude 'exactly 629 of the persons interviewed are Democrats', even 
though this would be a deductive consequence of the data collected, each 
item of which would be sufficiently probable to be accepted by itself. On 
the other hand, it would seem primafacie reasonable to conclude 'at least 
600 of the persons interviewed are Democrats'. This conclusion would not 
depend deductively on all of the premises, or even on any one of them, and 
because of this 'redundancy' in the data, our second theorem does not 
apply. We will see in the next section that in fact theprimafacie reasonable- 
ness of this and similar conclusions from redundant premises is partially 
justified theoretically. 

The problem of calculating the probability that at least 600 out of 
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1,000 people are Democrats, with 'data' like that just described with given 
individual datum 'error probabilities', looks at first sight like a very ele- 
mentary one of probability theory. However, our approach to it will differ 
from the usual approach in statistics, in that we will not assume a priori 
that errors are independent (e.g., that the chance that both of two reports 
are incorrect is equal to the product of their individual uncertainties). 
Independence assumptions are plausibly regarded as inductive in character 
and we want to ascertain how high a conclusion uncertainty is logically 
compatible with given premise uncertainties (we will assume in fact that 
any probability function satisfying the Kolmogorov Axioms is a logically 
possible one). Comparing the logical bounds on conclusion uncertainties 
with those which follow when independence assumptions are invoked will 
in fact afford us some indication of the degree to which certain kinds of 
deductively sound inferences in reality rest on inductive assumptions for 
their justification. We will even find some which are deductively sound, 
are totally unjustified when logically possible conclusion uncertainties are 
considered, but which are inductively justified by independence assump- 
tions! Such inferences are plausibly termed deceptively deductive. 

Our formulation of the problem of determining logically maximum con- 
clusion uncertainties compatible with given premise uncertainties reduces 
it to one of maximizing a linear function representing the conclusion un- 
certainty, subject to linear constraints representing apriori bounds on the 
premise uncertainties. This is simply a problem of linear programming. 
Most of the results we shall state are in fact fairly straightforward applica- 
tions of basic theorems of that theory (principally the so-called duality 
theorems), and for this reason we shall state them rather informally, and 
refer to the relevant literature for the proofs. Our primary concern will be 
with the usefulness and significance of these results in application, and not 
with the development of yet another unwanted 'system' of non-standard 
logic. 

A significant limitation on the present study must be noted. This is that 
it is restricted to inferences involving only what might be called 'factual' 
propositions, to which probabilities satisfying the Kolmogorov Axioms 
properly apply. In particular, we shall not consider inferences involving 
conditional propositions, whose probabilities are plausibly measured as 
conditional probabilities. 3 It turns out that when conditionals are intro- 
duced it can happen that conclusion probabilities are bounded byproducts 
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of premise probabilities rather than by sums of premise uncertainties, and 
therefore conclusion uncertainties can sometimes be greatly reduced in the 
conditional case. However, our investigation of this case is still at an 
early stage, and we hope to present results on it in a later paper. 

2. U N C E R T A I N T Y  M A X I M A  

An inference will be a system I =  ((~bi, ..., ~b,>, if>, where q~i, ..., ~bn and ~O 
are sentences of an unspecified first-order language; q51 .... , q~, are the 
premises o f / ,  {~bl,..., ~bn} is its total premise set (subsets of which are 
simply premise sets), ~ is its conclusion, and {qS1,..., ~b,, -~O} is its refu- 
tation set. Occasionally we will use the alternative notation (~l .... , ~bn) I(~b) 
for L The usual concepts of logical consequence, contradiction, and so on 
are presupposed (when explicitly specified the language may have con- 
sistent axioms which are treated as logical truths), as well as that of a 
probability function for the language. It is not presupposed that the infer- 
ences we deal with are deductively sound, or that their total premise sets 
are consistent - though inconsistent premise sets introduce some surpris- 
ing uncertainty phenomena whose interpretations involve problems, and 
which will not be entered into in detail. 

Arbitrary first-order inferences are trivially reducible to sentential infer- 
ences for the purpose of uncertainty maximum determination. Two infer- 
ences (~bl,..., q~,)I(~) and (ff~, .... q~) I(~0') are equivalent with respect 
to uncertainty maximization if any given subset of the first refutation set 
{~bl,..., ~bn, - ~  } is consistent if and only if the corresponding subset of 
{~b~, ..., ~b', -~k'} is consistent. It  is easy to show that two inferences 
which are equivalent in this sense have the same conclusion uncertainty 
maxima. Obviously any first-order inference is equivalent to a sentential 
inference in the defined sense. We will show next that the foregoing reduc- 
tion can be carried considerably farther. 

Fixing attention on the inference ((~1,..., ~ )  1(~), two kinds of premise 
sets will prove important where the total premise set P =  {~bl, ..., ~b,} is 
consistent, and a third kind must be considered when it is inconsistent. 
A premise set P ' _  P is sufficient for I if ~ is a logical consequence of P ' ,  
and is essential for I if ~ is not a logical consequence of P..~P'. Sufficient 
and essential premise sets are dual in certain respects. Every sufficient 
premise set intersects (has a non-empty intersection with) every essential 
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one, and the sets of either kind are definable as just those which intersect 
all sets of the other. The minimal sets of each type (i.e., the sets of that 
type which have no proper subsets of that type) will prove especially im- 
portant. The minimal sufficient premise sets for I(m.s.s. for I) will be sup- 
posed to be the sets $1 .... , Sr (on occasion r may be 0), and the minimal 
essential premise sets (m.e.s. for I) will be supposed to be El , . . . ,  Es (s may 
be 0). The size of the smallest m.e. to which a given premise belongs will 
be significant in that it gives a rough index of the 'weight' of that premise 
so far as its uncertainty contributes to the maximum uncertainty of the 
conclusion. Totally inessential, of irrelevant premises are ones which 
belong to no m.e.s., and their uncertainties make no contribution to the 
conclusion's uncertainty. 

Continuing with the foregoing inference, (~bl ... . .  ~b,) I(~,), its associated 
minimal sufficient and minimal essential forms are the sentences ms (I) and 
me(/)  defined as follows. Letting A S~ be the conjunction of the premises in 
S~, ora  tautology TifSj is empty, ms(I) is the disjunction AS1 v ... v AS, 
or else is an arbitrary contradiction F i r  there are no m.s.s, for the inference. 
Letting VE~ be the disjunction of the premises of Ej, or F if E i is empty, 
me(/)  is the conjunction VE1 & .." & VE~, or is T i f  there are no m.e.s. 
The two sentences ms(/)  and me(/)  are easily seen to be logically equiva- 
lent, but more importantly for our purposes the original conclusion, ~,, 
can be replaced by either ms(/)  or me(/),  and the resulting inference will 
be equivalent to the original with respect to uncertainty maximization. 
Note that we have now reduced the uncertainty maximization problem 
for an inference with an arbitrary conclusion 0 to that of maximizing the 
uncertainty of another conclusion ms(/)  or me(/)  which will logically 
imply ~k but will not in general be logically implied by ~, and which is of 
the form of a disjunction of conjunctions of premises or of a conjunction 
of disjunctions of premises. The reduction can be carried one step farther. 
I f  the premises are consistent then each premise can be replaced by a 
distinct atomic letter with the same replacements being made in ms (I) or 
me (I), and the new inference will be equivalent to the original with respect 
to uncertainty maximization. The same reduction can also be carried out 
when the premises are inconsistent, except that in this case it is necessary 
to add non-logical axioms to the language which specify in effect that sets 
of atomic formulas which correspond to inconsistent premise sets are 
inconsistent. It is significant that when this reduction is carried out nega- 
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tion diappears entirely, since premises are atomic formulas and conclu- 
sions are conjunctions of disjunctions or disjunctions of conjunctions of 
premises. 

