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ABSTRACT. In this paper, we offer a Piagetian perspective on the construction of the 
logico-mathematical schemas which embody our knowledge of logic and mathematics. 
Logico-mathematical entities are tied to the subject's activities, yet are so constructed by 
reflective abstraction that they result from sensorimotor experience only via the construc- 
tion of intermediate schemas of increasing abstraction. The 'axiom set' does not exhaust 
the cognitive structure (schema network) which the mathematician thus acquires. We 
thus view 'truth' not as something to be defined within the closed 'world' of a formal 
system but rather in terms of the schema network within which the formal system is 
embedded. We differ from Piaget in that we see mathematical knowledge as based on 
social processes of mutual verification which provide an external drive to any 'necessary 
dynamic' of reflective abstraction within the individual. From this perspective, we argue 
that axiom schemas tied to a preferred interpretation may provide a necessary intermedi- 
ate stage of reflective abstraction en route to acquisition of the ability to use formal 
systems in abstracto. 

1. INTUITIVE STRUCTURES AND F O R M A L I Z E D  MATHEMATICS 

Our claim is that a proper understanding of mathematical knowledge 
requires us to focus on the tension between a formal system (of axioms 
and rules of proof) and the broader network of knowledge we bring to 
bear when we "do" mathematics. To start, consider that, in providing 
a proof in geometry, we might use a phrase such as 'Take a triangle 
ABC',  yet must avoid recourse to properties of a triangle too special 
for the study at hand. This led Locke (An Essay Concerning Human 
Understanding, Book IV, ch. 7, section 9) to introduce the idea of the 
general triangle, which would be neither obtuse, nor right-angled, nor 
equilateral, nor isosceles, nor scalene. Yet we may have a specific figure 
of a triangle before us as we follow the proof. Beth asks (MEP, p. 8) 1 

(1) Why do we introduce into the demonstration of a universal 
mathematical proposition an intermediate phase which re- 
lates to a particular object (for example, a triangle)? 

(2) How can an argument which introduces such an intermediate 
phase nevertheless give rise to a universal conclusion? 

Synthese 84: 43-58, 1990. 
(~) 1990 Kluwer Academic Publishers. Printed in the Netherlands. 
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B e t h  s o o n  p r o v i d e s  a pa r t i a l  an swer :  

We might imagine two disputants, one of whom asserts "that the three angles of a triangle 
are equal". The other refutes this assertion by constructing a right-angled triangle . . . .  
However, a certain mathematical background will enable the mathematician to anticipate, 
to some extent, the "counter examples" which his adversary might u s e . . .  [and thus] 
avoid hasty generalizations. 

Let us note that the structure of such an anticipation is transferred from the level 
of discussion to that of formal reasoning. If we introduce a deductive argument with the 
words "Let ABC be any t r iangle" . . ,  it is because the choice of this triangle is left to an 
imaginary opponent. (MEP, p. i0) 

T h i s  fits we l l  t h e  n o t i o n  o f  m u t u a l  ve r i f i c a t i on  e s p o u s e d  by  P i a g e t  

( M E P ,  pp .  2 8 9 - 9 0 ) :  

. . .  Owing to language. . ,  the general coordination of actions ceases to be uniquely 
intrapersonal as it may be in the animal or the very young child, to become interpersonal 
and contribute to an objectivity of which the individual is himself doubtless incapable, 
at least at a certain level . . . .  The very coordination of interpersonal actions, that is, 
cooperation as opposed to the constraints of opinion, in fact constitutes a system of 
operations carried out in common all by cooperation, and . . . .  this is then a question of 
the same operations as those of intra-individual coordination: combinations, overlappings, 
correspondence, reciprocities etc.; for communication is only the setting up of a corre- 
spondence between individual operations, this correspondence being yet another oper- 
a t ion . . .  But these operations in common require a mutual verification of a higher level 
than self-verification, so that the laws of coordination become normative laws regulating 
intellectual intercourse between people . . . .  

