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I. I N T R O D U C T I O N  

Our purpose in this article is to discuss some of the basic notions of 
quantum physics within the more general framework of operational 
statistics and empirical logic (as developed in Foulis and Randall, 1972, 
and Randall and Foulis, 1973). Empirical logic is a formal mathematical 
system in which the notion of an operation is primitive and undefined; all 
other concepts are rigorously defined in terms of such operations (which 
are presumed to correspond to actual physical procedures). 

By a physical operation, we mean instructions that describe a well- 
defined, physically realizable, reproducible procedure and furthermore 
that specify what must be observed and what can be recorded as a conse- 
quence of an execution of this procedure. In particular, a physical opera- 
tion must require that, as a consequence of each execution of the in- 
structions, one and only one symbol from a specified set E be recorded as 
the outcome of this realization of the physical operation. We refer to the 
set E as the outcome set for the physical operation. 

Notice that the outcome of a realization of a physical operation is 
merely a symbol; it is not any real or imagined occurrence in the 'physical 
world out there'. Also, observe that, if we delete or add details to the in- 
structions for any physical operation, especially if we modify the out- 
come set in any way, we thereby define a new physical operation. 

This definition appears to us to be the only tractable one, since the only 
means of settling the question of whether two individuals performed the 
'same physical operation' is with a description. Since no description can 
be complete, then no two executions of a set of instructions can be 
identical in all particulars - this, of course, is a well-known source of the 
irregularities commonly experienced in experimenta ! science. This point 
of view regarding physical operations must be adopted in some sense if 
experimental results are to be used to predict future events. As such, it is 
certainly implicit in any objective statistical analysis; here we simply 
propose to recognize it formally. 
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Evidently, the subjective judgment of the observer is implicit in every 
realization of a physical operation, not only in regard to the interpretation 
of the instructions, but also in connection with the decision as to which 
symbol to record as the outcome. In our view, if a competent observer 
believes that he has executed a particular physical operation and obtained 
a certain outcome, then, in fact, the operation has been realized and the 
outcome in question has indeed been secured. Each realization of a 
physical operation is to be understood here as a 'Ding an sich', isolated, 
with no 'before' and no 'after'. Physical history, as it were, begins and 
ends with each execution of a physical operation. To put the matter in 
more traditional terms, the various realizations of the admissible physical 
operations are always to be regarded as 'independent trials'. 

If physical operations are to be carried out in a 'connected sequence', 
then the instructions for such a compound physical operation must say so 
explicitly. When a compound physical operation is built up from more 
primitive physical operations by concatenating them in this manner, it is 
to be understood that each constituent physical operation thereby loses 
its identity, since it may now have temporal antecedents and conse- 
quences. In practice, the admissible physical operations will be built up 
by compounding appropriate primitive physical operations; a primitive 
physical operation is understood to be a physical operation which we 
cannot (or do not choose to) factor into connected sequences of more basic 
physical operations. (In the final analysis, the decision to regard a physical 
operation as being primitive must be largely subjective.) 

Many of the physical operations of interest in quantum physics are 
compound physical operations consisting of a 'preparation operation' 
followed by one or more 'filtering operations' and terminated by a 
'measurement operation'. In this connection, orthodox descriptions of the 
execution of such a compound physical operation involve the object- 
property idiom in that the preparation operation is construed as pre- 
paring physical objects in a certain state, the filtration operations as either 
passing or not passing such objects, and the measurement operations as 
detecting (or counting) such objects or as measuring physical parameters 
associated with such objects. 

A physical operation having just one outcome will be called a trans- 
formation; the idea simply being that if such an operation has been exe- 
cuted, then there is just one possible outcome, namely, that the trans- 
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formation in question has indeed been effected. Such a transformation 
might be an actual physical transformation in spacetime or it could 
require the adjustment of apparatus. Of special interest will be the purely 
temporal transformations whose instructions only require the elapse of a 
specified time interval. 

II .  M A N U A L S  OF O P E R A T I O N S  

A well-conceived experimental program will often involve not one, but 
many different physical operations. The collection of all of these physical 
operations will be called a physical manual, since it could be construed as 
being a catalogue or manual of instructions. Often the various physical 
operations in such a manual will have overlapping outcome sets. Such 
overlaps could be produced by sheer accident on the part of the symbol 
chooser, but often they are intentional and reflect an attitude or belief 
that certain outcomes of one physical operation are 'physically equiva- 
lent' to certain outcomes of another physical operation. 

It is easy to avoid accidental overlap of outcome sets corresponding to 
distinct physical operations in a physical manua l -  one simply chooses the 
symbols in such a way that it does not happen, that is, one sees to it that 
the outcome sets for the various physical operations in the manual are 
pairwise disjoint. If this is done, then each physical operation in the 
manual will correspond uniquely to its own outcome set and, therefore, 
can be mathematically represented by its own outcome set. Let us sup- 
pose that this has been done and that N is the resulting collection of 
disjoint outcome sets. Mathematically, N is just a nonempty set of pair- 
wise disjoint nonempty sets. Each set E in N is the outcome set for a 
uniquely determined physical operation; hence, we shall refer to E as an 
operation and to N as a manual (dropping the adjective 'physical'). 

We are now in a position to consider just which pairs of outcomes of 
operations in the manual N we should construe as being 'physically 
equivalent'. Such considerations could be based on practically anything 
from a subjective whim to an elaborate scientific theory, but, often they 
are based on an appropriate 'world picture' or model. For instance, we 
often prefer to regard a number of outcomes of distinct physical opera- 
tions as registering the same 'property' or as representing the same 
'measurement'. If a voltage is measured using different instruments - or 
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even different methods - identical numerical results are ordinarily 
taken to be equivalent. Frequently, the instructions for carrying out the 
required procedures for two different physical operations may all but 
dictate the indentification of certain outcomes on purely syntactic 
grounds. 

We surely wish to avoid the necessity of taking a stand on the 'accept- 
ability' of any such decisions concerning the 'physical equivalence' of 
outcomes, since we hope to keep our formalism as free as possible from 
ad hoc decisions. On the other hand, unrestricted identifications of out- 
comes of distinct physical operations seem to create rather chaotic 
formal systems which are mathematically intractable; hence, one is 
virtually forced to subject these identifications to certain mild constraints. 
Some of these constraints are plausible consequences of one's intuitive 
understanding of 'physical equivalence', while others are simply suggested 
by numerous concrete examples. 

Thus, let us introduce a binary relation on the set Q of all outcomes of all 
of the operations in the manual ~ as follows: we say that outcome x is 
equivalent to outcome y and write x = y  if we are prepared to regard these 
outcomes as being 'physically equivalent'. Naturally, we suppose that = 
is an equivalence relation on Q. 

Suppose that x, y~Q are such that x # y  and there exists E ~  with 
x, y~E. Then, we shall say that x operationally rejects y and write x l  y, 
noting that whenever x is secured as a consequence of an execution of E, 
then y is certainly not secured as a consequence of this execution of E. 
Under these circumstances, it would manifestly not be appropriate to 
regard x and y as being physically equivalent; hence, we shall require that 
x_L y=~ x-~ y. 

If x e Q, we denote by Ix] the set of all outcomes q ~ Q such that q - x .  
If E ~ ,  we define a physical operation E' as follows: to execute E', 
execute the physical operation whose outcome set is E to obtain (say) the 
outcome x, then record the outcome of this execution of E' as [x]. If we 
define [E] to be the set of all equivalence classes of the form Ix], as x runs 
through E, then the outcome set of the physical operation E' is [E]. 
Notice that whereas, given an outcome x~Q, there will be exactly one 
physical operation in our original physical manual capable of yielding the 
outcome x, there may be many physical operations of the form E' capable 
of yieldlng the outcome [x]. 
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Given Ee@, we now define a physical operation [-E]' as follows: to 
execute [E]', select any F e N  such that [ F ] _  [E], execute F' to obtain 
(say) the outcome [x], and record [x] as the outcome of this execution of 
[E]'. Evidently, the outcome set for [E]' is [E], and the physical opera- 
tion [E]' depends only on the set [E]; that is, if E, F e N  with [E] = IF], 
then [E] '=  [F]'. (The latter holds because the instructions for [E]' are 
word for word the same as those for IF]'; but a physical operation is the 
set of instructions that describe it.) 