Some special cases should be noted. If  ~k is a logical consequence at 
most of inconsistent premise sets then ms(/)  and me(/)  are both equiva- 
lent to a contradiction, F, and in this case any premise probabilities are 
compatible with O's having probability 0. I f  the conclusion is a logical 
truth (it is independent of the premises), there are no m.e.s., the only m.s. 
is the empty set, and both ms(/)  and me(/)  are equivalent to a logical 
truth. In the case in which the total premise set is sufficient but no proper 
subset of it is, every individual premise is essential (i.e., the singleton set 
containing it is essential), and ms(/)  and me(/)  are both equivalent to the 
conjunction of all of the premises. This is the sound, consistent, irredun- 
dant inference. It follows easily from the foregoing that any two sound, 
consistent, irredundant inferences with the same number of premises are 
equivalent with the respect to uncertainty maximization, no matter how 
'strong' or 'weak' their conclusions are. The foregoing generalizes a bit: 
if all of the premises of an inference are either essential or irrelevant then 
the conclusion can be replaced by the conjunction of the essential premises 
and the resulting inference will be equivalent to the original with respect 
to uncertainty maximization. 

Now suppose the total premise set P of an inference I is inconsistent. 
A subset P '  _ P  will be called negatively sufficient for I i f P N p '  is consis- 
tent and sufficient for L The minimal negatively sufficient premises sets 
for 1 (m.n.s.s. for 1) will be written NS1, ..., NSt. In the special case in 
which the conclusion of I is entailed at most by inconsistent premise sets 
there are no m.n.s.s, for I (t = 0), and in the case in which the total premise 
set is sufficient for I and consistent, the only m.n.s, for ! is the empty 
premise set. 

The m.e.s, and m.n.s.s, for an inference (q51 ... . .  qSn) I(0) are closely 
related to the minimal subsets of the refutation set R =  {~bl,..., qSn, - 0 }  
which can be falsified in any state of affairs. These minimal falsifiable 
subsets of R are the complements with respects to R of the maximal con- 
sistent subsets of R. If  R' is such a subset, it will be an m.e. for 1 i f  it does 
not contain - ~, and if R' does contain - ~ then R' ~ { -  ~} is an m.n.s. 
for L In any case the m.e.s, and m.n.s.s, for I represent 'minimal falsifica- 
tion states' relative to R, and it proves useful to represent these states in a 
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minimal falsification matrix as follows. The rows in the matrix correspond 
to the m.e.s, and the m.n.s.s. (with the m.e.s, coming first), and the col- 
umns correspond to the premises o f / ,  with a final column for the con- 
clusion. ' l ' s  and 'O's are now written into the cells of the matrix according 
to the rules: (1) where the cell is the intersection of a premise set row and 
premise column, a '1' is written in if the premise belongs to the set, and a 
'0' is written in otherwise, (2) ' l ' s  are written into the conclusion column 
in the m.e. rows, (3) 'O's are written into the conclusion column in m.n.s. 
rows. A simple illustration is the inference of the conclusion 'A ~ -  B' 
from the three premises 'A', 'B', and ' - (A &B)' (the premises are both 
redundant and inconsistent). In this example there are two minimal suffi- 
cient premise sets, $1 -- {A, - ( A  &B)} and $2 = {B, - (A &B)}, two mini- 
mal essential premise sets E l =  {A, B} and Ez -- { -  (A &B)}, and two 
negatively sufficient premise sets, NSx = {A}, and NSz = {B}. Therefore 
the minimal falsification matrix is: 

premises conclusion 

A B -(A&B) ( A ~ - B )  
E~ ={A,B} 1 1 0 1 
Ez = { - ( A & B ) }  0 0 1 1 
NSI= {A} 1 0 0 0 
NS2= {B } 0 1 0 0 

It is also convenient to regard the entries in the rows of the minimal 
falsification matrix as the values of minimal falsification functions corre- 
sponding to these rows, the function corresponding to the row of an 
m.e., Ej, being symbolized ej, and the function corresponding to the row 
of the m.n.s. NS2 being written nsj. These functions, mapping the prem- 
ises of the inference plus its conclusion into {0,1}, are important be- 
cause they are in fact restrictions of 'extreme' uncertainty functions just 
to this set of sentences. Uncertainty functions are defined such that 
u(q)= 1 -p(q)  for some probability function p and for all sentences e of 
the language. It is trivial that the only uncertainty functions which we 
need to consider for our sentential languages are generated as convex 
combinations of falsity functions for the language, which are functions f 
such that for some mode l , f  (q) = 1 for all sentences ~/which are false in the 
model, a n d f ( q ) = 0  for all sentences which are true in the model. In maxi- 
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mizing conclusion uncertainties it is sufficient to consider convex combi- 
nations of functions which falsify minimum subsets of the refutation set 
for the inference, the restrictions of which to the premises and conclusion 
of the inference are just the minimal falsification functions el .... e, and 
nsl, ..., nst. Accordingly we can restrict attention to uncertainty functions 
which can be expressed in the form: 

t 

(1) u(r/) = ~ p j e j ( t l ) +  ~ q jns j ( t l ) ,  
.i=1 i=1 

where Pl, ..., P, and ql, ..., qt are non-negative reals summing to 1, and 
r/is either a premise or the conclusion of the inference involved. 

The 'weights' Pl , . . . ,  Ps and ql , . . . ,  qt in Equation (1) are those attaching 
to the corresponding minimal falsification functions el , . . . ,es  and 
nsl .. . .  , nst, and indirectly to the sets El , . . . ,  E~ and NS1 . . . . .  NSt. Thus, the 
weights Pl .... , p, will be called the m.e. weights which together with the 
m.n.s, weights ql . . . .  , qt, generate the function u defined by Equation (1). 
Note that the uncertainty of the conclusion ~k given by the uncertainty 
function defined in this way is just the sum of the m.e. weights, Pl, .-., P,, 
and the uncertainty of any premise is equal to the sum of the weights of 
the m.e.s, and m.n.s.s, to which it belongs. 

Bounds on the uncertainties of the premises in the inference 1= 
=<<~bl,... , ~b,), ~ )  will be represented by non-negative real vectors 
~; = <51 ... . .  ~,), which will be called premise uncertainty bound vectors for  

I (.p.u.b.v.s. for 1) in the space of all such vectors (the p.u.b.v, space of 1). 
An uncertainty function, u, for the language is consistent with s if u(ffi) <~ 
~<e, for i=1  ... .  , n, and c is said to be consistent fo r  I if there exists an 
uncertainty function which is consistent with it, and otherwise inconsistent 

for L If  the total premise set is consistent then all p.u.b.v.s, are consistent 
f o r / ,  but if the total premise set is inconsistent then 'sufficiently small' 
p.u.b.v.s, will be inconsistent. Uniform p.u.b.v.s, are those whose com- 
ponents are all equal. 

If  e=<e 1 ... . .  5,> is a p.u.b.v, which is consistent for the inference 
(~bl,..., ~b,) 1(~0), then there is obviously a maximum value of u(ff) for 
uncertainty functions u which are consistent with ~, and accordingly we 
define 

= 5 1  . . . . .  5.) 
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to be equal to that maximum (and we define It(l; ~) to be the same as 
It(l: ~) for p.u.b.v.s, with uniform components e). For fixed/, #(I; e) and 
It(l; 5) are clearly real valued functions, which will be called the conclu- 
sion uncertainty maximization function (c.u.m.f.) and the uniform conclu- 
sion uncertainty maximization function (u.c.u.m.f.), respectively, for /, 
which are defined for all consistent p.u.b.v.s. These are the functions 
whose properties will concern us in what follows. Obviously both func- 
tions are monotone increasing (though not strictly monotone increas- 
ing) in all of their arguments over their domains of definition, and in 
the case in which the premises are consistent and entail a non-logically 
true conclusion, p (I; 0) = 0 and It (I; 1) = 1 (logically implied consequences 
of perfectly certain premises are perfectly certain and consequences de- 
pending on 'perfectly uncertain' premises are perfectly uncertain). To in- 
vestigate these functions in detail, it proves helpful to utilize results 
from the theory of Linear Programming (see especially Goldman and 
Tucker, 1956). 