W e  thus  h a v e  a v i e w  o f  m a t h e m a t i c a l  t r u t h  as n o t  b e i n g  p u r e l y  c o n -  

t a i n e d  w i t h i n  a f o r m a l  f r a m e w o r k .  ' T r u t h '  is sub j ec t  to  c o n t i n u a l  t e s t i ng  

by  t h e  i n d i v i d u a l  b o t h  aga ins t  h e r  o w n  e x p e r i e n c e  a n d  aga ins t  c r i t i q u e s  
p r o v i d e d  by  p e e r s .  T h i s  p e r s o n a l  e x p e r i e n c e  p r o v i d e s  a s t ock  o f  in-  

t u i t i ons  w h i c h  p r o v i d e  t h e  " s e l f - e v i d e n t  t r u t h s "  aga ins t  w h i c h  o t h e r  

s t a t e m e n t s  m a y  be  t e s t ed .  B u t  such  ' t r u t h s '  m a y  n o t  s t and  t h e  t es t  o f  

t ime .  I n  a r e l a t e d  v e i n ,  B e t h  ( M E P ,  p. 125) q u o t e s  w i th  a p p r o v a l  t he  

f o l l o w i n g  s t a t e m e n t  b y  B e r n a y s :  

We often think that we must either accept an absolute self-evidence or renounce entirely 
the contribution of self-evidence to the sciences. Instead of resigning ourselves to this 
"All or None" it seems more appropriate to formulate a conception of self-evidence as 
acquired. Man masters self-evidence as he learns to walk or as the bird learns to fly. In 
this way we arrive at the Socratic recognition that, in principle, we know nothing in 
advance. In the theoretical domain, we can only experiment with opinions and points of 
view, and thus eventually achieve an intellectual success. 

W e  h a v e  c l ea r ly  e n t e r e d  t h e  P i a g e t i a n  d o m a i n ,  a c o n s t r u c t i v i s t  o r  
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developmental theory of knowledge. We take two lessons from all this 
for the notion of schema (the unit of knowledge central to our 'Piagetian 
perspective'): 

(1) The schemas which enter into our mathematics will be both 
'intuitive' and 'formal'. In general, such schemas will be acquired rather 
than innate. 

(2) The acquisition of such a schema in no way guarantees its 'infalli- 
bility'. 

in Piaget's theory, 'errors' in the application of a schema may be 
'assimilated' to extend its applicability. Beth gives a forcible analog of 
such 'testing' when he states (MEP, p. 72) "the Fundamental Criterion 
of Demonstrative Force: An argument has demonstrative force if it 
admits no counterexample". The problem, of course, is to determine 
when we may confidently accept the lack of a counterexample in acting 
upon a given schema. ( 'Real life' schemas seldom offer the unequivocal 
true or false criterion of logical argument.) Beth offers the method of 
semantic tableaux as a way to systematically search for counter- 
examples: "then, by verifying the failure of the search, we can be 
assured of the non-existence of an appropriate counterexample and of 
the demonstrative force of the argument" (MEP, p. 73). What this 
statement does not make explicit is that, in many mathematical situ- 
ations, even if a search strategy will always yield a counterexample if 
it exists, we may or may not be able to "solve the halting problem" to 
verify that no counterexample exists. As much to the point for our later 
discussions is that no exhaustive search procedure may be accessible to 
us when what we are exploring is some 'external reality' rather than a 
formal structure of statements with computable truth values. 

When discussing the sensory-motor experiences of the young child, 
Piaget would wish to talk of an environment in which objects have 
external reality: rocks are heavy to lift, objects when released will fall 
to the ground unless supported in some way. In the case of mathematics, 
the situation would seem to be rather different. The concept of i, the 
square root of - 1 ,  need not be seen as being possessed of a reality 
external to human constructions. However, this does not deny that such 
a concept has a social reality external to any individual when learning 
it, as distinct from the initial act of invention/discovery. The concept 
first arose when some human constructed it to provide a link in a 
chain of mathematical reasoning and, having constructed it, was able to 
communicate it through the use of language. Through the process of 
'mutual verification' it does take on a reality which can influence the 
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development of other mathematicians, as we have already suggested, 
but this reality is a social reality, and is itself the fruit of earlier construc- 
tions. In other words, from a synchronic viewpoint, a mathematical 
construct may be part of the reality which can causally drive the cogni- 
tive development of a student, but viewed diachronically, it is definitely 
a construct of the cognitive activity of (possibly many) people. 