Suppose that E, FeN,  that [El _ IF], but that [E] ~ [F]. Then, there 
exists x e Q with Ix] e IF] but Ix] ~ [E]. Since Ix] s [/7], then Ix] is an 
outcome of the physical operation [F]'; however, the instructions for IF]' 
permit IF]' to be realized by executing E' and recording the outcome as 
the outcome of this realization of [F]'. Since [x]¢[E],  then no such 
realization of IF]' could possibly yield the outcome Ix], in spite of the 
fact that Ix] is one of the outcomes of [F]'. Although this state of affairs 
is not intolerable, it surely seems undesirable; hence, we shall require that 
if E, FeN,  then [E] _ IF] ~ [E] = IF]. 

The above requirement is not as stringent as it might at first seem. 
Indeed, suppose for a moment that it fails, so that there exist E, F e N  
with [E] _ [F], but [E] ~ [F]. Then, every outcome of [El' is an outcome 
of [F]' and, in this sense [E]' is a redundant physical operation since its 
outcomes are 'covered' by those of IF]'. Such a redundancy could be 
eliminated by deleting the physical operation corresponding to E from 
the original physical manual - that is, by deleting E from N. In any 
practical situation, it is perhaps not unreasonable to suppose that after 
performing sufficiently many deletions of this nature, we could remove all 
redundancies and thus force the equivalence relation = to satisfy the 
desired condition. 

A subset of the outcome set for a given physical operation will be called 
an event for this operation. Suppose that D is an event for a given physical 
operation. If the operation is executed to obtain a certain outcome, then 
we shall say that the event D occurred (as a consequence of this execution) 
precisely when the outcome in question belongs to the set D. If x, yeQ 
with Ix] ~ [y] and if {Ix], [y]} is an event for some physical operation 
[E]', where EeN,  then we shall say that the outcome Ix] operationally 
rejects the outcome [y] and write Ix] l [y]. Notice that if Ix] _1_ [y] as 
above, then both [x] and [y] are possible outcomes of [E]'; however, an 
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execution of [E]'  that yields the outcome [x] will surely not yield the out- 
come I-Y] and visa versa. If x, y~Q, then it is clear that the relation 
I-x] ± I-Y] will hold if and only if there exist x~, yl~Q with x==-xl, Y=Yl 
and x~ _Lye. 

Now, suppose that D1 is an event for the physical operation lEvi '  
and that D2 is an event for the physical operation [E2]', where El, E2 ~ .  
If there exists E3 E ~  such that both D1 and D2 are events for [ E 3 ] '  , then 
we shall say, that D 1 and D2 are compatible events. IfD~ and D2 are com- 
patible as above, then both D1 and Dz are eligible for occurrence or non- 
occurrence as a consequence of a single execution of I-E3]'. Furthermore, 
if it happens that D1 n D2 is empty, then an occurrence of D 1 as a conse- 
quence of an execution of [E3]' will imply a nonoccurrence of D2 as a 
consequence of this execution of [E3]' and vice versa. Thus, two compati- 
ble but disjoint events will be said to operationally reject each other. 

Notice that if D1 and D2 are compatible but disjoint events as above, 
then [xx] ± IX2] will hold for every outcome Ix1] in 91 and every out- 
come Ix2] in D2. The latter condition is of some interest in its own right; 
thus, we shall say that Dx and D2 reject each other (deleting the adjective 
'operationally') if [xl]  ± [x2] holds for every outcome [xl]  in D1 and 
every outcome I-x2] in D2. Thus, to say that D1 and D2 reject each other 
is to say that each outcome favorable to the occurrence of D~ opera- 
tionally rejects each outcome favorable to the occurrence of D2, while to 
say that D1 operationally rejects D2 is to say that such rejection is en- 
forced by a single physical operation [E3]'. 

One can give simple examples of equivalence relations = satisfying all 
of the conditions imposed so far and events D~, D 2 that reject each other, 
but that do not operationally reject each other. Under these circum- 
stances, one feels intuitively that there is a 'missing physical operation' 
which, if adjoined to the original physical manual, would operationally 
enforce the mutual rejection of Da and D 2. To stipulate that there are no 
such 'missing physical operations' would be to stipulate that events 
which reject each other always do so operationally. The latter condition, 
which we have called coherence (Foulis and Randall, 1972) since it 
requires the existence of 'sufficiently many coherently related physical 
operations', is the final condition that we shall impose on our equivalence 
relation =.  

Notice that there is a one-to-one correspondence [E]'~--~ [E] between 
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the physical operations described above and their outcome sets; hence, 
the physical manual of all such physical operations can conveniently be 
represented mathematically by the collection d = { [ E ] [ E e ~ } .  The 
conditions that have been imposed on the equivalence relation = confer 
upon d certain 'irredundancy' and 'coherence' properties which we shall 
now abstract. 

A premanual is defined to be a nonempty set d of nonempty sets. An 
element E e d  is called an d-operation and the set theoretic union 
X = L) d is called the set of d-outcomes. We shall call d an irredundant 
premanual provided that E, F e d  and E~_F implies that E=F. Two 
d-outcomes  x, y e X  are said to be orthogonal, in symbols x I y, provided 
that x ¢ y  and there exists E e d  with x, yeE. A subset D of X is called an 
orthoyonal set ifx _1_ y holds for all x, yeD with x ¢ y, while a subset D of X 
is called an d-event if there exists an E e d  with D ~_ E. IfA and B are sub- 
sets of X, we say that A and B are orthogonal and we write A _1_ B provided 
that a L b holds for all aeA and all bEB. We call a premanual d coherent 
provided that the union of any two orthogonal d-events  is again an 
d-event .  A manual is defined to be an irredundant and coherent pre- 
manual. 

If we were to confine our attention only to those manuals consisting of 
a single operation, we would, in effect, be adopting the Kolmogorov 
viewpoint as expressed in connection with the foundations, of modern 
probability theory in Kolmogorov (1933). In a sense, this is also the view 
adopted in classical (statistical) mechanics where it is implicitly assumed 
that there exists a single 'grand canonical operation' that measures the 
position and momentum of every particle of a physical system. For this 
reason, we shall refer to a manual consisting of a single operation as a 
classical manual. 

A maual in which the operations are pairwise disjoint might be re- 
garded as a 'free union' of classical manuals; hence, such a manual will be 
referred to as a semiclassical manual. Notice that the manual N considered 
above is such a manual; consequently, we could regard a semiclassical 
manual as representing a physical manual of basic operations free of any 
outcome identification. It is perhaps worth pointing out that any manual 
d can be obtained (up to isomorphism) from a suitable semiclassical 
manual N by 'factoring out' an appropriate equivalence relation ~ as 
above. 
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I I I .  THE C O M P O U N D I N G  OF M A N U A L S  

In this part, let d be a manual with outcome set X = U d .  We shall refer 
to d as the base manual, and we shall regard d as a reservoir of primitive 
physical operations from which we intend to synthesize compound 
operations requiring the execution of the primitive operations in 'con- 
nected sequences'. Suppose, for instance, that El, E2 ..... E,  are ~¢-opera- 
tions and that these are executed in a connected sequence (first El, then 
E2,..., and finally E,) so as to obtain the sequence xl, x2,..., x, of re- 
spective outcomes. Let us agree to record the formal product x lx2 . . ,  x ,  

to denote the acquisition of such a sequence as a consequence of the exe- 
cution of the compound operation just described. In order to be able to 
give such a representation to all of the outcomes of all of the possible 
compound operations that could be synthesized from d ,  we are obliged 
to consider the free semigroup S over X. 