Restricting ourselves to uncertainty functions of the form (1), our 
problem becomes that of maximizing the conclusion uncertainty 

(2) u(O) = + ' "  + p, 

(if s = 0, u (~) must equal 0) subject to the 'primary constraints': 

t 

(3) u (~,) = ~ pjej (?p,) + E qjnsj ((~,) <~ e,, 
j = l  j=I  

for i=  1 .. . .  , n, where m.e. weights Pl .. . .  ,p~ and m.n.s, weights q~, ..., qt 
are non-negative and sum to 1. The dual minimization problem is that of 
minimizing the linear form 

(4) w" ~ + v =  w~l  + ... + w,~ + v 

subjects to the 'dual constraints' 

w~e~ (~bi) + v ~> 1 for j = 1,...,  s ,  
i = 1  

(5.1) 

and 

(5.2) ~ w, nsj(4,) + v >t O for j = l , . . . , t ,  
j = l  

where-wt .... , w, are non-negative reals, and v is an arbitrary real. 
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Observe that the 'weights', wl,..., w, in the dual weighting system 
(w, v>=((wl,  ..., w,>, v> entering into (4), (5.1), and (5.2) above corre- 
spond to the individual premises ~bl, ..., q~,, and for this reason we will 
call each w~ the ith premise weight of the dual weighting system. For 
reasons which will become apparent later, it is appropriate to call the 
parameter v the consistency index of the dual weighting system. If the 
system (w, v) satisfies the dual constraints (5.1) and (5.2) we will say that 
it is consistent with them. These inequalities can be restated in words as 
follows: the necessary and sufficient condition for (w, v> to be consistent 
with the dual constraints is that the sum of the weights of the premises in 
each minimal essential set plus the consistency index must be at least 1, and 
the sum of the weights of the premises in each minimal negatively sufficient 
set plus the consistency index must be at least O. Whether or not the dual 
weighting system is consistent with the dual constraints, it generates a 
linear functional w" e+v  according to (4) over the space of p.u.b.v.s, e, 
which will be called the conclusion uncertainty bound function (c.u.b.f.) 
generatedby (w, v). 

The essential facts about the maximization and dual minimization 
problems and their interconnections are as follows. The dual system of 
constraints (5) is always consistent, since the dual weighting system 
((0, . . . ,  0>, 1> is always consistent with it, but for a fixed p.u,b.v, e there 
will be a minimum of form (4) if and only if the primary constraints (3) 
are consistent. If the uncertainty function u is consistent with the primary 
constraints, and the dual weighting system (w, v> is consistent with the 
dual constraints, then 

(6) u(¢) <<. #(I; e) ~ w' ~ + v. 

Thus, the conclusion uncertainty bound functions w. e + v do in fact give 
upper bounds to conclusion uncertainties. If the primary constraints are 
consistent, then there exist non-negative Pl ..... p~ and ql,..., qt summing 
to 1 consistent with these constraints and generating an uncertainty 
function u, and there exists a dual weighting system (w, v> consistent 
with the dual constraints such that u (q~) = w" e + v, and therefore according 
to (6), #(I; e) is equal to this value. Thus, our attention turns to minimum 
c.u.b.f.s., since their values also give conclusion uncertainty maxima, and 
more generally to c.u.b.f.s, which are 'informative' about uncertainty 
maxima. 
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To conclude our summary of  the relevant linear programming results, 
it is to be noted that the class of  all dual weighting systems (w, v) con- 
sistent with the dual constraints (5) forms a convex set in n + 1 dimen- 
sional vector space, and this convex set has only a finite number of ex- 
treme points (consistent dual weighting systems which are not convex 
combinations of other consistent dual weighting systems), which we may 
designate (w 1, vl) ,  ..., (w m, vm). These will be called the characteristic 
dual weighting systems for the inference/,  since if there exists a minimum 
value of w" ~+ v for arbitrary (w, v) consistent with the dual constraints, 
this value must be assumed at one of  the extreme points, and therefore we 
can write: 

(7) /~(I; ~) = min(w 1. e + v 1 . . . .  , w ~" e + v'~). 

The values wk'F.-~-V k for k = l , . . . ,  m, therefore determine p(1; ~) in the 
range of its definition. In certain cases these values also give information 
about this range, since the fact that wk.e + v k is actually negative means 
that e is not a consistent p.u.b.v, for L However, the fact that all of  the 
values wk.e+v k, k =  1 .... , m, are non-negative is not always a sufficient 
condition for e to be consistent for L 

More terminology. I f  (w k, vk), k =  1,..., m, are the characteristic dual 
weighting systems for an inference/ ,  then the functions wk'e + v k which 
are defined over the p.u.b.v, space for the inference will be called the 
characteristic functions for the inference. For a particular e, the character- 
istic function or functions which minimize w k. e +  v k will be called the 
applicable functions for e, and the associated weighting system or systems 
(w k, v k) will be the applicable weighting system of systems for ~. The 
class of  all e for which a particular characteristic function is applicable is 
always a convex (possibly empty) set of  p.u.b.v.s, which will be called the 
applicable domain of  the function (and of its associated weighting system), 
and the restriction of the function to its applicable domain will be called 
the applicable part of the function. 

Some general properties of  #(I ;  ~) follow immediately. This function 
must be continuous and piece-wise linear over its domain of  definition. 
Piece-wise linearity follows from the fact that #(I ;  e) is the finite union of  
the applicable parts of  the characteristic functions f o r / ,  restricted to the 
set of  consistent p.u.b.v.s., where each characteristic function is itself 
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linear. Now consider a fixed p.u.b.v., e = ( e  1 . . . . .  e,) and a particular 
premise q~i. The applicable weight or weights of qSi for ~ will be just the 
ith components w k of the applicable dual weighting system or systems 
for e. These weights have the following significance. If the uncertainty 
bound e~ is increased by a small amount 6, all other uncertainty bounds 
remaining the same, then the conclusion uncertainty maximum/~(I; 5) 

k is the smallest of the applicable will increase by the amount w~6, where wi 
ith premise weights for e. If the uncertainty bound e i is decreased by a 
small amount 6 then, provided the resulting uncertainty bounds are con- 
sistent, the maximum conclusion uncertainty will decrease by the amount 
w~6, where now w~ is the largest of the applicable ith premise weights. 
Thus, the applicable ith premise weights afford a 'locally applicable 
index' of the importance of qS~ so far as its uncertainty influences the 
maximum uncertainty of the conclusion. That/~(I; ~) increases in pro- 
portion to smallest applicable premise weights but decreases in propor- 
tion to largest applicable premise weights means, roughly, that the more 
uncertain a premise is, the less will changes in its uncertainty affect the 
maximum uncertainty of the conclusion. More roughly still, the more 
probable premises will be the ones whose uncertainties most importantly 
affect the maximum conclusion uncertainty. 

All of the foregoing applies mutatis mutandis to uniform p.u.b.v.s. 
and to the values of the uniform c.u.m.f./~(I; 5). Here all that matters are 
sums of premise weights and consistency indices in characteristic dual 
weighting systems, since it follows trivially from (7) that in the uniform 
bound case, 

(8) #(I; 5) = min(s(w 1) ~ + vl, . . . ,  s(w m) ~ + v m) 

where s(w k) is the sum of the premise weights in the characteristic system 
(w k, vk). Those systems (w k, v k) which minimize (8) for particular e may 
be termed appBeable for e, and so on. Trivially, p(I; 5) will be continuous, 
piece-wise linear, and increase with smallest applicable premise-weight 
sums and decrease with largest applicable premise weight sums. In the 
case in which the premises are consistent and entail the conclusion it will 
be seen that the consistency index is either 1 or 0, and 

(9) t1(I; 5) = min(s(w k) 5, 1) 

where (w k, v k) is the characteristic system with consistency index 0 and 
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smallest premise weight sum. Note also that except in the case in which 
the conclusion is a logical truth, all premise weight sums must be greater 
than or equal to 1, and therefore p(I; e) cannot be less than e unless the 
conclusion is a logical truth. 