The construction of a schema is the fruit of assimilation and accom- 
modation, processes based on the comparison of expectation and result 
of actions (Neisser 1976). We thus do well to distinguish the schema 
of an object or action (Arbib 1981) - which is indeed constructed by 
each human anew - from whatever it may be in the environment, 
whether it be physical or social, which provides the aliment (to continue 
the Piagetian metaphor) which is to be assimilated. It is the process of 
constructing a schema within each individual that Piaget would refer to 
as "the genetic sense" of construction, and he would explicitly distin- 
guish this from the "mathematical sense" of construction proceeding 
within a formal system and unconstrained by anything that is not already 
within that system. Notice, then, the very strong contrast between the 
mathematician seeking to construct objects within a given formal system 
from the child constructing schemas (not necessarily consciously) to 
enable it to assimilate a world which extends far beyond the schemas 
already available to the child at any given stage. 

Piaget asserts that 

If the truth of 2 + 2 = 4 is not a factual datum but a logical demonstration, it nonetheless 
remains true that the epistemological problem is not solved when we show why the 
demonstration is valid: we still have to know what 2, 4, + and = "are"  or "designate", 
and what the subject does to comply with the normative necessity of this demonstration. 
(MEV, p. 153) 

This distinction is similar to the crucial one, reiterated below, be- 
tween axiom systems like Peano's axioms where we feel that we under- 
stand theorems by reference to a specific interpretation, (i.e., a pre- 
existing network of schemas) such as the "counting numbers", from 
structures like that of groups, where we accept a statement as being 
valid within a formal system without requiring the cognitive underpin- 
ning of a preferred interpretation. 

We also stress the distinction between mathematical properties and 
'real world' properties. If, as mathematicians, we accept the Peano 
axioms as characterizing certain properties of the numbers, then we do 
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not have to go back to the original interpretation to make new discover- 
ies about the numbers: we can do this by proving theorems within the 
formal system. In "everyday cognition of the real world",  we certainly 
can and do make valid inferences from what we already know, but we 
can also learn about an object not from the schema that we have 
constructed but by carrying out new operations of observation and 
action on objects in the world recognized as falling under the schema. 
When we use a name, whether it be a generic name or a proper  name, 
we have to have a critical set of recognition criteria before we can use 
the name, but then there are other criteria which constitute further 
knowledge. With time, these criteria can migrate, as when we go from 
the individual recognition of our own mother  to a sophisticated adult 
notion of "mother"  based on biological and kinship relations. 

We shall reiterate the distinction between those formal structures 
which "have a life of their own" and those which are anchored in some 
preferred or unique interpretation. One would want to give an account 
of how axioms are accommodated to fit examples, and how examples 
are assimilated to the axioms. In the actual practice of mathematics, 
or in everyday cognition, one works not simply within a given formal 
structure or set of informal schemas, but strives rather to bring the 
appropriate " tools"  to bear (cf. our discussion of artificial intelligence 
approaches to proof construction in section 3). But whether we are in 
the "mathematical"  or "everyday"  realm, we come back to Piaget's 
view of genetic epistemology: to show how something can be con- 
structed, or rather how a schema for it is constructed, is to answer the 
question of how it can be, or is, known. 

With this perspective we may come to understand how it is that " the 
result of original work in the mathematical field is called sometimes a 
creation or invention, sometimes a construction or discovery" and agree 
with Beth that " the fact that [for many mathematicians] Platonism 
expresses a psychical reality clearly does not prove that Platonism, or 
even the Platonist conception of mathematics, contains the t ruth" 
(MEP, pp. 99-100). 

