
J O S E P H  D.  S N E E D  

E N T R O P Y ,  I N F O R M A T I O N ,  A N D  D E C I S I O N *  

It is acceptable common usage to speak of some sentences or propositions 
as being more informative than others, or perhaps as conveying more 
information. We speak of  a sentence or proposition as being more infor- 
mative to one person than to another, and of its being more informative 
to a person today than it was yesterday. It is also not unusual to speak 
of the information conveyed by a sentence or proposition (perhaps to a 
person) as well as the information it conveys (to a person) about a certain 
subject matter. In all these usages of the words 'informativeness' and 
' information' denote a property of  sentences or propositions. Whether 
or not they denote the same property in all such usages may not be clear, 
but it is nevertheless clear that there is a well-established and intuitively 
acceptable usage of  'informativeness' to denote some property or proper- 
ties of sentences or propositions. Whether one speaks of sentences or 
propositions here is not crucial to the discussion, and subsequently I will 
speak only of propositions. 

It is reasonably clear that statistical communication theory (or infor- 
mation theory) is not directly concerned with any concept of information 
involved in these usages. In most authoritative expositions of statistical 
communication theory some care is taken to explain that the engineering 
problems of  efficient communication are treated independently of the 
informativeness, in any sense involved in the usage exemplified above, 
of  the messages transmitted [12]. Despite these disclaimers, it appears 
that the distinction between the concept of information employed in 
statistical communication theory and the concept of  information as a 
property of propositions is not always strictly observed and some have 
seen a need to reiterate and elucidate this distinction [2]. I shall not review 
this work here but only point out that I am concerned with one aspect 
of informativeness - a property of  propositions. 

In considering the informativeness of propositions it is customary to 
distinguish two kinds of  informativeness - semantic and pragmatic [3]. 
A semantic property of  a proposition is, roughly speaking, one which a 
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proposition possesses in virtue of what must be the case for it to be true 
- its truth conditions. Thus one should expect to be able to determine 
whether a proposition is semantically informative, or semantically more 
informative than another, by examining only the truth conditions of the 
propositions. In particular, one should not have to consider whether 
anyone knows or believes the proposition to be true, or whether believing 
or knowing that it is true might be useful to anyone. In contrast, a pro- 
perty is pragmatic if a proposition has it in virtue of certain properties 
possessed by people who have certain attitudes, such as belief and desire, 
toward the proposition. An example is a property which a proposition 
has in virtue of the usefulness to some individual of knowing or believing 
that the proposition is true. Thus, in determining whether a proposition 
is pragmatically informative one should expect to consider more than just 
the truth conditions of the proposition (though these might be relevant 
too). Things like the beliefs, desires, and capabilities of people - their 
attitudes toward other propositions - as well as their attitudes toward the 
proposition in question might be relevant. 

There is a significant body of literature, beginning with the work of 
Carnap and Bar-Hillel, which undertakes to distinguish and explicate 
various senses of semantic information and/or semantic informativeness 
[3, 4, 6]. In this work a mathematical formalism very similar to the 
formalism employed in statistical communication theory plays a leading 
role. Even though the concept of information being explicated is ex- 
plicitly recognized as being distinct from the communication engineer's 
concept, one is tempted by the similarity of formalism to say that the 
same concepts are applicable in explicating both concepts of information. 
In particular, one might be tempted to say that the concept of entropy 
is crucial in understanding both concepts of information. 

So far as I know, there has been no systematic effort directed toward 
developing a comprehensive theory of pragmatic informativeness. How- 
ever, much of the work done by statisticians concerned with the design 
of experiments can be viewed as attempting to provide a partial account 
of the notion of pragmatic informativeness. They are concerned with ex- 
pounding principles for ranking various questions one might ask in ac- 
cordance with their pragmatic informativeness [11 ]. In this effort attempts 
have also been made to apply the mathematical formalism of statistical 
communication theory, most notably by Lindley [9]. Recently Adams 
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has undertaken to provide what one might view as an account of the 
pragmatic informativeness of scales of measurement, employing the con- 
cepts of statistical communication theory [1]. 

In this paper an outline of a theory of pragmatic informativeness within 
the framework of Bayesian decision theory will be suggested. The rele- 
vance of the concepts of statistical communication theory to this theory 
will be investigated. In particular, it will be shown that, in certain well- 
defined circumstances, these concepts are undoubtedly useful, but that 
attempts to apply such concepts outside these circumstances are not, in 
any obvious way, fruitful. The work of Lindley and Adams will be ex- 
amined in the light of these results. 