Most of the results to follow concern the consistent and sufficient 
premise case, and these are easy generalizations from two simple examples. 
The first is the inference with premises 'A', 'g ' ,  and 'C' ,  and conclusion 
'A & (B v C)'. This conclusion is already in minimal essential form, the 
two minimal essential premise sets being E 1 = {A}, and E 2 = {B, C}. As in 
all consistent sufficient premise cases, the only minimal negatively suffi- 
cient premise set is the empty set: i.e., NS1 = A. The minimal falsification 
matrix therefore is: 

premises conclusion 

A B C A & ( B v C )  
E1 = (A} 1 o o 1 
E2 =(B,C}  0 1 1 1 
NS1 = A 0 0 0 0 

The primary uncertainty maximization problem is that of maximizing the 
uncertainty u(A & (By  C))=p~+p2 subject to the primary constraints 
u(A)=pl <~1, u(B)=p2 ~<e2, and u(C)=p2 ~<83. This problem is trivially 
solvable without going over to the dual system, but consideration of the 
dual problem is still illuminating. 

The dual problem in the example is that of minimizing the linear form 

W • 8 n t- V ~-~ W181 -~- W282 -]- W383 -[- /) 

subject to the dual constraints 

w 1 . 1 + w z ' 0 + w a - 0 + v ~ > l  

w 1 • 0 --1- w 2 • i --~w 3 • 1 --~/)~ 1 

w I • 0 2v w2" 0--]-w 3 • 0-J-/3 ~ 0. 

The correspondence between the above inequalities and the rows in the 
minimal falsification matrix is obvious. The extreme weighting systems 
consistent with the dual constraints, which are obtained by 'maximizing 
equated constraints' (turning as many inequalities as possible into equa- 
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lities, where the apriori inequalities w I >f 0, w2 >i 0 and w3 >i 0 are included), 
are: 

(w ~, v j )  = ((0,  O, 0) ,  1) 

(w 2, v 2) = ((1,  1, 0), O) 

(w s, v~> = ( (1 ,0 ,  1>,0).  

In this case, therefore, Equation (7) reduces to: 

#(I; 81, s2, e3) = rain(l, el + e2, sl + ~3). 

Among the things which generalize easily from the example, the follow- 
ing may be noted. The total uncertainty weighting system, ((0 .... ,0),  1), 
with all premise weights 0 and consistency index 1, is always among the 
characteristic weighting systems, and the associated characteristic func- 
tion has the constant value 1. For each minimal sufficient premise set, Sj, 
there is a corresponding unitary characteristic system (w k, 0), where the 

k components w~ are O's or l 's and are equal to 1 for those i such that q~i 
belongs to Sj. In the example there were two minimal sufficient premise 
sets, S~ = (A, B} and $2 = (A, C}, and the corresponding unitary charac- 
teristic systems were (w 2 , v 2 ) = ( (  1, 1, 0), 0) and (w 3, v 3) = ((1, 0, 1 ), 0). 
The characteristic functions which correspond to these minimal sufficient 
premise sets are simply the sums of the uncertainty bounds of the premises 
in the sets to which they correspond. In the present case the only charac- 
teristic functions were the total uncertainty function and the unitary func- 
tions corresponding to minimal essential premise sets. In cases of this 
kind the maximum conclusion uncertainty either equals 1 (total uncer- 
tainty) or else equals the sum of the premise uncertainty bounds in the 
'least uncertain' (least premise uncertainty bound sum) of its sufficient 
premise sets. Such inferences act as though their conclusions depend 
solely on their least uncertain sufficient premise sets. 

In the consistent, sufficient, irredundant case, the only sufficient premise 
set is the total premise set, and in this case it is evident that the maximum 
conclusion uncertainty is either 1 or else equals the sum of all of the 
premise uncertainty bounds, whichever is least. This combines the two 
'theorems' of elementary probability stated in the introduction. 

The only minimal negatively sufficient set in the consistent and sufficient 
premise case being the empty premise set, it follows trivially that the con- 
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sistency index must always be non-negative, and in fact will equal 0 in all 
but the total uncertainty weighting system. In effect, then, we can elimi- 
nate the consistency index from our considerations so long as the prem- 
ises are consistent, and concentrate on the 'reduced' dual constraints which 
result from the original constraints when v is set equal to O. The extreme 
solutions to the reduced constraints then give the premise weights in all 
characteristic systems but the total uncertainty system, and we get the 
complete set of characteristic weighting systems by simply adding the 
total uncertainty system to the extreme solutions to the reduced constraints. 
When we come to inconsistent premise sets it will be seen that consistency 
indices play a more important role. 

The final generalization illustrated in our first example has to do with 
the fact that the conclusion of the inference was a conjunction, each of 
whose conjuncts could be looked on as the conclusion of a "sub-inference'. 
That is, our original inference had the form (A, B, C) I(A & (B v C)), and 
the two sub-inferences can be represented as (A, B, C) I(A) and (A, B, C) 
1(By C). In this particular case, the subinferences are separate in the 
following sense: each premise is relevant to at most one of the subinfer- 
ences, and is irrelevant (totally inessential) to the other. Where an infer- 
ence with consistent premises and a conjunctive conclusion can be separ- 
ated in this way, the non-total uncertainty characteristic functions of the 
compound inference will always be sums of the non-total uncertainty 
characteristic functions of the sub-inferences. It is trivial that the only 
non-total uncertainty characteristic function for I(A) is el (the maximum 
uncertainty of its conclusion, 'A', is equal to the that of its first premise), 
and the only non-total uncertainty characteristic functions for I(B v C) 
are e2 and %. In virtue of the fact that the sub-inferences are separable, it 
follows that the nontotal uncertainty characteristic functions of 1(4 & 
(B v C)) must be e 1 + e2 and e 1 + ~a-4 

So far we have only encountered premise weights of O and 1, and this is 
essential because we have arrived at characteristic functions which are 
constructible from 'unitary' functions by just two operations: minimiza- 
tion, which corresponds roughly to disjunction, and addition, which 
corresponds roughly to conjunction. We will now see that there is another 
possibility: redundant but not irrelevant premises can lend 'statistical 
support' in limiting the maximum uncertainty of conclusions. As our 
example we will take the inference with premises 'A', 'B', and 'C', as be- 
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fore, but with the conclusion $='(A & B)v (A & C)v  (B & C)'. The 
conclusion expresses the fact that at least two of the premises are true, and 
there is obvious redundancy among the premises - in fact no single prem- 
ise is essential. Here there are three minimal essential premise sets, 
E~ = {A, B}, E2 = {A, C}, 
matrix is: 

and E3= {B, C). The minimal falsification 

premises conclusion 

A B C  ~O 
E, = {A, B} 1 1 0 1 
E2 = { A , C }  1 0 1 1 
Ea = { B , C }  0 1 1 1 
NS1 = A 0 0 0 O. 

The 'reduced' system of dual constraints (arrived at by setting v = 0) is: 

wl • + w2" 1 + w 3 "0>t 1 

w l ' l  + w2"l + w3"0 t> 1 

w 1-0 + w2"l + w 3.1 >/1. 

The extreme solutions to these inequalities are: 

w 1 = <1, 1, 0) 

w 2 = <1, 0, 1) 

w a = <0, 1, 1> 

w* = <5, 5, ½>. 

It follows that 

~(I; 51, 82, 83) 

= rain [1, 81 + 82, 81 + 8a, 52 + ca, 5(51 + 52 + 8a)]. 