2. R E F L E C T I V E  A B S T R A C T I O N  A N D  M A T H E M A T I C A L  

D E V E L O P M E N T  

In the previous section, we have argued for the relevance of a develop- 
mental approach to logico-mathematical systems which embeds them 
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within the broader schema network of everyday knowledge and experi- 
ence. When mathematics "gets into someone's head", what has she 
grasped, what has she constructed? In MEP, Piaget argues that when 
the mathematician constructs the set of formal axioms which character- 
ize some mathematical structure, she does so within a web of not 
necessarily consistent intuitions (by which we do not mean that the 
thought is intuitionistic in the technical sense). 

Piaget is careful to distinguish formal structures from 'natural 
thought'. Formal systems are 'artificial' and may not faithfully reflect 
the processes of thought from which they are abstracted. Natural 
thought might even bring about an inconsistent system. 2 We suggest 
that the situation be understood in the following way. Our mental 
development equips us with a stock of schemas which may be seen as 
embodying examples and skills more often than logical principles. In a 
given situation, we mobilize a stock of relevant schemas to approximate 
a solution which will guide our action. The criterion which guides 
schema change, then, is not one of consistency from occasion to oc- 
casion, but rather of continuing viability. Since our observations are 
sporadic rather than rigorous, we may elevate a frequently observed 
regularity to a universal law. This may lead to inconsistencies when the 
law is embedded within a formal theory, yet be perfectly serviceable 
as a guide to action. With this realization, we may understand how it 
was that Frege's formal system of arithmetic was formed by reflective 
abstraction, and proved to be inconsistent. Frege's axiom of compre- 
hension allowed Russell to define the set R of all those sets which do 
not belong to themselves, and this yielded the contradiction that R 
could belong to itself if and only if it did not belong to itself. The 
theory of types was one attempt to limit a claimed universality that did 
not survive a particular type of logical test. 

This very talk of consistency and inconsistency shows us how far we 
have come from discussions at the sensory-motor stage. For a child 
interacting with objects in its environment, there is no strict criterion 
for consistency of action. Moreover, the separation by the observer of 
the child's behavior into a number of separate schemas may well be 
arbitrary. By contrast, when we speak of a mathematical theory, we 
ask that the various axioms and rules of inference be explicitly formu- 
lated, so that we may open up for inspection the corpus of theorems 
associated with that structure. Only then can we properly talk of consis- 
tency. 
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Two basic results, due to Tarski and G6del, restrict the semantics of 
(a certain broad family of) formal systems of logic. Tarski showed that 
any formal system which contains its own truth predicate must be 
inconsistent. In other words, if the system is consistent, then it would 
be impossible to define 'truth' over the declarative sentences of that 
system. On the other hand, G6del has shown that any formal system 
which is non-contradictory, and contains elementary arithmetic, must 
be incomplete in that there is a formula of the system which can be 
neither proved nor refuted. By contrast, an approach to the semantics 
of natural language from the broad Piagetian viewpoint sketched in 
Hill and Arbib 1984, would seem to escape the strictures of Tarski's 
and G6del's results. Such a system is never entirely consistent and is 
in a continual state of Piagetian becoming. We are able to speak of 
'truth' in our own language, and we are able to hone that discussion 
when we concentrate on specific formal systems, but we do not envisage 
any complete characterization of 'truth'. 

The point we are making is akin to that which Arbib and Hesse 1986 
make when they assert that "all language is metaphorical". Where some 
philosophers of language see literal interpretation as the touchstone of 
semantics, with metaphor as aberrant, they would see metaphor as the 
norm, with literal meaning attainable as a limiting case where social 
convention (including the norms of a community of scientists) blocks 
the rich variety of alternative explorations of an individual's schema 
network that can be initiated by, and constitute the interpretation of, 
most sentences. We may accept a sentence as true either because we 
assimilate it to our existing schemas, or (remember the point about the 
unreliability of "self-evident truths" in section 1) by accommodating 
our schemas to yield ones that can provide an acceptable interpretation. 
The criterion is local coherence rather than global consistency. A 
schema network is not a static formal system whose consistency is to 
be established or denied, but is rather a shifting approximation to a 
reality defined by social interaction (mutual verification) as well as by 
other tests of experience. We do not deny the importance of consis- 
tency, but we do suggest that it can only be attained in formal and 
limited systems that do not exhaust our knowledge of that (as defined 
by an extended schema network, and the environmental interactions 
that it supports) which the system is designed to represent. 