The free semigroup S over X consists of all formal products x~x2..,  x ,  

with x~, x2,.. . ,  x , ~ X ,  n running through the positive integers. The 

product in S of the 'word' a = x~x2.. ,  x ,  and the 'word' b = Y~Y2... Yr, is, 
of course, the 'word' ab = x lx2 . . ,  x ,y ly2 . . .  Ym. In the following, it will be 
convenient to adjoin a formal identity 1 to the semigroup S so as to 
obtain a semigroup X c = S u { 1 } with identity 1, which we shall refer to as 
the free monoid over X. If b ~ X  ~ with b ~ 1, then b is uniquely expressible 
in the form b = x lx2 . . ,  x ,  with xl,  x2,.. . ,  x , ~ X ;  we define the lenoth of the 
word b to be [hi =n.  By convention, we define [1[ =0. The elements of X c 
of length one are naturally identified with the corresponding elements of 
X, so that X _  X ~. 

A subset A o f X  c is said to be bounded if there is a nonnegative integer n 
such that [a[ ~<n holds for all a~A. If A is nonempty and bounded, we 
define [A[ to be the minimum of all such nonnegative integers n, and we 
define [8[ = - 1. If A, B ___ X ~, we naturally define the product AB to be the 
set of all elements of X c of the form ab with a e A  and b6B. If a e X  c and 
B _  X ~, we define aB = {a} B. 

In the following, { 1 } will be regarded as representing a trivial physical 
operation requiring that we do nothing (other than to record the symbol 1 
as the outcome). Thus, {1} denotes the identity transformation. Of 
course, each basic operation E ~ ¢  can be regarded as a one-stage 
compound operation. A two-stage compound operation is formed as 
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follows: first, select a basic operation E e d ,  an d - e v e n t  D ~ 0  with D ~ E ,  
and a basic operation F d ~ d  for each outcome deD. The two-stage 
compound operation in question - let us call it G - is executed by first 
executing E to obtain (say) the outcome e; if eq~D, we are done and we 
record the outcome of this execution of G as e, but if e~D, we are obliged 

to execute F e to obtain (say) the outcome x e F e and to record the outcome 

of this execution of G as ex~X  c. 
Evidently, the outcome set for G is (E~D) u (Y ned dFd). If we set Fe = {1} 

for each eeE~D, then the outcome set for G is simply the set Y e~E eFe. 
Multistage compound operations can now be built up by iteration of the 

above procedure inductively. Below, we shall do this formally, but, in- 
formally, it should be clear just what we have in mind. Suppose that the 
set of all outcomes for such a compound operation G is the set A ___ X c. We 
claim that the instructions for G (and hence, G itself) can be recaptured 
from the set A. Indeed, the set of all first letters of all of the words in A 

comprise the outcome set for the initial operation involved in an exe- 
cution of G. Suppose that this initial operation is represented by the 

outcome set E and that e~E. Then, the set of all second letters of those 
words in A that  initiate with e comprise the outcome set of the second 
basic operation that must be executed in case the outcome of the initial 
execution of E is e. Proceeding inductively in this manner,  we ultimately 
recapture the instructions for G. For  this reason, we shall identify a 
compound  operation, as described above, with its own outcome set. 

We now formalize our construction of compound operations based on 
as follows: I f  E, G _  X c with E ~ G, and if there exists for each ee  E a set 

F e such that  either F e e d  or else F e =  {1}, and if G =  Ue~ eFe, then we 
shall call G a direct successor of E. If there exists a finite sequence G1, 
G2, ..., G, of subsets of X c such that Gi+ 1 is a direct successor of G~ for 
i = 1, 2,..., n -  1, then we shall say that G, is a successor of G1. We define 
d ~ to be the collection of subsets of X ~ consisting of { 1 } and all successors 

of {1}. 
It  should be clear that i fE is a nonempty bounded subset o f X  ~ and G is 

a direct successor of E, then G is bounded and [GI = IEI + 1. It  follows that 
every G ~ d  ~ is a nonempty  bounded subset of X ~. A set G ~ d  ~ will be 
called a compound operation over the base manual  d .  Notice that - as 
promised - we are here identifying the compound operations with their 
own outcome sets. Thus, d c can be regarded as the manual  of all corn- 
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pound operations, and it becomes natural to inquire whether d c is, in 
fact, a manual according to our official definition. 

Notice that it is quite possible for the various outcome sets in d c to 
overlap; the real question here is whether we actually intend for such 
overlaps to occur. This is precisely our intention and we shall now indicate 
why we think that it is reasonable. Suppose, for example, that E 1 
= {x, x'}, E2 = {y, y'}, and Ea = {z, z'} are three basic operations in the 
manual ~'.  Then, notice that G = (xy, xy', x'} and H = {xy, xy', x'z, x'z'} 
are compound operations which share the common outcome xy. If one 
executes G and obtains the outcome xy as a consequence, then one has 
executed E1 to get the outcome x and then has executed E2 to get the out- 
come y. This is exactly what one would have done if one had executed H 
and obtained the outcome xy. Notice that if we had executed H and ob- 
tained the outcome x' as a consequence of the initial execution of El, then 
we would have been obliged to execute E a as the second step of this 
execution of H. However, if we had executed G rather than H and ob- 
tained the outcome x' as a consequence of the initial execution of E~, then 
this execution of G would terminate. Our decision to identify the outcome 
xy of G with the outcome xy of H amounts to the assumption that 
'nature' is oblivious to our intentions and responsive only to our actions. 
In the end, this is the justification for the outcome identifications implicit 
in d c. 

Now, it is not difficult to show that d c is a manual, provided only that 
d is a manual. The orthogonality relation _1_ on X ~ is a lexicographic 
extension of the orthogonality relation 3_ on X in the following sense: 
for a, b e U d c = X ~, we have a / b if and only if there exist c, d, e e X ~ and 
there exist x, y e X with a = cxd, b = cye and x A_ y. 

IV. S Y M M E T R I E S  A N D  G R O U P S  

By an operational symmetry of the manual d ,  we mean a bijective map ~b 
from the set X of all d -ou tcomes  onto itself such that for E ~ X, q~ (E)e d 
if and only i f E E d .  If ~b is such an operational symmetry and D ~ X, then 
D is an d - e ven t  if and only if q5 (D) is an d , even t ;  hence, in particular, for 
x, y~ X, x _1_ y holds if and only if 4~(x) _k q~ (y) holds. For  instance, if d is a 
set of 'measurement operations' that can be carried out on suitable 
'physical systems' and if g represents an invertible 'physical transforma- 



E M P I R I C A L  L O G I C  AND Q U A N T U M  M E C H A N I C S  91 

tion' on such systems, than 9 might be expected to induce an operational 
symmetry qb 0 of d .  Here, the operation Co(E) would be understood to be 
the operation whose execution requires a preliminary transformation of 
the physical system by 9 followed by an execution of E. 

We have already defined a transformation to be an operation with a 
single outcome; hence, a manual of transformations is by definition a 
manual J all of whose operations are of the form {g} as g runs through 
the set G of all J-outcomes.  In practice, G will often form a group, where 
the composition 9h of two elements of G is understood to be the trans- 
formation resulting from a preliminary execution of 9 followed by an 
execution of h. Under these circumstances, we shall say that the group G 
acts on the manual d provided that each 9 e G corresponds to a symmetry 
~b o of d in such a way that ~gh(X)= ~)O(~)h(X)) and tkl (x)= x for all g, he G 
and all x e X =  L) d .  (Here, '1' denotes the unit element of the group G.) 
If G acts on d ,  and no ambiguity threatens, we shall simply write gx 
rather than ~b0(x ) for x e X  and 9eG. 

Notice that if G acts on d ,  then it is quite possible to have 9x = hy with 
g¢h, x C y  for g, heG and x, yeX.  Such an equality would express the 
'physical equivalence' of outcome x after a preliminary transformation 
by g with outcome y after a preliminary transformaion by h. 