The first four weighting systems and charasteristic functions above are 
of kinds already encountered, the second, third, and fourth being the 
functions corresponding to the three minimal sufficient premise sets for 
the inference. The last characteristic function, ½81 --]-½82dr-½83, and asso- 
ciated premise weighting system, <5, ½, ½>, are of a new type which we 
wish to consider in detail. Observe that the domain of application of this 
function is the set of p.u.b.v.s. <sx, ~2, %> such that e1+82+8a.-.<2, and 
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such that no single weight exceeds the sum of the other two. This includes 
the uniform bound e as a special case, and in this case the new character- 
istic function gives a maximum uncertainty bound of 1.5 e, which is 
smaller than the uncertainty bounds of 2e which are given by the unitary 
characteristic functions. The fact that the maximum conclusion uncer- 
tainty here does not depend on the premise uncertainties in any unique 
minimal sufficient set, but rather is contributed to by all, suggests the 
appropriateness of calling these characteristic functions and weighting 
systems statistical. 

The statistical premise weights of ½ in the example are significant in that 
they are reciprocals of the sizes of the m.e.s, in the example. This generali- 
zes as follows. Let c~ be the size of the smallest m.e. to which a given 
premise q~ belongs, if it belongs to any, and let w~ = 1/e~ ife i is defined, and 
otherwise let w~=0. Then the weights (wl .. . .  , e,> are easily seen to satisfy 
the reduced dual constraints for the inference in question, hence by (7). 

(10) /t (I;  el, 8,) < ~1 e, ..., - -  + . . . + - - ,  
¢1 Cn 

where the sum on the right is taken over those ti/c i for which ~b~ is relevant 
hence c~ is defined. There is also a partial converse of (10) which applies 
in the uniform bound case. Let D t, D2,... be arbitrary essential (not nec- 
essarily minimal essential) premise sets having the property that every 
premise belongs to the same number of these essential sets as every other. 
Letting e be the size of the largest of these sets, it is not hard to show by 
considering the primary constraints that: 

n8 
(10 

c 

Both (10) and (11) therefore relate maximum conclusion uncertainties 
to reciprocals of sizes of essential premise sets. 

As a first application of (10) and (11) consider an inference (~b 1 ... .  , 
q~,) I(~O) in which ~/is not entailed by any premise set with a or fewer 
members, and is entailed by every premise set with more than b members. 
Then no essential premise set can have less than n - b  members, and it 
follows from (10) that 

~i + "'" + en 
( l z )  . . . . .  

n - b  
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Every n - a  member premise set is essential, and since each premise be- 
longs to the same number of n - a  member premise sets, (11) applies and 
we get: 

n8 
( 1 3 )  - -  

n - - a  

The special statistical case is that in which the conclusion is not entailed 
by any premise set with a members, and is entailed by any premise set 
with more than a members. In this case the conclusion is equivalent to the 
proposition 'more than a premises are true', and (12) and (13) combine to 
imply: 

8 
(14) # ( I ;  e) = a" 

n 

The conclusion uncertainty maximum will never be less than the uniform 
premise bound, but that it may still be 'acceptably small' if ~ is small and 
1 - a / n  is not too close to 0. For example, if the premises are 'survey data' 
items 'person 1 is a Democrat', 'person 2 is a Democrat' and so on up to 
1,000, each item of which has an a priori uncertainty of 0.02, and the con- 
clusion is that more than 900 of the persons surveyed are Democrats, then 
the maximum conclusion uncertainty will be 0.02/(1-0.9)=0.2. This 
'smallish' bound is of  course much higher than would be expected in- 
tuitively, and much higher than the bound which follows if errors are 
assumed independent. Nonetheless it shows that not all of the confidence 
reposed in such statistical conclusions depends on tacit inductive assump- 
tions. 

A slight generalization of the simple statistical case is that in which the 
premises ~b 1 ... . .  q~, can be put into the form qS,=A~ for i=  1,.,., k, and 
~b ,= -At  for i---k+ 1,..., n, and the conclusion is 'the number of  A~'s 
which are true lies between kl and k2 (exclusive)'. This is a case in which 
the conclusion can be expressed as a conjunction, 'more than k 1 Af's are 
true' and 'less than k 2 A{s  are true' where this conjunction separates the 
premises so that the positive premises AI ....  , Ak are relevant only to the 
first conjunct while the negative premises --Ak+l . . . .  , --A, are relevant 
only to the second. Letting/1 and I2 be the sub-inferences whose conclu- 
sions are the first and second conjuncts, respectively, 11 andI2 are separate- 
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ly of  the 'simple' statistical form previously discussed (after their irrele- 
vant premises have been deleted), and Equation (14) implies: 

and 

# (Ix ; ~) - _ _  
kl 

1 ~ - -  
k 

n ~ k 2 ° 
1 

n - k  

In virtue of the separation of the sub-inferences, the maximum uncertainty 
of  the compound inference, #(I; e), must equal the sum of the two com- 
ponent conclusion uncertainty maxima above. 

A final statistical example leads to a possibly surprising result. In this 
case the premises of the inference are identities of the form a~= aj for all 
l < i < j ~ n  (there are ½n(n-1) such premises) and the conclusion is 
al = a2 . . . . .  a, (as . . . . .  a, are all equal). The inference is symmetric in the 
premises, and it is sufficient to consider the essential sets to which the 
premise al =a2 belongs. One such is the n - l  member set Da = {ax =a2, 
al = a3 . . . .  , al = a,}, which is easily seen to be not only essential, but to be 
the smallest essential set to which aa = a2 belongs. Setting each c~ = n - 1  
and each ek=e in (10), and recalling there are ½n(n-  1) premises in all, we 
then get: 

/2(/; ~) <~ ½n~. 

On the other hand, permuting al and any other as in the premise set Da 
(and reversing the order of the constants in the equations where necessary) 
yields a new m.e., D~, and the set of D~ .... , D, is such that each a~=a i 

belongs to the same number of these essential sets. Hence (I 1) applies, 
and gives ½m</2(I; e). Thus, the inequality runs in both directions, so 
/2(1; e)=½m. This result is counterintuitive in particular cases: for in- 
stance, where n 'individuals' are each independently 'pairwise identified'. 
This counterintuitiveness is closely related to the fact that the maximum 
conclusion uncertainty of the inference with the same premises and con- 
clusion a s = a  2 is e for uniform premise uncertainty bound e; in this case 
the additional identitydata lend no reinforcement in reducing the maximum 
uncertainty of the conclusion. 



448 E R N E S T  W. ADAMS A N D  H O W A R D  P. L E V I N E  

A variant on the above example leads to similar somewhat surprising 
results. Here we may take our ½n ( n -  1) items of data to be inequalities of 
the form a~<a~ for 1 <~i<j<<.n, where ' < '  is a strict ordering relation (in 
a language with an axiom to this effect), and the conclusion is al < a2 < 
< . . .  <a , .  This case is one in which each premise is either essential or 
irrelevant, the premises of form a~<a~+l being essential and the rest 
irrelevant. The maximum uncertainty of the conclusion is therefore equal 
to the sum of the uncertainty bounds on its relevant premises, hence in the 
uniform uncertainty bound case the conclusion uncertainty maximum is 
( n -  1) ~. Once again the maximum conclusion uncertainty is intuitively 
too high, and this is connected with the fact that none of the premises 
at < aj for j -  1 > 1 contributes to reducing the maximum conclusion un- 
certainty. We will comment briefly on these discrepancies between our 
formal results and intuitive expectations in Section 3. 

We conclude this section by noting some conclusion uncertainty pheno- 
mena in two inferences with inconsistent premise sets. The first is one 
already cited: to infer 'A<---~-B' from the three premises 'A', 'B', and 
' - ( A  &B)'. The two m.e.s, were {A, B} and { - ( A  &B)}, and the two 
minimal negatively sufficient premise sets were the singleton sets {A} and 
{B}. The dual constraints, which come from the minimal falsification 
matrix already given, are: 

wl"l + w2"1 + wa'0 + v I> 1 

wl"O + w2"O + w3" l + v >~ 1 

wl" l + w2"O + w3"O + v >~ 0 

wl"O + w2" l + w3"O + o >I O. 