Piaget's approach to cognition is a constructive one, and we shall 
now relate it to an analysis of the development of mathematical thought 
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in the individual mathematician, with numerical and geometric intuition 
providing the basis for the acquisition of formal axiom systems. Piaget 
analyzes the three basic structures of the Bourbaki school - group, 
relational structure and topological structure - and seeks to causally 
explain their development from schemas embodying the way an individ- 
ual interacts with the world. The child learns how to "undo" an action, 
and so manifests the schema for reversibility, which may be seen to 
underlie the notion of group structure. Such a notion of reversing 
actions ties in with our ability to find our way about the environment. 
Even by two or three years of age, a child has many such operations 
at her disposal, and over time these operations yield structures on 
which, Piaget suggests, a process of reflective abstraction can produce 
the formal structures of the mathematician. 

Piaget explicitly notes that the ability of Bourbaki to build mathemat- 
ics from the three basic structures is a reversal of historical order. While 
concepts such as reversibility are basic to cognitive development, the 
abstract concept of a group (as distinct from notions of reversibility) was 
not basic to the historic development of mathematics. The Euclidean 
geometers certainly studied operations of translation and rotation, but 
the formalization of the fact that the collection of translations or of 
rotations in the plane could be characterized as interpreting the formal 
definition of a group did not come until the nineteenth century. 

Here, then, is the fundamental observation at the core of our analysis: 
A mathematician's knowledge goes far beyond ability to parrot the 
axioms and rules of inference of a formal system. Thus the reductive 
program of Bourbaki is not compelling as an account of logico-mathe- 
matical knowledge. The understanding of "basic structures" provides 
a vanishingly small proportion of the understanding of later constructs. 
The "axiom set" does not exhaust the cognitive structure which the 
mathematician has acquired, and mathematical understanding of such 
a structure normally embeds it in a web of examples, interpretations, 
powerful results, and "hooks" which allow the mathematician to re- 
trieve useful theorems and examples as they are needed. If we try to 
give a developmental account of formal structures which is pedagogi- 
cally sound, it must be very different from one based on the formal 
structures alone (compare Rissland's 1978 'Understanding Under- 
standing Mathematics' for the importance of the ability to construct, 
recall, and apply examples both positively and as counterexamples). 

It is worth stressing that our "Piagetian perspective" would seem to 
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go beyond Piaget's, for Piaget does seem to impute a necessity to the 
formal structures as set forth in Bourbaki where we would at most 
impute a necessity to more restricted operations which find their later 
reflective abstraction in these notions. By taking the Bourbaki struc- 
tures as being in some sense inevitable, Piaget seems to be close to 
Chomsky in his insistence on the importance of certain linguistic univer- 
sals - but where Chomsky speaks of "innateness", Piaget sees inevita- 
bility within a constructive process: 

The construction of pure mathematics starts from a system of schemas of action, the 
roots of which must undoubtedly be sought in the nervous and biological organization of 
the subject; and the construction only exhibits itself in the field of conscious thought by 
being forced to integrate the initial relationships included in the schemas . . . .  the succes- 
sive constructions obey directional laws, not because everything is given in advance, but 
because the need for integration itself involves a continuity which is only perceived 
retrospectively, but which nonetheless imposes itself. (MEP, p. 238) 

Our rejection of "inevitability" or "directional laws" follows in part 
from the fact that we are perhaps more concerned than Piaget with the 
importance of instruction (socio-linguistic interaction) in the third of 
the following levels of cognitive development: (i) implicit use of revers- 
ibility; (ii) the use of addition and subtraction and the study of move- 
ments in the plane; and (iii) the ability after suitable instruction to 
reflect on the abstract notion of a group. This process of instruction 
provides a content which replaces "directional laws" by "historical 
contingency". We may contrast (a) a process of induction whereby 
from examples we come to create for ourselves a structure which sub- 
sumes those examples, with (b) a process of verification whereby we 
test that a structure explicitly presented to us does indeed subsume a 
specified set of examples (and note the assumption that we possess a 
language in which the description can be presented). 