Suppose now that J is a manual of transformations whose outcome 
set G = L) J forms a group as above. If d is a given manual, we can 
construct a 'free action' of G on d as follows: for g e G and E e d ,  we define 
{g} x E to be the operation whose execution requires a preliminary 
execution of the transformation 9 followed (in connected sequence) by an 
execution of the operation E to obtain (say) the outcome eeE. We then 
are to record the outcome of this execution of {g} x E as the ordered pair 
(g, x). Notice that the outcome set for the two-stage compound operation 
{g} x E is the set of all ordered pairs of the form (g, e), e running through 
E; that is, the outcome set for {g} x E is {g} x E -  again, we are identifying 
an operation with its outcome set. The collection of all {9} x E as 9 runs 
through G and E runs through d will be denoted by Gd. It is easy to 
verify that G d  is a manual and that, if d is semiclassical, so is Gal. 
Clearly, there are no outcome identifications in the manual G d  other 
than those that were already implicit in the manual d ,  and this is the 
sense in which G has been made to act 'freely' on d .  

Notice that the group G acts on the manual G d  in the following 
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natural manner: ~bh((g, x))=(hg, x) for g, hsG and xsX=t . . )  d .  For 
simplicity, we shall write h (g, x) rather than q~h((g, x)), so that h (9, x) 
= (hg, x) for g, h s G, x s X. As before, we may be in possession of a suitable 
theory, model, or 'picture of the world' that stipulates certain distinct 
outcomes of the manual G~¢ to be 'physically equivalent', and we may 
wish to factor this information into the manual G~¢ by dividing out a 
suitable equivalence relation. We now turn our attention to a particularly 
important instance of such a situation. 

Suppose that j is a manual of transformations whose outcome set G 
forms a group, that H is a subgroup of G, and that H acts in a known way 
on the manual sJ. Here, the action of H on d is not necessarily 'free'; that 
is, there may be nontrivial outcome identifications implicit in this action. 
We can, of course, allow the larger group G to 'act freely' on d by forming 
the manual G d  as above. Suppose that g~G, h~H and E ~ d .  Notice that 
the instructions for executing {gh} x E are word for word the same as the 
instructions for executing {g} x hE except for the portions of these in- 
structions pertaining to the form in which the outcomes are to be recorded. 
In the first case, we would record the outcome as (gh, x) and in the second 
case, we would record it as (g, hx), where xeE.  Here, we shall clearly wish 
to regard the outcome (gh, x) as being 'physically equivalent' to the out- 
come (g, hx). 

With the above motivation, we define the relation = on the set G x X 
of all G~C-outcomes as follows: for gl, g2sG and xl, x 2 e X =  t.J s~¢, the 
relation (gl, xl)=(g2, x2) will hold if and only if there exists h~H with 
gl = g2 h and x 2 = hx 1. One verifies without difficulty that = is a bona fide 
equivalence relation on G x X and that if (g~, xl)Z(g2, x2), then (gl, xl) 
~(g2, x2). As usual, we define [g, x], for (g, x)eG x X, to be the equiva- 
lence class in G x X consisting of all (#', x') with (g, x) = (g', x'). 

If g e G and E~ d ,  we define the physical operation [#, E] as follows: to 
execute [g, El, we execute {g} x E to obtain (say) the outcome (g, x), but 
we record the outcome of this execution of lg, E] as [g, x]. Thus, the out- 
come set for [g, E] is the set of all equivalence classes of the form [g, x] as 
x runs through the set of all outcomes in E. As before, we propose to 
identify the operation [g, E] with its own outcome set, so that [g, E] 
= ([g, x] I x e). It is not difficult to show that the collectidn {[g, E] [geG, 
E e d }  is again a manual, and we shall denote this manual by G~.~/H. 
Notice that the set {[g, x'][geG, x e X = U  z~'} is the set of all Gs~/H- 
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outcomes and that there is a natural action of the group G on this manual 
given by g'([g, x])=  [g'g, x] for g', geG and xeX. One easily checks that 
this action is consistent with our general understanding of an action of a 
group of transformations on a manual. We shall refer to this action of G 
on Gs~/H as the expanded action corresponding to the original action of 
H o n d .  

Let N = Gs4/H, Z= k_) N and, for every geG, put No= {[g, E] I E e d } ,  
Zg= U No = {[9, x] I xeX}. Notice that N o is itself a manual and that the 
original manual d is isomorphic to N o under the correspondence taking 
the d -ou tcome  x into the Ng-outcome [g, x]. Thus, Ng is a submanual of 
N in the sense that N o_ N and N o is a manual in its own right. Further- 
more, N o is a so-called induced submanual of N (Randall and Foulis, 
1973) in the sense that two Ng outcomes are orthogonal with respect to N o 
if and only if they are orthogonal with respect to N. Evidently, for a, b e G, 
N,  = Nb if and only if aH= bH. Thus, if we denote by G/H the space of all 
left cosets of G modulo H, then for AeG/H, we can unambigously define 
Na = N,  and Za = Z,, where a is any element in the coset A. In this way, 
z becomes decomposed into the mutually exclusive and exhaustive sets 
Z a as A runs through the left coset space G/H and ~ becomes a disjoint 
union of the induced submanuals NA as A runs through G/H. Further- 
more, for AeG/H and geG, g(ZA)=Zoa and g(Na)=Noa.  Finally, the 
original action of H on M is evidently equivalent to the action of H on Nn. 
Notice that it is only this action of H on NH that can involve any physically 
significant outcome identifications - the 'rest' of the action of G on N is 
'free'. 

Suppose now that N is an arbitrary manual and that G is a group of 
transformations acting on N. Part of this action may be 'free', while part 
of it may be 'physically significant', and we shall now turn our attention to 
the problem of extracting this physically significant portion. To this end, 
we invert the above argument. Borrowing some terminology from the 
classical theory of permutation groups (Burnside, 1897), we define an 
operational system of imprimitivity for the action of G on N to be a de- 
composition Z =  k_)~i Z~ of the set Z =  t._) N of all N-outcomes by the 
family {Z~I i e I} of pairwise disjoint nonempty sets such that 

(i) For each ieI, Ni = {FeN [ F c_ Zi} is a nonempty set and is an 
induced submanual of the manual N. 
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(ii) The group G acts transitively on the set I in such a way that 
g(Zi)=Zgi for all gsG and all ieI. 

Suppose that we have such an operational system of imprimitivity. 
Choose and fix one of the indices keL Let H be the subgroup of G con- 
sisting of  all elements heG such that hk=k; that is, H is the isotropy 
group at k of the action of G on I. Let d = Nk, so that d is an induced 
submanual of N consisting of all of the ~-operat ions F such that F___ Zk. 
Evidently, we get an action of H on d simply by restricting the original 
action of G on N to H x Z~. As before, this action of H on d gives rise to 
an expanded action of G on Gd/H. Denote by Z' the set of all Gd/H- 
outcomes, so that Z '={[g ,  z] [geG, z~Zk}. The mapping [g,z]~gz 
provides a bijection of Z' onto Z making the manual Gd/H isomorphic 
to the manual N in an obvious sense. Furthermore, under this isomor- 
phism, the original action of G on N is equivalent to the action of G on 
cd/ r. 

The above discussion shows that the operational systems of im- 
primitivity for an action of G on ~ correspond in a one-to-one fashion to 
the ways in which this action of G on ~ can be regarded as an expansion 
of an action of some subgroup H of G on some induced submanual d of~. 

In view of the above, we propose to define an action of a group G on a 
manual ~ to be operationally primitive provided that there are no non- 
trivial operational systems of imprimitivity for this action. (An opera- 
tional system of imprimitivity is, of course, trivial if the indexing set I 
contains only one element.) We are inclined to regard an operationally 
primitive action of G on ~ to be an action involving no 'free part '  and to 
regard the outcome identifications implicit in such an operationally 
primitive action to be 'physically significant'. 