In explicating the concept of pragmatic informativeness, I propose to 
focus on one feature of this concept. Roughly speaking, the feature is this. 
The more informative a proposition is to an individual, the more he ought 
to be willing to pay to find out whether the proposition is true. A paradigm 
case of  informativeness in this sense might be a situation in which a 
government is paying a free-lance spy on the basis of the informativeness 
of the facts he transmits. 

We can get a firmer hold on this sense of 'informativeness' by con- 
sidering how one might fit it into a theory of subjective probability and 
utility. The theory I have in mind is the one recently proposed by Jeffrey 
[7]. 1 In this theory two related measures, P (probability) and D (desir- 
ability or utility), are defined on B, a Boolean algebra of propositions. 
One might ask whether it is possible to define a third measure I (infor- 
mativeness) on this Boolean algebra, related to both P and D, such that 
I(x) is intuitively identified as the value to the agent of discovering whether 
or not x is true. 

One of the first difficulties that occurs to one considering this question 
is this. Roughly speaking, how much it is worth to the agent to discover 
the truth value of x will depend on what courses of action the agent 
believes are open to him. The amount a government is willing to pay for 
the spy's facts will depend on what its various policy alternatives are. 
The amount a man is willing to pay for knowing whether or not a used 
car needs a valve job depends on whether or not the option of buying the 
car is one that he believes open to him. 

This suggests that it might be appropriate to consider a concept of 
'informativeness relative to a given decision problem'. The decision 
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problem would be characterized by a set of propositions believed by the 
agent to be mutually exclusive and jointly exhaustive and also believed 
by him to be propositions he can make true at will. If  we did this, then 
the informativeness measure on the agent's propositions would not be 
unique for the agent. But if we like we can remove this part of the re- 
lativeness by considering informativeness relative to the most compre- 
hensive decision problem the agent can face at a given time. This is the 
problem in which the alternatives are the longest conjunctions of  pro- 
positions, each one of which is an alternative in some decision problem. 
If  we did this the informativeness measure would still depend on which 
propositions the agent believed he could make true as well as on other 
facts about his P and D measures. 

One also encounters a difficulty in deciding exactly what entities are to 
serve as the domain of  the informativeness measure. At first glance, the 
set of  elements B of  the Boolean algebra of propositions seems to be the 
obvious choice. But it seems clear that finding out the truth value of x 
should be worth exactly as much as finding out the truth value of  $. This 
suggests that the appropriate domain for the informativeness measure 
might be the s e t  of sets of mutually exclusive and jointly exhaustive 
propositions. However, somewhat more generality and intuitive plausi- 
bility can be obtained by taking the domain to be the s e t  of all sets of 
propositions 

C = ( c l ,  c2 . . . . .  c . )  

that the agent believes to be mutually exclusive and jointly exhaustive in 
the sense that 

P ( c  I v ca v . . .  v c,)  = 1 

P ( c i A c j ) = O  i f i # j .  

Let Z be the set of all sets of propositions that the agent believes to be 
mutually exclusive and jointly exhaustive. The informativeness measure 
on Z would be a measure of how much it is worth to the agent to discover 
which one of the propositions in the set is true, in the context of a given 
decision problem. 

With this intuitive understanding of  the sense of  'informativeness' we 
are considering, our task is one of defining, in terms of the agent's P and 
D functions, the informativeness value, relative to a given decision 
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problem, of a set of propositions that the agent believes to be mutually 
exclusive and jointly exhaustive. 

The most natural way to do this appears to be to relate the informative- 
ness value of  the set of propositions 

C = ( c ,  c2,. . . ,  Cm) 

to the value of the strategies the agent has available to him if he knows 
he is going to be told which member of  C is true. More precisely, we 
might say that the informativeness value of C, relative to the decision 
problem characterized by the set of courses of action 

A = (al ,  a2, ..., a~) 

is the expected value of  an experiment designed to discover which member 
of  C is true. 