In this sense, we would distinguish the psychological status of Euclid's 
axioms and Peano's axioms from those of group theory. The former 
have preferred interpretations. We think of Euclid's axioms as being 
about line drawings which we can make on a piece of paper, subject 
to certain idealizations about line thickness, etc.; we think of Peano's 
axioms as being about numbers with which we can count, compare 
classes, etc. With propositional logic, we still have a preferred interpre- 
tation, namely recourse to truth tables, but make a somewhat interest- 
ing transition in that the actual construction of formal proofs is usually 
guided by criteria of symbol manipulation rather than by intuition about 
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the interpretation. With group theory, however, there is no "standard" 
model at all. We may use particular interpretations both to suggest 
possible truths which we may strive to establish as lemmas, and we 
can also use such interpretations to provide counterexamples to our 
conjectures (recall our discussion in section 1). But truth in any parti- 
cular model has no logical force with respect to group theory as it does 
in the study of numbers or geometry. We can only appeal to the axioms. 

What we have said in no way invalidates the Piagetian notion that 
reflective abstraction underlies the evolution Of more and more abstract 
structures. Let us make explicit Piaget's four stages of reflective abstrac- 
tion: 

(a) 

(b) 

(c) 

(d) 

Operational relationships are abstracted from an antecedent 
structure. 
The relationships thus abstracted are reflected onto a new 
plane, carried forward in a more abstract structure. 
The new operations form the novelty of the derived con- 
struct. 
The new operations, together with the original operations, 
cohere into new wholes. 

Piaget's view of the role of reflective abstraction in the development of 
logico-mathematical thought may be summarized as follows: 

A schema of action is, in fact, only the form of a series of actions which take place 
successively without a simultaneous perception of the whole. Reflective abstraction, on 
the other hand, upgrades it to the form of an operational schema, that is, of a structure 
such that, when one of the operations is used, its combination with others becomes 
deductively possible through a reflection going beyond the momentary action.., and 
these operations can sooner or later be carried out symbolically without any further 
attention being paid to the objects which were in any case "any whatever" from the start. 
(MEP, pp. 237-38) 

With this quote, I think we are in a position to better understand our 
difference with Piaget. The quote on "directional laws" in mathematics 
(MEP, p. 238) comes directly after the above quote on reflective ab- 
straction in MEP. But reflective abstraction is seen by Piaget as an 
internal process operating on a stock of schemas to provide more 
abstract schemas "on a new plane". The motor  for this process is the 
induction of regularities and relationships within the stock of schemas 
available within the mind of the individual. It is worth noting that 
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the social dimension plays no role in this argument, and that Piaget's 
discussion of mutual verification (which we quoted in section 1) does 
not come until fifty pages later in MEP. It is perhaps because he 
does not integrate the social perspective into his analysis of logico- 
mathematical knowledge that Piaget sees a "necessary dynamic" which 
downplays the role of instruction and historical context. 

We do not deny that the child's cognitive development includes the 
intrapersonal development of schemas, nor that we may liken this 
intrapersonal process to the induction of axioms from a variety of 
examples. However, we have stressed that much of mathematical devel- 
opment involves rather a process of mutual verification, as does the 
acquisition of membership in the community playing a given language 
game. As the new player joins the game, the structures are already "in 
place", and the new player must come to acquire these structures. 