V. TH E L O G I C  OF A M A N U A L  

Let d be a manual and let X be the set of all d-outcomes.  For  purposes of 
motivation, we shall regard ~¢ as the collection of all outcome sets for the 
physical operations in some physical manual; furthermore, we shall 
suppose that there is a one-to-one correspondence between these physical 
operations and their outcome sets. Thus, if Eed,  we shall (by abuse of 
language) speak of an execution of E, when what we really mean is an 
execution of the physical operation whose outcome set is E. 
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Let us consider, for the time being, only those propositions that are 
operationally well defined in the sense that they are confirmed or refuted 
strictly in terms of evidence acquired as a consequence of the execution 
of d-operations.  Specifically, we define an operational proposition (for d )  
to be an ordered pair (A, B) of subsets A, B _  X = k.) d .  If an operation 
E e d  is executed and the outcome eeE is obtained as a consequence, we 
shall say that the operational proposition (A, B) is confirmed (by this 
execution of E) precisely when ee A and that it is refuted (by this execution 
of E) precisely when eeB. Thus, A will be called the confirmation set and B 
the refutation set for the operational proposition (A, B). Since there is no 
requirement that A u B = X, the operational proposition (A, B) can fail to 
be either confirmed or refuted by an execution of E - that is, the 'truth 
value' assigned to (A, B) as a consequence of an execution of E e d can be 
'indeterminate'. If A c~ B = 0, that is, if the operational proposition (A, B) 
can never be simultaneously confirmed and refuted by a single execution 
of an operation E e d ,  then we shall say that (A,/3) is a self-consistent 
operational proposition. In the sequel, we shall consider only self- 
consistent operational propositions. 

Notice that an operational proposition is completely described by 
specifying its confirmation and refutation sets and does not involve a 
subject-predicate (object-property) idiom in any essential way. Also, a 
self-consistent operational proposition is 'sharp' in the sense that it will 
definitely be confirmed, refuted or left indeterminate by a single execution 
of a given d-operat ion.  Although such a proposition admits three 'truth 
values '-  confirmed, refuted, indeterminate-  its 'truth values' will general- 
ly be instable in the sense that they will change from one realization of an 
d-opera t ion  to another. 

If (A, B) is an operational proposition, we define the negation of (A, B), 
in symbols, (A, B)' to be the operational proposition (B, A). Thus, (A, B) is 
confirmed precisely when (A, B)' is refuted and vice versa. If (C, D) is a 
second operational proposition, we shall say that (A, B) implies (C, D) 
and write (A, B) ~< (C, D) provided that A _ C and D___ B. Thus, if (A, B) ~< 
~<(C, D) and if (A, B) is confirmed (by an execution of an E~d), then 
(C, D) will be confirmed (by this execution of E), while, if (C, D) is refuted 
(by an execution of E e d ) ,  then (A, B) will be refuted (by this execution of 
E). Observe that (A, B) ~< (C, D) is a mathematical assertion about the two 
operational propositions (A, B) and (C, D) - it is not itself an operational 
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proposition. We define the operational proposition 0 by 0 = (0, X) and we 
define 1 = 0' = (X, 0), noting that 0 ~< (A, B) ~< 1 holds for all operational 
propositions (A, B). Notice that, if (A, B) ~< (C, D), then (C, D)'~< (A, B)'. 

None of the above considerations involve the detailed structure of the 
manual d in any essential way, since they involve only the outcome set X. 
We now turn our attention to the manner in which the detailed manual 
structure might interact with operational propositions. An operational 
proposition (A, B) is said to be testable if there exists EEd,  called a test 
operation for (A, B), such that E_~ A w B. Notice that, if E tests (A, B) as 
above, then each outcome of E will either confirm or refute (A, B); hence, 
an execution of E cannot leave (A, B) indeterminate. A collection of 
operational propositions is said to be simultaneously testable provided 
that there exists a single d-opera t ion  that is a test operation for every 
operational proposition in the collection. 

If A is any subset of X, we define A±={x~X ] x_l_a, Va~A}, and we 
define A ±± = (A±) ±, A ±±± = (A±±) ±, etc. Evidently, A _ A ±±, A ±±± = A ±, 
A n A ± = 0 and if A _ B _ X, then B ± _~ A ±. If A, B _ X with A ~ B ±, then 
we say that A and B are mutually orthogonal and we write A 1 B. An 
operational proposition (A, B) for which A _1_ B is said to be orthoconsis- 
tent. Note that (A, B) is orthoconsistent if and only if every outcome which 
could confirm (A, B) operationally rejects every outcome which could 
refute (A, B) and vice versa. An orthoconsistent operational proposition is 
automatically self-consistent. Also, if (A,/3) is orthoconsistent, so is its 
negation (A, B)'= (B, A). 

We define the orthonegation of the operational proposition (A, B), in 
symbols (A, B) ±, by (A, B)±= (A ±, B±). Notice that (A, B) ± is confirmed 
precisely by those outcomes that operationally reject every outcome that 
could confirm (A, B) and that (A, B) ± is refuted precisely by those out- 
comes that reject every outcome that could refute (A, B). We shall say that 
(A, B) is a closed operational proposition provided that its orthonegation 
coincides with its negation, that is, (A, B) ± = (A, B)'. Thus, (A, B) is closed 
if and only if A±= B and B±= A. In particular, if (A, B) is closed, then 
(A, B) is orthoconsistent, B ± ~ A and A ±_ B. Notice, for instance, that the 
condition B ±_CA means that every outcome that rejects all of the out- 
comes that could refute (A, B) must actually confirm (A, B). 

It is natural to associate with every d-even t  D the operational proposi- 
tion (D, D±), since its test operations are precisely those d-operat ions E 
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for which D _  E. Furthermore, if such a test operation E for (D, D ±) is 
executed, then (D, D ±) is confirmed precisely when D occurs and it is 
refuted precisely when D does not occur. In general, we shall refer to a 
confirmation (respectively, refutation) of an operational proposition by 
one of its test operations as a test-confirmation (respectively, a test- 
refutation). In general there may be operations E e d  with D q~E whose 
execution could, nevertheless, confirm or refute (D, D l) - it is the test- 
confirmations of(D, D ' )  that correspond to the occurrences of the eventD. 
Also, although (D, D ' )  is orthoconsistent, it need not be closed. However, 
there is a unique closed operational proposition p(D) which is confirmed 
by those outcomes which confirm (D, D ±) and refuted by those outcomes 
which refute (D, D±), namely, p(D)=(D ±±, D±). In this article, we shall 
concern ourselves only with operational propositions of the form 
p(D)=(D ±±, D ±) for some d-even t  D and we shall d e f i n e / / ( d )  to be the 
set of all such operational propositions. 

Notice that 0 = p ( 0 ) e / / ( d )  and that, if E is any d-operat ion,  1 
=p(E)dI(d) .  If D1 and D2 are d-events ,  it is easy to see that p(D1) 
<<. p(D2) if and only if (D~) "± _ (D2) "~, that is, if and only if (D2) z ___ (Da) ±. 
Also, p(D1)<,.(p(D2))' =(p(D2))" if and only if D1-1-O2. (Caution: (p(D2))' 
need not belong t o / / ( d ) . )  If Dt -LD2, we shall say that the operational 
propositions p(Dx) and p(O2) are orthogonal to each other, and we shall 
write p(D1) _k p(D2). 

The system consisting of//(~1), partially ordered by the relation ~< and  
carrying the relation _L of orth0gonalitY will be called the operational 
logic (or, just the logic) of the manual ~¢. Its general properties are easily 
abstracted and this leads to the notion of an orthol09ic (Jeffcott, 1972). An 
orthologic, by definition, is a system (L, ~<, _1_) consisting of a nonempty 
set L carrying two binary relations ~< and _1_ subject to certain conditions. 
One thinks of the elements p e L  as being 'propositions' in some sense or 
the other. If p, q e Lwith p ~< q, one interprets this as meaning that, in some 
sense or other, 'p implies q'. Similarly, p 3_ q is interpreted as meaning that 
'p and q reject each other'. The conditions to which these relations are 
subjected are as follows: 

(i) L is partially ordered by ~< and there is a unique smallest 
element 0 in Land  aun ique  largest element 1 in L, so that 
O~<p~< 1 holds for every peL. 
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(2) 
(3) 

(4) 
(5) 
(6) 

The relation / is symmetric on L and, ifp±p, thenp =0. 
If  p, qeL with p±q, then there exists a unique element 
p@qeL which is the least upper bound in L ofp  and q. 
If p, q, reL and ifp±q,p±r and q_l_r hold, then r±(p@q). 
IfpeL, there exists at least one q~L wi thp±q  a n d p 0 ) q =  1. 
For p, qeL, p<<.q holds if and only if for every reL, r±q 
implies that r ± p. 