I f  we let S A be the set of  strategies that could be based on C, the 
typical member of  S~ will look like: 

m 

(1) S{JA = A AjJCt; j i ~ N  = (1, 2 . . . . .  n) 
i=1  

where 'x/y' means 'y causes x" (For  a discussion of the role of the causal 
operation '/ '  in expressing strategies see [13].) Then clearly the informa- 
tiveness value, relative to A, of  being told which member of C is true is 

(2) I (C, A) = m a x D ( S  tj'~) - maxO(ai) .  
{it} a l e  A 

In most cases of  interest 

O (S {j'}) = ~ D (a j, A ci) P (ci) , 
i = l  

(3) 

and 

(4) max D (S {j'~) = ~, max D (a j, ^ q) P (ci). 
S{Ji}eS i=1  j i e N  

The informativeness of C relative to the decision problem A is then just 
the difference between the desirability of  the most desirable strategy based 
on C and the desirability of the most desirable 'pure'  course of action 
in A. The essentials of  this account of the value of an experiment are due 
to Savage [11]. 

396 



ENTROPY, INFORMATION, AND DECISION 

It is not apparent how the concepts of statistical communication theory 
are relevant to the sense of informativeness explicated by (2). Indeed, so 
long as we confine our attention to the most general characterization of 
a decision problem, it is not apparent that they are relevant in ally way 
whatsoever in the general case. There simply seems to be no way these 
concepts could play a role in evaluating (2). I am not prepared to offer 
any argument for this claim beyond reporting an unsuccessful effort to 
find an application for these concepts. However, if we consider a special 
type of decision problem then we find that these concepts can play a 
significant role in evaluating the informativeness of C, relative to a de- 
cision problem of this type. 

To characterize this special class of decision problems consider a set 
of propositions, 

X o = { X , , X 2  . . . . .  

which the agent believes to be mutually exclusive and jointly exhaustive. 
Suppose that the agent is interested in discovering which member of X 
is true and that he has the following means at his disposal. He may 
partition Xo into n ~< N disjoint, non-void subsets 

of his own choosing and pay a fee r to be told reliably which member of 
the partition contains the true member of X. Say he is told X]. If 

N (x?)  >i n 

he may then partition X~ into n disjoint, non-void sub-sets 

x,L ..... x?. 

and pay r to be reliably told which member of this partition contains the 
true member of X. If 

1 < N(x~)  < n 

he may pay r to be told which member of X] is true. If N(X~)= 1 the 
agent has obviously achieved his aim and stops the procedure. 

There are, for a given n and N, a finite number v different questioning 
procedures of this sort that the agent could employ in attempting to 
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discover which member of X is true. Call these 'n-ary questioning proce- 
dures f o r  X at constant rate r ' .  

Let 

Qx = (ql ,  q2 . . . . .  qv) 

be a set of mutually exclusive and jointly exhaustive propositions de- 
scribing the employment of these different n-ary questioning procedures 
to discover which member of Xo is true. Suppose now that the decision 
problem faced by the agent is one in which the set of courses of action 
he believes open to him is Qx. The agent is thus concerned with com- 
puting 

D (qi) = the expected value of discovering which member of X is 
true using the n-ary questioning procedure q~. 

= K -  C(q,).  

where K= the value of finding which member of X is true 

C(qi) = the expected cost of the n-ary questioning procedure de- 
scribed by ql. 

Let us now consider the informativeness value of the set of propositions 
C, relative to the decision problem characterized by Qx. It is in con- 
sidering informativeness, relative to this special sort of decision problem, 
that the concepts of statistical communication theory seem to naturally 
apply. To see this we shall need to express these concepts in a notation 
amenable to the formulation of decision theory we are using. 

Let B be the set of all propositions in the agent's propositional algebra 
and Z the set of all sets of propositions the agent believes to be mutually 
exclusive and jointly exhaustive. Define the operation ® on X in the fol- 
lowing way: 

(D-l) If 

A = (a 1, a 2 .... , a,) 

B = (bl ,  b2, ..., bm) 

are included in Z, then 

n m A ® B = (a i ^ bj)i=lj=l.  
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It is easy to show that A ® B~X. One may also define a natural equiva- 
lence relation ' ~ '  on X such that 

A ® B ~ B ® A  

(A ® B ) ®  C,-~ A ® ( B ®  C) 

A ® A  ,,~A. 

Define the functions/4, from X into the real numbers by: 

(D-2) For all X =  {xl, x2 .... , x,} zZ 

~t 

(5) H,, (X) = - ~ P (x,) lg. P (x,) 
i = 1  

and the functions/4, from X x B into the real numbers by: 

(D-3) For all X={xl,  x2 ..... xN}e X and y~B 

(6) /4, (X, y) = - ~ P (x,, y) lg. P (x~, y). 
i = 1  

We shall call H,(X) the n-ary entropy of X and H,(X,y), the n-ary 
entropy of X, given y [8]. 