Certainly, great inventions arise from the efforts of individuals, but 
the ability of others to use these inventions need not imply spontaneous 
re-invention. It was a great invention of the Greeks to realize that 
much knowledge about geometry could be captured by logical inference 
from a set of axioms. But the Greeks thought that these axioms em- 
bodied a set of necessary and self-evident truths about the world. It 
was thus an equally great invention of nineteenth-century Europeans, 
in the wake of the discovery of non-Euclidean geometry, that axioms 
could be seen as formal statements divorced from any specific "world". 
We have thus distinguished the abstraction of axioms from a specific 
"model" which would seem to underlie the acquisition of axioms for 
number and plane geometry from the acquisition of such formal systems 
as group theory where one must work with the axioms rather than with 
the examples. 

What we would add to Piaget's account of the mathematical develop- 
ment of the individual is the suggestion that the earlier form of axiomat- 
ization (that systematizing a preferred interpretation) provides the 
understanding of the axiomatic method which makes the acquisition of 
these later mathematical constructs possible, and that these must both 
(save for the rare genius) be provided by explicit instruction. Reflective 
abstraction may still be operative, but it involves the assimilation of 
externally supplied generalizations. We may thus offer the following 
synthesis of reflective abstraction with mutual verification, operating as 
a supplement to the "internally driven" reflective abstraction described 
above. 
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(a) 

(b) 

(c) 
(d) 

Patterns of relationships are pointed out with respect to an 
antecedent structure. 
Extant schemas are re-organized in the light of these pat- 
terns, but serve to enrich these patterns by connecting them 
into the schema network. 
The new schemas form the novelty of the derived construct. 
The new operations, together with the original operations, 
cohere into new wholes. 

3. C A U S A L  G E N E S I S  A N D  T H E  C O N C E P T  O F  P R O O F  

We may consider three aspects regarding any mathematical demonstr- 
ation: 

1. There is the question (which we have already addressed) of 
how the mathematical structures themselves, i.e., the objects 
in terms of which the proof proceeds, arise for consideration 
in the mathematician's mind. 

2. There is the actual process of constructing, or discovering, 
a proof. 

3. There is the question of what it is that allows the mathemati- 
cian, once a proof has been constructed, to re-examine it 
and ensure that each step constitutes a valid inference. 

While it is up to the logician (or mathematician) to specify what 
validly follows from what, it is up to the psychologist (perhaps, as we 
shall see, aided by the concepts of artificial intelligence [AI]) to give a 
causal explanation of what makes this discovery possible. This is the 
problem we address in the present section. 

We should not try to give a causal account of why the logician moved 
from step N to step N + 1 of the proof. In the first place, the rule of 
inference which created step N + 1 must, in general, call upon the fruits 
of several earlier steps of the proof. More importantly, if we look at 
AI approaches to theorem proving, we see that the "state" of the 
construction of a proof at any time is not a single line of a proof, but 
is rather a large search tree or graph, with each node corresponding to 
a line of a possible proof, connected to those other lines which would 
justify it (Nilsson 1980, chapters 5 and 6). At each stage in the proof, 
new nodes are added to the graph, but after a period of construction, 
it may turn out that no cumulative progress has been made in the last 
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few additions. In such a case, backtracking occurs to an earlier stage, 
and alternative paths are to be explored. Thus, it is this overall search 
graph that determines what is to be constructed next; no one node 
determines its immediate successor. And only when one finally reaches 
a node which counts as a solution is the search graph then reduced to 
yield the path from axioms to result which counts as the formal proof. 
Beth (MEP, p. 22) distinguishes a phase of enquiry from the phase of 
arrangement which takes the solution found in the enquiry phase and 
arranges it in the "correct" format for an argument. 