The four extreme solutions are: 

<w 1, vl> = <<0, 0, 0>, 1> 

<w 2, v2> = <<1, O, 1>, O> 

<w s, va> = <<0, 1, 1>,0> 

<w ~, v4> = <<1, 1, 2>, - 1>. 

It follows that the c.u.m.f., which is defined for all e~ + zz + ez >/1, is: 

#(I; ~1, e2, z3) = min(1, el + e3, ez + ez, ~1 + ~z + 2e3 -- 1). 
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Among the things to note in the example are the following. The fourth 
characteristic function and weighting system have negative consistency 
index v~= - 1. This is a system in which all premises are essential O.e., all 
have positive weight), but the totality are inconsistent. The domain of 
applicability of this system is the set of premise bounds such that both 
82 + 83 and 82 + 83 do not exceed 1. This includes the uniform bound case 
in which 8 is between ¼ and ½. Note that the conclusion uncertainty bound 
in this case is 48-1 ,  and that this may be significantly less than that given 
by the two 'consistent' characteristic functions, both of whose values are 
28. The third premise ' - (A &B)' has applicable weight 2 in the inconsis- 
tent characteristic function, and this means that where that function 
applies, the maximum conclusion uncertainty is 'doubly dependent' on 
the uncertainty of the final premise. In one extreme case, that in which this 
premise is certain, it is possible for the two remaining premises to be 
highly uncertain while the conclusion is certain: if 81 = e2 = ½ while 8a = 0, 
then p ( I )=0 .  This again is strange, to say the least, and we shall comment 
on its significance in the following section. 

As a last example, consider the inference whose premises are n atomic 
formulas A1 . . . . .  A, and whose conclusion is 'more than a of the premises 
are true', where our language will now be assumed to contain a non- 
logical axiom equivalent to 'not more than b of the premises are true' for 
some b > a. If b is less than n the total premise set is inconsistent. This infer- 
ence is easily analyzed along the lines already indicated, and we will only 
state the results concerning the uniform uncertainty bound case. Here the 
domain of definition of/~ (I; 8) is the class of 8 >/1 - b / n  Of b = n all bounds 
are consistent), the premise weights are all equal to 1~(b-a), the consis- 
tency index is - ( n -  b ) / b -  a), and for all consistent 5, 

( b - n ( 1 - e ) ~  
p (I; 8) = min 1, b--  a- J" 

Observe that the consistency index, which depends on a, b, and n, can have 
fractional and arbitrarily large negative values. Finally, note a somewhat 
paradoxical result analogous to one encountered with the first inference 
from inconsistent premises. This is that as the 'amount of inconsistency' 
increases from 'no inconsistency' (b=n) to 'maximal inconsistency' 
(b=n(1-8) ) ,  the uncertainty bound p(I; 8) actually decreases from 
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ne/(n-a) to 0. Once again we have mathematical results in search of 
interpretation, and it is time to turn to questions of significance and other 
issues of methodology. 

3. L O G I C A L  SIGNIFICANCE OF UNCERTAINTY BOUNDS 

In this and the succeeding two sections we make some methodological 
observations more with the aim of explaining the significance of our formal 
results than to resolve any of the difficult issues involved. First we want 
to ask of what import it is to the logician to know that the maximum 
uncertainty which the conclusion of the inference scheme (q51, ..., q~,) I(~k) 
can have compatible with some given premise uncertainty bounds is 
equal to the value/~(I; e~ .... , e,). Let us take the following as plausible: 
the foregoing means that there are actual propositions, Pl .. . . .  p, and q of 
the forms of q51 ... .  , q~, and 0, respectively, (i.e., Pl .... , p, and q would be 
properly symbolized as q51 .... , ~b, and ~, repsectively), and some occasion 
on which it would be rational to estimate eachpl as having uncertainty no 
greater than e~ for i=  1, ..., n, while the uncertainty of q would be ratio- 
nally estimated as equal to/z(I;  el,.-., e,). Now consider a logician sitting 
in expert judgment when someone asks him concerning propositions 
p~,..., p', and q' which are also of the forms of q~l,..., ~b, and ~k, respec- 
tively: is it rational for me to conclude q' on the basis ofp~, ...,p',? The 
logician can answer that without further information he cannot tell how 
certain his interlocutor is of his premises, but given bounds el, ..., e, which 
are plausible for premises of the sorts involved, the conclusion's uncer- 
tainty cannot exceed #(I; el .... , ~,), and furthermore there are premises 
and conclusions of the same form in which the conclusion's uncertainty 
would actually equal the value /~(I; 81 .... , ~,). Thus, granted only the 
plausible assumption that the premise uncertainties do not exceed 
~1,.-., e,, all that can be assured concerning the conclusion's uncertainty 
in virtue of the inferenee's being of the from of (q51,..., ~bt) I(0) is that it 
cannot exceed #(I; ~1,..., ~,). Of course a deductive logician querried 
aboud the rationality of inferring q' from p], . . . ,  p~ may reply that deduc- 
tive logic is concerned only with possible truth values and that questions 
about degrees of certainty of conclusions are properly addressed to in- 
ductive logicians. Whether in fact we have entered the domain of induc- 
tive logic, or have at any rate blurred the distinction between deductive 
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and inductive logic in introducing probabilities and uncertainties, is a 
matter which will be returned to in Section 5. 

Now consider more closely the nature of the 'extreme' uncertainty 
functions, u, which maximize the conclusion uncertainty u(~k) subject to 
premise uncertainty bounds, u(q~)~<8~ for i=  1 ..... n, and what the signif- 
icance is of the facts that u(~k) is always at least ~ in the uniform premise 
uncertainty bound case, with consistent premises, while u(~k) can be 
smaller than e when the premises are inconsistent. Let us reconsider the 
inference (A, B, C) 1(.4 & B v A & C v B & C) already discussed in Section 2, 
but where we now allow the possibility of adding a non-logical axiom 
entailing the inconsistency of the premises. Possible truth and probability 
functions relevant to this inference are perspicuously represented in the 
following Venn diagram, where 'A', 'B', and 'C' are represented as circles 
(and their truth-conditional combinations are represented in obvious 
ways), and where probability functions can be represented as distributions 
of non-negative probabilities summing to 1 into the eight minimal sub- 
regions marked '1', .... '8' in the diagram: 

1 

C 

Note that the minimal subregions correspond to possible truth-functions, 
or 'possible truth-conditional states of affairs' while a distribution of 
probabilities into them corresponds to a 'possible probabilistic state of 
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affairs'. Region 6 is of importance since it is the one in which all premises 
are true, and if the premises are consistent then any probability from 0 to 1 
can be put into this region. Regions 2, 4, and 8 are important because 
these are the ones in which as many premises as possible are true while the 
conclusion is false. In a sense, these correspond to the minimal essential 
falsification functions for our inference. 

Now suppose that the premises are consistent and we want each of 
them to have a probability at least 1 - 8  (hence an uncertainty no greater 
than 8) while keeping the conclusion's probability as low as possible. One 
way of assuring probability at least 1 - 8 for all premises at once is to put 
1 -  8 probability into region 6, their region of intersection where all of 
them are true. If  the remaining probability 8 is now distributed into 
regions 1, 2, 4, and 8 in which the conclusion is false, then the conclusion 
will have a probability no greater than 1 -8 .  Hence we know that we can 
make all premises have probability at least 1 - 8  while the conclusion's 
probability is no greater than this value. The conclusion can be made 
still more improbable while retaining the preassigned premise probability 
bounds if all probabilities outside of the premise intersection are distrib- 
uted into regions 2, 4, and 8 where maximal numbers of premises are 
true while the conclusion is false. This in turn allows taking some probab- 
ility out of the premise intersection, and in fact it is easily seen that the 
way to get maximum conclusion uncertainty compatible with premise 
probabilities at least 1 - 8  is to put probabilities of ½8 into regions 2, 4, and 

3 8 and a probability of 1 - 78 into region 6. 
Of course the foregoing conclusion uncertainty maximization proce- 

dure won't  work if the premises are inconsistent, since in that case we can 
only put 0 probability into their region of intersection. Here instead of 
putting probability into region 6 we try to put sufficient probability into 
maximal consistent sets of premises, corresponding to regions 3, 5, and 7 
(whose falsity functions are the negative sufficient falsity functions for 
our inference). If  it is possible to get enough probability into 3, 5, and 7 to 
give each premise a probability of at least 1 - 8, then the remaining probab- 
ility is distributed into regions falsifying the conclusion, as before. But 
evidently it will not always be possible to get enough probability into 3, 5, 
and 7 to make each premise have probability at least 1 - 8  and still have 
enough left over to keep the conclusion's probability below 1 -  8 (and it 
may not be possible to get enough into 3, 5, and 7 to make the premises 
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have probability at least 1 - 8, no matter what the conclusion's probability 
is), and this will be the situation when/z(I; 5) is smaller than e. 