The following results are relevant to the subsequent discussion. All 
follow straightforwardly from the preceding definitions [8]. 

(T-l) For all A = {aa, a 2  . . . . .  aN}~Z 
B={bl, b2 ..... bM}~Z 

i u 

(7) Ho(A @ B) = H.(A) + ~ P(a,) H.(B, a,), 
i = 1  

and in the case that A and B are mutually independent, i.e., 

P(a, ^ bj) = P(ai) P(bj) 

for all ai~A and bfiB, then 

(8) 

Also 

(9) 

(10) 

H~ (A ® B) = H~ (A) + H, (B). 

P(ai) H,(B, al) ~< H,(B), 
i = 1  

H n (A ® B) ~< H n (A) + H, (B), 
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and 

(11,) H.(A, a~) = O. 

The entropy functions we have defined may be related to the decision 
problem we are considering by way of the following results from statisti- 
cal communication theory. 

(T-2) If  

X ={x  1,x z ..... xN}eX and 

Qx={q l ,  q2 .... , qd  

is a set of propositions describing the n-ary question procedures at con- 
stant rate r for X, then 

(i) For  all q~eQx 

(12) rH.(X) <~ C(ql) 

(ii) There exists a qjeQx such that 

(13) C(qj) < r(H.(X) + 1). 

This theorem can be regarded as setting bounds on the minimal ex- 
pected cost of discovering which member of X is true using the n-ary 
questioning procedures described by members of Qx, i.e. 

(14) rHn(X ) <<. min C(qi) < r(H.(X) + 1). 
q i ~ Q x  

We shall also want to consider the expected cost of qi, given that y is 
true, i.e. the expected cost of qi A y. A theorem analogous to T-2 yields 
the following result: 

(15) rH~(X, y) <<. rain C(qi ^ y) < r(H,(X, y) + 1). 
q~ e Qx  

These results are essentially consequences of the so-called "noiseless 
coding theorem" [10]. This can be seen if one recognizes that there is a 
one-one correspondence between what I have called "an  n-ary question- 
ing procedure at constant rate r for the set of propositions X",  and what 
communication theorists call "a  separable n-ary code for the message 
ensemble X".  This correspondence is employed by Cox [5] in a similar 
context. The quantity C(q~)/r is to be identified with the average length 
of the encoded message. 
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Consider now the informativeness value, relative to Qx, of being told 
which member of C is true. 

An elementary calculation shows that (2), the definition of D(q~), and 
(15) lead to 

N 

(16) r(Hn(X) -- E P(C,) H(X,  C,) - 1) < I(C, Qx) 
i=1  
N 

<. r(H.(X) - E P(Ci) Hn(X, Ci) -}- 1). 
i = l  

We can thus put upper and lower bounds on I(C, Qx) which are ex- 
pressed as values of entropy functions. What is the intuitive significance 
of this fact? 

Consider first the special case in which 

(17) min C(q,) = rHn(X) 
q ~ Q x  

min C (qi~ A Ci) = rH. (X, c~). 
qjl ~ Q x  

Note that these equalities will always hold approximately for large 
values of H.(X) and//.(AT, Ci) and may hold in other cases also. In this 
special case the minimum expected cost of discovering which member of 
Xis true by an n-ary questioning procedure at rate r is exactly r times the 
n-ary entropy of X. In this case 

N 

(18) I(C, Qx) = r(H,(X) - ~, P(c,) H.(X, ci)). 
i = l  

Note that in this special case 

I (C, Qx) >1 0 

with equality holding if and only if C and X are mutually independent. 
This is because 

N 

P (Ci) H n (X, ci) <~ H, (X). 
i = l  

Also note, that as a consequence of (11), 

I (X, Qx) = rH. (X). 