Most AI programs for proof construction lay no claim to psychologi- 
cal validity. They are just algorithms which constrain search through a 
space whose nodes are well-formed formulas in such a way as to eventu- 
ally generate a proof. Nonetheless, considerations of the type of search 
space required, the use of different search techniques, and the way in 
which reference to conceptual structures (e.g., the classic Gelernter 
1959 program which used geometric constructions to help prove theo- 
rems from the Euclidean axioms) would seem to be necessary for a 
psychologist's account of causal genesis of a proof. We might also note 
the notion of hierarchical planning and of subgoal generation, showing 
that we may come to "entertain" a well-formed formula without yet 
knowing whether or not it is obtainable by valid inference from the 
available theorems to date. In fact, the usual proof generated by a 
mathematician does not involve the careful application of a specifically 
formalized rule of inference, but rather involves a somewhat large jump 
from statement to statement based both on formal techniques and on 
intuitions about the subject matter at hand. The psychologist must 
understand why it is that such jumps are compelling, even though these 
jumps may not always prove to be valid when subjected to micro- 
analysis. 

Continuing, we should note that any premise has many implications. 
Different techniques have been developed in AI for systems which 
attempt to prove (or disprove) a specific statement, which then serves 
as the goal which constrains the search process proceeding outward 
from the given premises. Other systems have been developed which 
generate a number of inferences from given premises, and then try to 
evaluate them to find those which are worth adding to the stock of 
premises as a basis for further search, thus generating a range of inter- 
esting theorems (Davis and Lenat 1982). We might say that the task 
of the logician is to understand that a step is valid, while the job of the 
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psychologist is to understand how the step is taken. The current efforts 
to construct theorem proving systems in AI (reviewed in, e.g., Nilsson 
1980) may be seen as first steps to showing what the shape of such a 
causal explanation of the 'why' might look like. 

Beth argues that acceptance of the possibility of a "thinking machine" 
capable of "replacing" the logician or mathematician "would force us 
to deny all originality to logical and mathematical thought, and it 
would thus be incompatible with our experience according to which 
the solution of mathematical problems, in particular, requires original 
thought" (MEP, p. 114). He then asserts that 

The proper function of intelligence consists in solving problems, and to solve a problem 
is equivalent to finding means which are adequate in relation to a certain end. If the 
means are never inevitably determined by the end in view, then it will always be necessary 
to have recourse to intelligence to find means adequate to the proposed end. This 
consideration excludes the possibility of constructing a machine capable of solving any 
problem whatever. (MEP, p. 118) 

It may be objected that intelligence does not reduce to problem- 
solving: Does it really illuminate what the artist does to label the 
painting of a picture as a "problem to be solved"? But here our task 
is simply to criticize Beth's arguments against the eventual emulation 
of "mathematical creativity" without asserting that AI is capable of 
such emulation now or in the near future. Beth is too limited by his 
view that "the construction of a 'thinking machine' presupposes the 
solution of a decision problem". While a full critique of this viewpoint 
is beyond the scope of this paper, we can briefly note (i) that the type 
of search and means-end analysis embodied for Beth in his method of 
semantic tableaux is achieved by AI programs which prove theorems 
by the resolution technique (Nilsson 1980, chapter 5 for a review); and 
(ii) that a thinking machine, from our Piagetian perspective, would 
be a learning machine using approximate (and thus not necessarily 
consistent) knowledge to guide searches whose successful completion 
is no more guaranteed than is that of a human mathematician trying 
to prove a theorem. 

NOTES 

* Preparation of this paper was supported in part by a grant to the University of 
Massachusetts from the Sloan Foundation for 'A Training Program in Cognitive Science', 
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and in part by a Faculty Research Fellowship from the University. (Manuscript first 
received, November 18, 1981. My thanks to Barry Riehards and Valentin Turehin for 
their comments on the first draft.) 
1 Part I of Mathematical Epistemology and Psychology (Beth and Piaget, 1966), here- 
inafter referred to as MEP, was written by the Dutch mathematical logician Ewert W. 
Beth. I am most grateful to Barry Richards, whose lectures on the semantic implications 
of Piaget's work stressed the fruitfulness of close study of MEP and provided the spur 
for the present paper. 
2 Much of current work in distributed problem solving in artificial intelligence - such as 
the HEARSAY approach to speech understanding [Erman and Lesser, 1980] - provides 
techniques for the formal treatment of inconsistencies, where hypotheses are given 
weighted values, and computation proceeds until some hypothesis receives a weight which 
is sufficiently well above threshold. 
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