The element pOq of condition (3) is, of course, interpreted as the 'dis- 
junction', in some sense, of the propositions p and q. The element q in 
condition (5) is, of course, viewed as a 'complement', in some sense, of the 
element p. 

Not only is the logic/ - / (d)  of a manual ~¢ an orthologic, but, con- 
versely, every orthologic is isomorphic to the logic of some manual. 
Indeed, suppose that Lis an orthologic whose elements (for purposes of 
motivation) will be thought of as being 'propositions'. Let el, ez .... , en be 
a finite set of pairwise orthogonal nonzero elements of L such that 
e l~)e2@.. .@e,= 1. Such a set might be regarded as a finite exhaustive 
collection of propositions which are mutually exclusive in some observ- 
able sense; namely, there is a physical operation which when executed 
will single out one and only one of these propositions as being 'confirmed' 

- at least for this particular realization of the operation. Thus {ea, e2 ..... 
en} will be the outcome set for this operation. We might expect that the 
collection d of all such finite 'partitions of the logical identity' would 
form a manual and, in fact, it is easy to show that it does. Moreover, H ( d )  
is canonically isomorphic to L. 

In orthodox quantum mechanics, according to von Neumann (1932), 
the logic is P, the lattice of projections on a separable, complex, infinite 
dimensional Hilbert space ~g. It is well known that P is a complete 
orthomodular lattice (Foulis, 1962) and it is clear that every orthomodular 
lattice is an orthologic. Furthermore, all of the proposed generalizations 
of P to so-called quantum logics have been (at least) orthomodular 
posets (Foulis, 1962) - and these are also orthologics. As a matter of fact, 
an orthologic L is an orthomodular poset if and only if orthogonal com- 
plements in L are unique; that is, if p, q, reL with p~)q=p@r= 1, then 
q = r (Jeffcott, 1972). 

It is interesting to note that the logic H ( d )  of a manual ~¢ is an ortho- 
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modular poset if and only if the manual d satisfies the following condi- 
tion: E e d ,  x, y e X = U  d ,  Ec_x±uy±=~ x l y (Dacey, 1968). We call 
such a manual d a Dacey manual (Foulis and Randall, 1972). If d is a 
Dacey manual, then the compound manual d c is also Dacey. Obviously, 
any semiclassical manual is Dacey. Furthermore, if the group H acts on 
a Dacey manual ~¢ and if H is a subgroup of G, then Gd/H is again a 
Dacey manual. 

In orthodox quantum mechanics, if E, F e P with E F -  FE = 0, then E 
is said to commute with F. It is generally understood that such commuting 
propositions are simultaneously verifiable in some sense. Here it can be 
shown that E commutes with F if and only if there exist El, F1, Ge P such 
that E~, F~ and G are mutually orthogonal and E=E~O)G, F=FxOG 
(Foulis, 1962). Thus, if Lis any orthologic, and e,f eL, we shall say that e 
commutes with f, and write eCf, if and only if there exist el,f~, #eLsuch 
that e~,fl and 9 are mutually orthogonal and e = e~ @g,f=fl @0. 

If d is a manual and if A, B are ~¢-events, then p(A) commutes with 
p (B) in the orthologic H (d)  if and only if there exist d-events A 1 and B~ 
such that p(A)=p(A~), p(B)=p(B~) and A~ is compatible with B~ in the 
sense that there exists an operation E e d  with AIUB~_E. Conse- 
quently, two commuting operational propositions i n / / ( d )  are simulta- 
neously testable. In general, the converse is false; however, if ~ '  is a Dacey 
manual, then two operational propositions in/7 (~¢) will commute if and 
only if they are simultaneously testable (Randall and Foulis, 1973). 

We define the center of an orthologic L, in symbols C(L), to be the 
'subset of L consisting of all elements that commute with every other ele- 
ment. Notice that 0, leC(L). Jeffcott (1972) has shown that C(L) is 
always a Boolean algebra. Of course, every Boolean algebra is an ortho- 
logic. A manual ~q¢ is said to be Boolean provided that/7 (~¢) coincides 
with its own center. Thus, ~¢ is Boolean if and only if it is Dacey and any 
two propositions in//(~¢) are simultaneously testable. 

The operational interpretation of the infimum and supremum of 
propositions in quantum logics is a difficult matter that has engaged the 
attention of many authors (Birkhoff, 1961, pp. 155-184; Jauch, 1968; 
MacLaren, 1965). In the logic H(~¢) of a manual ~¢, such an interpreta- 
tion is always available for the infimum and, when the manual is Dacey, 
the supremum also admits an operational interpretation. 

Indeed, let {Dj ]jeJ} be a family of events for the manual ~¢. IfA and B 
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are ~¢-events, the notation p(A)=/~j p(Dj) (respectively, p(B) = Vj  p(Dj)) 
will be understood to mean that p(A) (respectively, p(B)) is the infimum 
(respectively, supremum) in/7(~¢) of this family. The necessary and suffi- 
cient condition that p(A)=Ajp(Dj) is that A±i=F~j(Dj) ±±, that is, 
p (A) is confirmed by precisely those outcomes that confirm every proposi- 
tion p (D j), j e  J. In conventional logic, the conjunction of a set of proposi- 
tions is generally understood to be a proposition that is true if and only if 
each proposition in the set is true. Consequently, we feel entitled to refer 
t o /~ j  p(D~), when it exists, as the conjunction of the propositions in the 
family {p(Dj) [jeJ} (Randall and Foulis, 1973). In conventional logic, the 
conjunction of a set of propositions is false if and only if at least one of the 
propositions in the set is false. Here, the analogous situation does not 
quite obtain; indeed, ifp (A) = /~ .  p (D j), any outcome refuting any one of 
the propositionsp (D j) will refute p (A). In general, there will be outcomes 
that refute p(A) but fail to refute any one of the propositions p(Dj). 

An orthologic Lis said to be conjunctive if any two elements of Lhave 
an infimum in L. Similarly, a manual d is called conjunctive if its logic 
/-/(d) is conjunctive. If Lis an orthomodular poset, then Lis an ortho- 
modular lattice if and only if L is conjunctive; hence,/7 (d)  is an ortho- 
modular lattice if and only if ~¢ is a conjunctive Dacey manual. Any semi- 
classical manual is conjunctive Dacey. If d is conjunctive and Dacey, so 
is ~¢c (Weaver, 1971). If the group H acts on the conjunctive manual d 
and if H is a subgroup of the group G, then G~C/H is again conjunctive. 

In conventional logic, the disjunction of a set of propositions is gener- 
ally understood to be a proposition which is true if and only if at least one 
proposition in the set is true. This suggests the following definition: a 
proposition p(B)~H(d) is a disjunction of the propositions in the family 
{p(Dj) IjeJ} provided that B ±± = Ld~(Dj) ±±. It is a fact that if p(B)is a dis- 
junction of the propositions {p(Dj) [j~J}, then p(B)=Vjp(Dj); however, 
the converse is false. If p(B)=Vjp(Dj) and p(B) is a disjunction of the 
propositions {p(Dj)liE J}, we call p(B) a disjunctive supremum of 
{p(Dj) lie J} and we write p(B)=Vjp(Dj). 

The following general distributive law holds for disjunctions in H(d) :  
if p(B) =Vj p(Dj)andifp(C)eH(d)is such that the infimum p(Dj)^p(C) 
exists for each p(Dj), then the infimum p(B)^p(C) exists and we have 
p (B) ̂  p (C) = V i p(Dj) ̂  p (C)), An analogous distributive law for suprema 
which are not disjunctions is explicitly false. 
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Suppose that d is a Dacey manual, so t h a t / / ( d )  is an orthomodular 
poset. Then, / / ( d )  is closed Under the negation mapping, that is, if 
p(D)~H(~), it follows that p(D)'=p(D)±~lI(d). Furthermore, the map 
p(D),-~p(O)' is an antiautomorphism of period two on the structure 
(H(~¢), ~<); hence, trivially, it converts existing infima into suprema and 
vice versa. Consequently, we have the conventional deMorgan laws: 
(Vjp(D~))'=Ajp(D~)' and (Ajp(D~))'=Vjp(Dj)'. It follows that the 
necessary and sufficient condition that p(B)=Vjp(Dj) is that p(B) is 
refuted by precisely those outcomes that refute every one of the proposi- 
tions p(Dj). If p(B)=Vjp(Dj), then p(B) will be confirmed by any out- 
come which confirms any one of the p (D j); however, there may be out- 
comes that confirm p (B), yet fail to confirm any one of the p (D j). It is only 
when p(B)= V i p(Dj) that an outcome confirming p(B) will necessarily 
confirm at least one of the p(Di). 