We can look at this result intuitively in the following way. The best 
questioning procedure is the one with the lowest expected cost. Clearly 
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which questioning procedure this is will depend on the agent's probability 
distribution on X. The value of the agent's entropy function for X can 
be used to bracket this minimum expected cost. In this special case we 
assume the minimum expected cost actually achieves its lower bound. 
When the agent discovers which member of C is true his probability 
distribution on X will change (unless C and X are mutually independent). 
In general this will cause a change in the expected costs of the various 
questioning procedures and perhaps a different one will have the smallest 
expected cost. For each ci~C, the minimum expected cost after c~ has 
been discovered to be true will be, in our special case, equal to rH n (X, ci). 
Of course it might be that the agent's probability distribution on X 
changes in such a way that the minimum expected cost of discovering 
which member of X is true is actually greater after he discovers which 
member of C is true than it was before. In our special case, this will 
happen if the agent finds out that c~ is true and 

H n (X) < Hn (X, c~). 

But if we consider the agent's expected value of the minimum expected 
cost of discovering which member of X is true after discovering which 
member of C is true, in our special case 

N 

P (c,) H~ (X, c,), 
i = l  

we find that it will never be greater than the minimum expected cost 
before finding out which member of C is true. This is to say, it is never 
rational for the agent to pay someone not to tell him which member of 
C is true. 

It is clear now that the informativeness value of finding out which 
member of C is true, relative to the decision problem of choosing the 
best n-ary questioning procedure at rate r for discovering which member 
of X is true simply the difference between the minimum expected cost of 
such a question procedure before discovering which member of C is true 
and the expected value of this minimum expected cost after discovering 
which member of C is true. In our special case where the minimal ex- 
pected costs are equal to the entropy we get expression (18) for the 
informativeness value. We can thus say that the informativeness value 
of C, relative to Qx, is proportional to the expected value of the change 
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in the agent's entropy of X when he discovers which member of C is true. 
Roughly, more informative C's are those expected to produce a greater 
change in the agent's entropy. If one is faced with the decision problem 
Qx and has a choice of several 'experiments' - several C's~z which one 
might choose to learn which member of C is true - it is dear, at least in 
this special case, that one will want to choose the experiment which is 
expected to produce the greatest change in the entropy of X. 

In the general case where we do not have the equalities (17), (i.e. where 
the minimum expected costs do not actually achieve their lower bound) 
we can not identify the informativeness value of C, relative to Qx, with 
the agent's expected change in his entropy of X when he finds out which 
member of C is true. But it is still the case that the expected change in 
the entropy of X is what determines the bounds on the informativeness 
value. I(C, Qx) is confined to an interval of width 2r around the quantity 

N 

(H.(x)  - Z P (c,) 
i=1 

It is still the case here that, when given a choice, one should choose the 
experiment which is expected to produce the greatest change in the en- 
tropy of X, provided you are faced with the decision problem Qx. 

In view of these results one might be led to say that the n-ary entropy 
of X for the agent, Hn(X), is a measure of the agent's uncertainty about 
which member of X is true, and likewise that -Hn(X) is a measure of 
the agent's information about which member of X is true. This is a per- 
fectly legitimate intuitive way of describing the role of the entropy 
function in the preceding discussion. Its appeal is enhanced by the fact 
that it appears to correspond to the usage of H2(X) in the theory of 
semantic information. In this theory, -H2(X) is identified as the ex- 
pected value of the amount of semantic information conveyed by the  
members of X, and the quantity 

N 

(19) - [H2(X) - E P(c,) H2(X, col 
i = l  

is identified as the expected value of the change in this expected value 
due to discovering which member of C is true [4]. It is important to keep 
in mind that the probabilities appearing in (19) are so-called 'logical 
probabilities', so that some argument at least is needed to show that there 
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is any more than a coincidental similarity of formalism linking semantic 
information theory and our expression (16) where the probabilities are 
subjective probabilities. 

Despite its intuitive appeal and analogy with the theory of semantic 
information, it appears that this way of describing the role of H, (X) in 
a theory of pragmatic informativeness can lead to misunderstandings of 
the following sort. One might be led to suggest that we pursue analogy 
with the theory of semantic information and identify the informativeness 
of finding out which member of C is true, for someone who is in some 
way 'interested' in which member of X is true, as the amount by which 
finding out which member of C is true can be expected to reduce his 
uncertainty about which member of X is true, i.e. 

N 

(20) J (X, C) = H, (X) - ~ P (c 3 H, (X, cl). 
imJ. 

Thus, if one had to choose between various 'experiments', i.e., various 
C's, one would choose the one which maximized J (X,  C), regardless of 
the specific nature of his interest in X. 