A very important thing to note about the 'extreme' probabilities and un- 
certainties maximizing u(~k) is that these are also ones involving extremes 
of non-independence. This is most evident in the consistent premise case 
in the present example, from the fact that the conditional probability of  
any premise given the falsity of any other premise is equal to zero in the 
extreme probabilistic state of affairs. This is not the state of affairs which 
we normally envisage when someone asserts that he accepts 'premises' of 
such and such forms - say of forms q51, ..., qS, - where we are apt to imagine 
instead that the premises represent items of independently acquired infor- 
mation and where the falsity of any one item would not necessarily call 
any other item into question. Perhaps it would even be somewhat mis- 
leading for a person to describe the sorts of highly interdependent 
systems of propositions which we need to consider in arriving at conclu- 
sion uncertainty maxima as 'premises'. Be that as it may, the fact that 
extreme probabilistic states of affairs involve extreme interdependence 
suggests that we might expect logically possible conclusion uncertainty 
bounds to differ greatly from the conclusion uncertainties which follow 
if 'normal' independence assumptions are made. This is not the place to 
enter in detail into the error probabilities which follow from independence 
assumptions (this being a standard aspect statistics), but a couple of re- 
marks are in order by way of comparing logically maximum conclusion 
uncertainties with those following under independence assumptions. 

The easiest uncertainty bound comparison can be made where the prem- 
ises of the inference are n independent propositions symbolizable by 
atomic formulas 'AI',..., 'A:  and the conclusion is equivalent to the 
assertion that more than a of the propositions are true. Abbreviating the 
conclusion as 'M(a, n)' (more than a out of the n premises are true) we 
have the inference I(M(a, n))=(A 1 .... , A,) I(M(a, n)), where we have 
already seen that the uniform conclusion uncertainty bound function is 
given by: 

/~ (I  (M (a, n)); s) -- a"  

n 

The inference just considered was the special case in which n = 3 and a = 1 
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where we have 

#( I (MO,  3)); 5) = -~. 

I f  5 = 0.1, for instance, the logically maximum conclusion uncertainty will 
be 0.15. However, when the premises are assumed to be statistically inde- 
pendent the probability of  any subset of them being false is equal to the 
product of their individual probabilities of falsity, which is here assumed 
to be e. Writing the independent uncertainty function which assigns 
probability e as the probability of falsity for each individual premise as 
u,, we have 

' 

j=O 

where (~) is the binomial coetticient n t]j t ( n - j )  ! Where n = 3 and a = 1 we 
have 

u~(M(1, 3)) = 53 + 352(1 - 5). 

I f  n=0.1, for instance, u~(M(1, 3)) must be 0.028 which is much smaller 
than the maximum logically possible conclusion uncertainty of 0.15. 
The difference between two values gives a measure of the degree to 
which the conclusion depends on unexpressed independence assumptions, 
which must be regarded as empirical in character since the same kinds 
of assumptions can be used to justify the obviously inductive inference of 
the conclusion M(a, n) from the single premise M ( a -  1, n) when a and n 
are large enough (this is the inference of 'more than a of the premises are 
true' from 'at least a of the premises are true'). 

A more striking result emerges when we reconsider the inference of the 
conclusion at=a2 . . . . .  a, from the n(n-1)[2  premises ai=aj  for 
1 <<. i<j<<, n, where we have seen that the uniform uncertainty bound is 
given by ½he. For instance, if n = 10 and ~ = 0.1 then the maximum conclu- 
sion uncertainty will be 0.5, which is much larger than intuition would 
lead us to expect in an inference of this kind. Independence assumptions 
are tricky to formulate in the present situation because of the manifest 
logical dependencies among the premises, but a plausible approach is to 
assume some a priori probability distribution over 'possible equational 
states of affairs' from which posterior probabilities and uncertainties are 
computed on the basis of somewhat uncertain 'data' which have the form 
of reports that some of the a{s are equal to others, and where it is assumed 
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that the probabilities of error in the reports are independent. Proceeding 
in this way, we might assume that all possible equational states of affairs 
among, say, the ten items al,..., axo were equally likely apriori (each such 
equational state of affairs would correspond to a partition of the ten 
items into mutually exclusive subsets), and that the probability of any 
individual report's being correct was some value, say n. Under this 
assumption, even if 0 were only as large as ~, the posterior uncertainty of 
the conclusion al=a2 . . . . .  alo from the given 'dubious data' could be 
no larger than 0.02. This shows that our intuition about the correctness 
of this conclusion is justified if independence assumptions of an essen- 
tially empirical character are justified. This is clearly an inference which 
it is appropriate to call 'deceptively deductive'. 

4. THE POSSIBLE S IGNIFICANCE OF PROBABILITY CHANGE 

In our formal analysis of conclusion uncertainty maxima we have treated 
probabilities and uncertainties as though they were like static truth- 
values, and have disregarded the fact that, unlike truth-values, they are 
subject to change with circumstances, and in particular when new infor- 
mation is acquired. On the other hand some of our informal remarks have 
suggested the relevance of probability change to the analysis of conclusion 
uncertainties, and in this section we want to discuss briefly some of the 
ways in which systematic consideration of probability change might be 
expected to affect our picture of inferential probabilities. Let us here leave 
entirely aside the effect on probabilities of deductive discoveries, which is 
a largely unexplored subject (except, see Hintikka (1970)), and concen- 
trate on probability change consequent on empirical discoveries. 

The usually assumed law of probability change consequent on the 
acquisition of a new item ¢ of a posteriori certain information is that the 
new probability of any other factual proposition ~ is equal to what was 
previously the conditional probability of  ~ given ~. Assuming the 'condi- 
tionalization' law of probability change, it would follow that systematic 
analysis of conclusion uncertainty bounds in a 'changing probabilities' 
framework cannot restrict itself to factual propositions alone, as we have 
done here, but must bring conditionals explicitly into the picture. In other 
words, the key to the analysis of factual (non-conditional) inference un- 
certainties within a changing probability picture is the analysis of condi- 
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tional inference uncertainties in a static probability framework - which 
is just what we have earlier noted as an essential limitation on our present 
investigation. 

There are two matters of particular importance upon which probability 
change considerations can be expected to throw light. One has to do with 
the weights of premises of deductive inferences described in Section 2, 
where the weight of a premise gives an index of the degree to which the 
maximum uncertainty of the conclusion of the inference depends on the 
uncertainty of that premise. Recall that irrelevant premises always have 
weight 0, which means that the conclusion does not depend on those 
premises' probabilities, essential premises have weight 1, which means 
that these premises' uncertainties always contribute their total values to 
the maximum conclusion uncertainty (unless this is already equal to 1), 
while redundant but not irrelevant premises may have intermediate 
weights. What this suggests is that where reasoners are primarily concerned 
with ultimate conclusions, they should take greatest pains to assure the 
certainty of premises with the largest weights. However, 'assuring the 
certainty' of the premise is most plausible looked upon as an operation 
which increases the probability of that premise, and this is a matter of 
probability change. In particular, we must worry about the possibility that 
assuring one premise's probability may have side effects on the probabili- 
ties of other premises, so that conclusion uncertainty maxima will not 
only be directly affected by a change in the first premise's probability, but 
will be indirectly affected by the other premise probability changes. But 
the only case in which the first premise's probability change will not 
affect the probabilities of other premises is that in which the other prem- 
ises are statistically independent of the first premise, and statistical 
independence is excluded in extreme probabilistic states of affairs. What 
this suggests is that while some sort of weight is probably a useful concept 
in terms of which to describe the contribution of a premise's uncertainty 
to that of the conclusion of an inference, the static weights we have consid- 
ered in this paper tell only a part of the story, which becomes considera- 
bly more complicated when probability changes are taken account of. 