Of course, a symmetry of an orthologic Lis understood to be an auto- 
morphism of L, that is, a map q~: L-~Lwhich is bijective and has the prop- 
erty that both ~b and ~b-1 preserve the relations ~< and _1_. A logical 
symmetry for the manual d is understood to be such a symmetry of its 
log ic / / (d ) .  Suppose that ~b is an operational symmetry for ~¢. It is easy 
to see that if A and B are d-events  with p (A)= p (B), then (~ (A) and ~b (B) 
are d-events  with p(dp(A))=p(c~(B)). It follows that every operational 
symmetry ~b for ~¢ determines a unique logical symmetry (also denoted by 
(k) in such a way that (~(p(A))=p(~b(A)) holds for all d-events  A. We 
shall refer to such a logical symmetry (corresponding to some operational 
symmetry) as a regular logical symmetry. One can give examples of 
logical symmetries for d which are not regular - again the reason for this 
is that two nonisomorphic manuals can give rise to isomorphic logics. 

If H is a group acting on the manual d ,  then for each h~ H we can 
define a logical symmetry q~h for d by ~h(p(A))=p(hA) for each d-event  
A. In this way, we get a representation of the group H, h ,-* ~h, as a group 
of automorphisms of the orthologic H (~¢). If H is a subgroup of a larger 
group G, then, as we have seen, we obtain an expanded action of G on the 
manual G~C/H and thus a representation of G as a group of automorph- 
isms of the logic 1-I(G~C/H). 

The operational propositions in the logic/I  (~¢) of a manual should be 
viewed as being phenomenological in the sense that they can only assert 
that the outcome of some execution of a physical operation belongs to a 
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certain designated set of outcomes. Consequently, such propositions 
have no predictive power and no explanative power per se. 

In empirical logic, it is essential to distinguish between an operational 
proposition p(D), which may be confirmed, refuted, or left indeterminate 
by an execution of a physical operation, a prediction that such an opera- 
tional proposition will be confirmed as a consequence of a particular 
realization of one of its test operations, and a statistical hypothesis that 
makes some claim regarding the 'long run relative frequency' with which 
certain operational propositions will be test-confirmed. Physical laws 
are ordinarily of the latter form and therefore involve 'stochastic models'. 
In the next part, we set up the appropriate mathematical machinery to 
deal with such stochastic models. 

V I .  W E I G H T S  A N D  S T A T E S  - C O M P L E T E  S T O C H A S T I C  M O D E L S  

By a weight function for a manual d with outcome set X = U d ,  we mean 
a real-valued function co defined on X, taking on its values in the closed 
unit interval, and such that the unordered sum ~ e~Eco(e) converges to 1 
for every d-opera t ion  E. The set of all such weight functions for d is 
denoted by O = f2(d). It is natural to extend an coef2 to the d-events  by 
defining co(D)=Z~Dco(d ) for any d-event  D. It then follows that 
0-..< co(D)..< 1 for all d-events  D and that co isfinitely additive in the sense 
that co(un= 1 Di)=ZT= 1 co(Di) for any finite family {D i [ i=  1, 2,..., n} of 
pairwise orthogonal d-events.  In general, an co ~ 12 need not be countably 
additive - such additional features as countable additivity will depend on 
the detailed structure of the manual d .  

A weight function coef2(d) will be regarded intuitively as a possible 
'complete stochastic model in the frequency sense' for the empirical 
situation described by the manual d as follows: for every d -ou tcome 
xeX, co(x) is interpreted as the 'long-run relative frequency' with which 
the outcome x is secured as a consequence of the execution of operations 
for which x is a possible outcome (according to the stochastic model co). 

It is easy to check that if co~f2(d) and if C, D are d-events  with 
p(C)<<.p(D), then co(C)<~co(D). In particular, ifp(C)=p(D), then co(C) 
= co(D) and this permits us to lift co to a function (still denoted by co) 
defined on the operational logic H ( d )  simply by setting co(p(D))= co (D) 
for every d-event  D. This co, defined on/- / (d) ,  will be referred to as the 
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regular state induced on H(d) by the original weight function coE~2(d). 
Notice that, for any d -ou tcome x, co (x)= co(p({x})); hence, the original 
weight function co can be recaptured from the regular state that it induces. 

I fL  is any orthologic, we define a state on L to be a real-valued function 
defined on L, taking on its values in the closed unit interval, such that 

c~(1)=l and ~(e~f)=~(e)+~(f) whenever e,f~L with e l f  Clearly, 
every regular state o n / / ( d )  is a state; however, there may be states on 
/- /(d)  that are not regular. If co E (2 (d )  and if E e d is a test operation for 
p(D)en(d), where D is an d-event ,  then it can be shown that co(p(D))= 
=co(E c~ D±±); hence, ~o(p(D)) will be interpreted as the 'long-run relative 
frequency' with which the operational proposition p(D) will be test 
confirmed (according to the stochastic model co). In Randall and Foulis 
(1974), we showed that it is reasonable to interpret a state o n / / ( d )  as a 
complete and consistent assignment of betting rates for wagers on the 
confirmation of the propositions i n / 7 ( d )  as a consequence of specified 
realizations of test operations for these propositions. 

It is surely desirable to have a lavish supply of weight functions (com- 
plete stochastic models) for a manual d and the physical circumstances 
which it describes. Any ad hoc assumption assuring such a supply of 
weights would necessarily be a nontrivial constraint on the manual d ,  
since there are large classes of conjunctive Dacey manuals that admit only 
one weight, or no weights at all (Greechie, 1971). Nevertheless, in any 
realistic situation, there always appears to be a generous supply of weight 
functions - in fact, the set of all weight functions is usually 'strong' in the 
following sense: a set A of states on an orthologic Lis said to be strong 
provided that for p, qeL with pg2q, there exists s e a  with e(p)= 1 and 

(q) • 1. A set of weights A ~_ f2 (d )  is said to be strong if the corresponding 
set of regular states on the o r tho log ic / / (d )  is strong. If an orthologic L 
admits a strong set of states, then it is an orthomodular poset; hence, if a 
manual d admits a strong set of weights, it is a Dacey manual. 

Any semiclassical manual N admits a strong set of weights. If the manu- 
al d admits a strong set of weights, so does the compound manual d c. If  
the group H acts on the manual d ,  if d admits a strong set of weights, and 
if H is a subgroup of G, then the expanded manual Gd/H also admits a 
strong set of weights. If the manual ~ admits a strong set of weights and if 
d is an induced submanual of N, then d also admits a strong set of 
weights. 
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An important 'conditioning' notion is available for the weights on a 
compound manual d c. Indeed, suppose that coef2(d  c) and that a is an 
~¢'-outcome with e9 (a) # 0. If X c is the set of all ~¢~-outcomes, we define 
o9a: X ¢ ~ [  0, 1] by o9a(b)=[o9(ab)/og(a)] for all b e X  ~. It can be shown 
(Foulis and Randall, 1974) that o9, is again a weight function for the com- 
pound manual ~'c, and we shall refer to o9a as the weight function ob- 
tained by operationally conditioning o9 by the outcome a. In Foulis and 
Randall (1974), we showed that this notion of operational conditioning is 
compatible with the usual notion of 'conditioning' in quantum physics. 
Just as we can condition by d%outcomes,  so also we can condition by 
d~-events. Indeed, suppose that ogef2(d  ¢) and that D is an de-event 
with og(D) #0 .  Define coo: X ~ [  0, 1] by ogo(b) = [og(Db)/og(D)] for b e X  ~. 
(Note that Db is again an de-event.) If we put A = {d~D [ og(d) # 0}, then A 
is a nonempty de-event  and we can write 090 as a convex combination 
ogo=~d~atdogd, where td=[og(d)/og(D)] for each deA.  Since a convex 
combination of weight functions is again a weight function, then 

If o9 is an extreme point of the convex set t 2 ( d  ~) - a so-called pure 
weight - then it can be shown (Foulis and Randall, 1974) that o9~ will 
again be an extreme point of O(d~). Thus, operational conditioning by 
d%outcomes will preserve pure weights, whereas operational condi- 
tioning by d~-events in general will not. Furthermore, it should be noted 
that in general it will not be possible to condition in this operational sense 
by operational propositions in H(~¢ ~) in any naive way, since there are 
easy examples of ~¢%events A, B for which p(A)=p(B),  but oga#ogn. In 
particular, even if E is an ~¢C-operation, cog need not coincide with 09 - the 
operation E need not be 'gentle' for the regular state o9. 