Our discussion has shown that if the agent's interest in X is a very 
special one - finding which member of Xis true using an n-ary questioning 
procedure at constant rate - then indeed he should choose the C which 
maximizes J (X,  C). But it does not support the further conclusion that, 
whatever his interest in X is, he should choose C to maximize J (X,  C). 
Counter-examples are easily given. Consider 

X = (x 1, x2, ..., xs) 

C = (c,, e2) 

C' = (cL cD 

P(x3 = 0.2 for all i 

P(a, b) 
a\b { c:t { c2 { c; c'z 
xl { 0.4 ] 0.3 I 0.5 0.2 
x2 I 0.3 I 0.4 I 0.2 0.5 
x 3 ] 0.1 I 0.1 I 0.1 0.1 
x ,  1o.1{o.11o.I o.1 
x~ I O . l r O . l l O . 1  o.1 
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Suppose the agent's interest in X is that he is to pick one member of X 
and receive 100 dollars if the member he picks is true and nothing other- 
wise. Clearly he will pick an Xi, which has a maximum probability, and 
his expected return will be P(x~) x 100 dollars. It is also clear that C' is a 
more valuable experiment than C since, whatever its outcome, the agent's 
maximum probability for a member of X, conditional on that outcome, 
is 0.5 while for C it is only 0.4. However, C provides a greater value for 
J ( X ,  C) than C', 

o¢(X, C) = 0.29 

J ( x ,  c ' )  = 0.25. 

With the interest that the agent has in X in this situation it is clear that 
he should choose C' over C although C maximizes J ( X ,  C). 

In the light of this sketch of a theory of pragmatic informativeness and 
the role of the entropy function it is interesting to consider briefly some 
other efforts aimed at applying the entropy concept to questions of prag- 
matic informativeness. 

It has been suggested by Lindley [9] that - / / 2  (X) is a measure of the 
agent's information about the state of nature with respect to X, quite 
apart from considerations of the relevance of this information to any 
specific decision problem facing the agent. If the purpose of the agent's 
investing in experiments is to increase his store of this sort of pure dis- 
interested information about X, and - H 2  (X) is a measure of this infor- 
mation, then deafly one should, when faced with a choice of experiments 
choose one which maximizes J(X, C). Adams [1] seems to be applying 
this suggestion to a special case when he identifies the informativeness of 
scales of measurement (his example is the Mohs hardness scale) aso¢ (X, C) 
where C is a set of propositions describing the possible results of a meas- 
urement on this scale (in his example of the possible results of scratch 
tests) and X is a set of propositions describing the possible results of 
some experiment (an experiment to determine the scratch behavior of two 
minerals). 

It seems reasonably clear that these authors are proposing or appealing 
to something like a theory of pragmatic informativeness. They expound 
criteria for choosing more or less informative questions when the purpose 
in asking questions is to increase the store of disinterested information 
about something. Our discussion has shown that their criteria cannot be 
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generally applicable. There are interests - aside from accumulating dis- 
interested information - which are not best served by choosing questions 
in the way they suggest. This does not, of  course, show that their sug- 
gestions are not  of  value in situations where one is concerned with ob- 
taining more pure, disinterested information. 

One might, however, raise a question about the status of  the notion of 
pure, disinterested information. It is not readily obvious that anyone can 
be correctly described as being concerned with doing experiments which 
increase his store of  this sort of information. One conceivable answer to 
this query might be to identify pure, disinterested information as semantic 
information. I f  one accepts the available accounts of semantic information 
and assumes that the applicability of  their results extends beyond the 
simple languages for which they have been developed, then chosing ex- 
periments to maximize J ( X ,  C) will maximize the expected increase in 
the expected value of the amount of  semantic information conveyed by 
the members of  X. Of course, it still remains to be demonstrated that 
anyone can be correctly described as being concerned with increasing his 
store of semantic information. 

Another conceivable answer to this query is to explicate the concept 
of pure disinterested information about X in terms of the expected cost 
of  discovering which member of X is true by an n-ary questioning proce- 
dure at constant rate. It does not seem implausible to identify the agent's 
quantity &disinterested information about Xwith minus one times theleast 
he should expect to pay to find out which number of X is true by some 
n-ary questioning procedure. He has less information the more he expects 
to pay, and it is disinterested in the sense that whatever value he attaches 
to finding out which member of X is true is not relevant to the analysis. 

I f  we explicate the concept of  pure, disinterested information in this 
way then our previous discussion provides a justification for taking 

- H, (X) as a measure this sense of  information which is independent of 
any theory of  semantic information. 
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