Finally, we may expect probability change considerations to be expe- 
cially significant so far as concerns conflict or inconsistency phenomena. 
This is not to say that simultaneous acceptance of inconsistent proposi- 
tions is not possible or unimportant (recall the 'preface paradox'), but one 
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of the authors has argued elsewhere (Adams (1975)) that the more com- 
mon type of real life propositional conflict involves one proposition being 
accepted at one time and then countervailing evidence coming to hand 
which forces its retraction. Thus, the more common real life situation in 
which someone is represented as accepting all of A 1 . . . .  , A ,  and - (A 1 &.. .  

• .. &An) will be one in which certain of these propositions are accepted at 
one time and others at other times. Again, when we ask what uncertain- 
ties are compatible with accepting all of these premises, we will need to 
take explicit account of the times of their acceptance which is something 
which fails outside of our static analysis. 

5. P R O B A B I L I T Y ,  D E D U C T I O N ,  AND R A T I O N A L  INFERENCE 

We want to do two things in this section: (1) to argue that the sorts of 
probability-uncertainty considerations we are concerned with here 
properly belong to the province of deductive logic, and (2) to disclaim the 
suggestion that the probabilities we have been dealing with give us certain 
deeper insights into the nature of rationality which some have hoped to 
gain via probabilistic analysis. Concerning the first claim, it could suffice 
to note that all of our probabilistic results have to do with the 'space' of 
logieally possible probability functions which can be defined so as to apply 
to premises and conclusions of inferences, and this space is in turn com- 
pletely defined by the possible combinations of truth-values which these 
propositions can have. Possible probabilistic states of affairs are uniquely 
determined by possible truth-conditional states of affairs, and possible 
truth-conditional states o f  affairs are the subject matter of deductive logic. 
It might be argued that while possible probabilistic states of affairs are 
indeed deductively determined, we have nevertheless gone beyond the 
bounds of deductive logic in implicitly suggesting the appropriateness of a 
non-truth-conditional 'criterion' of rationality for inferences : namely that 
in some sense the fact that the premises of an inference are all probable 

should guarantee that the conclusion is also probable. This implicit crite- 
rion is sufficiently vaguely formulated to allow of possibly non-deductive 
interpretations, but we would suggest that as we have interpreted it here 
it still fails naturally into the 'deductive' side of the deductive-inductive 

partition. In particular, the sense we attach to 'guarantee' in the criterion 
is logical - it should not be logically possible for premises to be probable 
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while conclusions are improbable. Furthermore, when so interpreted (and 
made suitably precise in other ways), our criterion becomes if anything 
stricter than the standard requirement that it should not be possible for 
premises to be true while conclusions are false. In short, while we use the 
probabilisitic concepts which some have come to regard as the hallmark 
of inductive inference, we do riot regard this use as supporting (or coun- 
tering) claims such as that the deduction-induction distinction is unten- 
able. 

The foregoing probably makes it clear that our use of probabilities does 
not throw much light on certain deep issues relating to rationality and 
rational inference which one might hope to deal with in probabilistic 
terms, but some further remarks on this are in order. One might wish to 
focus an investigation of rationality in an analysis of the reason relation: 

R(S;  t;p~ .... , p , ;  q) = person S's knowledge or belief in prop- 
ositions p~, . . . ,p ,  at time t gives him 
good reason for believing q. 

It should be immediately obvious that our 'criterion' that the high probab- 
ility of Pl , . . . ,P ,  should guarantee the high probability of q can be 
neither a necessary nor a sufficient condition for R(S;  t; Pl ..., P,; q) to 
hold for arbitrary S and t. Non-necessity follows from the fact that 
pl .... ,p ,  can only 'probabilistically entaiF q according to our criterion if 
these premises logically imply q, and we should at least intuitively wish 
R(S;  t; p l , . . . ,  p,; q) to hold sometimes when pl .... ,p ,  only furnish 
something like good inductive grounds for believing q. This is connected 
with the fact that R(S;  t; p~,..., p,; q) should in some way depend on the 
person S who is making the inference, and the time (occasion) t when he 
makes it. This dependence is reflected in the fact that whether p~, ..., p,  
furnish S with good reason for believing q on an occasion will depend not 
just onp~ .... ,p ,  and q, but on what eh'e S knows at time t. A falling barom- 
eter gives me, who knows something about the meteorological signifi- 
cance of barometric indications, good reason for thinking a change in the 
weather is coming, but it would not give a person ignorant of the meteoro- 
logical facts grounds for such an inference. In restricting ourselves to 
purely 'logical' truth-conditional or probabilistic relations, we simulta- 
neously exclude inductive reasons and reasons which depend on the 
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'reasoner 's situation' f rom consideration (perhaps these come to the same 
thing)." 

That  the fact that Pl ... .  , p ,  'probabilistically entail' q is not a sufficient 
condition for R (S; t;pl,..., p,; q) to hold follows from the fact that it is 
possible for p l . . . ,  p ,  to entail q ' remotely'  in such a way that a reasoner 

accepting pl  . . . . .  p ,  would not 'see' that q followed, and in this case we 
would not want to say that that person was justified in believing q (per- 
haps he could have good reasons but not be justified in believing q be- 

cause he would not know that his reasons were good). Of  course this is 

simply to reiterate the well known observation that logical entailment is 
not a sufficient condition for rational inference if the reasoner is not able 

to 'see the connection' between his premises and his conclusion. It  is 
interesting to note in this connection, though, that whereas it is possible 
to spell out at least in outline what 'seeing the connection' is in the case of  

truth-conditional soundness - namely finding and being able to reproduce 
an acceptable derivation of the conclusion from the premises - we as yet 
lack any derivational complement to our probabilistic requirement that 
the high probability of  premises should assure that of the conclusion. 

What  this suggests is the desirability of both descriptive and normative 
studies of  practically applicable procedures which reasoners do and/or 

can apply in order to assure that they are not led f rom highly probable 
premises to 'insufficiently probable '  conclusions. This is unfinished logical 

business, however, and it leads to our final observation on the significance 
of the positive findings of the previous sections. The contribution of our 
present studies to ongoing research into inference processes and their 
rationality is probably this: we now know at least roughly how much 
'objective uncertainty' is passed on to conclusions because of uncertain- 
ties in the premises, and what we need to find out is how persons do and/or 
can follow reasoningproeedures which will always assure them 'sufficient 
certainty' in the conclusions they arrive at. 

University of California, Berkeley 

NOTES 

1 See Harman (1967) and Kyburg (1967) for discussions of the Lottery Paradox and its 
implications. 
2 Adams (1965) and Suppes (•966) give proofs of this theorem, which is apparently 
well known to probability theorists. 
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3 Probabilistic aspects of the logic of conditionals are discussed in Adams (1975). 
4 A sufficient condition for it to be the case that all of the characteristic functions of an 
inference which is already in 'normal form' (premises atomic formulas and conclusions 
in minimal essential or sufficient form) should be either total uncertainty or unitary 
functions is that the conclusion be equivalent to a formula built from atomic formulas 
by just conjunction and disjunction, and where each atomic formula occurs at most 
once. This condition is not necessary for 'unitary representability', but it is an interest- 
ing unsolved problem to give necessary and sufficient conditions for this. 
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