If o9eg2(~¢ ~) is interpreted as a complete stochastic model in the 
frequency sense, then oga(b) c a n  be regarded as the 'long-run relative 
frequency' with which the outcome b will be secured (as a consequence of 
compound operations for which it could be secured) immediately after 
the execution of a compound operation for which the outcome a was 
secured. Here, there is a definite temporal order involved - a occurs first, 
then b. Moreover, in general, there is no temporal symmetry, as can be 
seen by the failure of the classical multiplication rule: o9~ (b) og(a) need not 
coincide with cob(a ) co(b). 

Suppose h e X  c is a transformation, that is, {h}e~¢ ~. Then, for any 
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cocO(de), co(h)=l, so that cob is defined; indeed, coh(b)=co(hb) for all 
b e X  c. If c o =  2islticoi, where each ti>>,O and ~ i ~ t t i = l ,  then cob 
= ~i~ i ti (coi)h; that is, the map co ~ con preserves convex combinations. 

Suppose now that J _ d c is a nonempty collection of transformations 
such that {1} e J  and G = t )  J is equipped with a binary operation o such 
that (G, o) is a group and 1 is the group identity. We understand the 
equality g = g l  °92 to mean that, in some physical sense, the transforma- 
tion g corresponds to the transformation 91 followed by the transforma- 
tion g2. Here we must distinguish between the product g192 in the free 
monoid X c and the group product 91o92; they are mathematically 
distinct. Nevertheless, the preceding interpretation forces us to regard 
g192 and glog2 as being equivalent; hence, the physically admissible 
stochastic models co in f 2 ( d  ~) ought to belong to the set A of all co for 
which co(aglg2b)=co(a(g 1 og2) b) for all a, b e X  ~ and all gl, g2 eG. It can 
be shown that A is a n0nempty, convex, extremal subset of the convex set 
(2(de), provided of course that O ( d )  is nonempty. Furthermore, if 
coeA and b e X  ~, then cobeA ; in particular, if geG, the map from A into A 
defined by co ~ coo is a bijective map preserving convex combinations - 
as is its inverse co --, cog_ 1- 

In general, such a bijective affine map on a convex set will be called a 
symmetry for this convex set. If J / / i s  any manual and A is a nonempty 
convex subset of ~(~/),  then a symmetry on A will be referred to as a 
stochastic symmetry for J4 on A. In particular, if A =~(J[), we shall 
simply call such a symmetry a stochastic symmetry for the manual s#. If ¢ 
is an operational symmetry of the manual J / ,  then q~ defines a stochastic 
symmetry co. . ,coo¢-i  for ~/ ;  such a stochastic symmetry is called a 
regular stochastic symmetry. 

Now, let the group H act on a manual ~1, let H be a subgroup of a 
larger group G, and construct the expanded manual G~C/H as before. 
Then each g e G determines an operational symmetry ¢0 on G~C/H by 
q~g([g', x])=[gg', x] for g' eG, x e X =  t,.) d .  This operational symmetry, 
in turn, defines a regular stochastic symmetry co ~ coo ¢~-1 for the ex- 
panded manual GsI/H. This, in turn, defines an action (g, c0)--~gco 
=coo~b~ -1 of G on f2(Gsi/H) and provides a representation of G by 
stochastic symmetries for the expanded manual Gd/H.  This stochastic 
representation of G is formally identical to the induced representations 
discussed in Mackey (1968), in the following sense:define A = {Oe f2 (~¢)a I 
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(O(gh)) (x)=(0(g)) (hx) for all geG, hen, xeX}, and let ~: A ~I2(G~C/H) 
be the affine bijection given by (~(0))([g, x])=(0(g))(x)  for geG, xeX, 
0cA.  Under this affine bijection, the action of G on f2(Gd/H) is equiva- 
lent to the natural action of G on A given by (gO) (g')= O(g- lg,), g, g'eG, 
0cA. 

VII .  R A N D O M  V A R I A B L E S  A N D  M A C K E Y  O B S E R V A B L E S  

In orthodox quantum physics, the observables are represented mathemat- 
ically by self-adjoint operators; that is, according to the spectral theorem, 
as projection-valued measures - a concept generalized by Mackey (1963) 
to proposition-valued measures. On the other hand, the random variables 
of orthodox statistics are mathematically represented by measurable 
functions (Kolmogorov, 1933). Both of these related concepts are readily 
available to us as follows: 

Let d be a Dacey manual with log ic / / (d ) .  By a block • in the ortho- 
modular poset / / (~¢) ,  we mean a maximal Boolean suborthomodular 
lattice i n / / ( d ) .  If B is such a block, we denote the Stone space of ~ by 
S(B). It is useful to regard S(B) as the outcome set for a 'virtual operation' 
that is a 'common refinement' for all of the operations E in d affiliated 
with B in the sense that p(D)eB for every event D _ E .  This idea can be 
made more precise in terms of the so-called refinement ideals discussed in 
Randall and Foulis (1973). 

Motivated by Mackey (1963), we define a Maekey observable for d to be 
a mapping A sending each real Borel set A onto an operational propo- 
sition A (A) in / - / (d )  in such a way that the following conditions hold: 

(1) A (0) = 0 and A (g~) = 1. 
(2) If A1 and A 2 are disjoint, real Borel sets, then A(AI)IA(A2). 
(3) If (A, [ n =  1, 2 .... ) is a countable sequence of pairwise dis- 

A o0 A,, then A(A) is the joint real Borel sets with = U . = x  
supremum in/-/(~¢) of the family ( A ( A , ) [ n  = 1, 2,...). 

Note that we do not assume that H ( ~ )  is a-complete, but only that the 
required suprema exist. Intuitively, we regard the operational proposition 
A(A) as corresponding to an assertion that a 'measurement' of the ob- 
servable A yields a real number belonging to the Borel set A. Evidently, 
any two operational propositions in the image of the mapping A will 
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commute i n / / ( d ) ;  hence, there will exist at least one block B o f / / ( d )  
such that A(A)e B for every real Borel set A. We call such a B an A-block 
in H (d). 

Each operational proposition p(D) in the A-block B corresponds to a 
unique compact open subset ¢(p(D)) of the Stone space S(B); q5 is an 
isomorphism of the Boolean algebra B onto the field of all compact open 
subsets of S(B). We define a B-random variable to be a Baire measurable 
real-valued function on S(B) and we say that such a B-random variablef 
corrresponds to the Mackey observable A if, for each real Borel set A, the 
symmetric difference of q~ (A (A)) and f - l ( A )  is a meager subset of S(B). 
Notice that two B-random variables f and g which correspond to the 
same Mackey observable A are equivalent in the sense that {seS(B) [ 
f(s)%g(s)} is a meager subset of S(B). 

A random variable f corresponding to a given Mackey observable A 
can be constructed as follows: first select an A-block B. For each real 
number t, let M t = q5 (A ( -  0% t]), so that M t is a compact open subset of 
S(B). Let No be the intersection of all of the sets M t and let N1 be the inter- 
section of all of the sets S(B)\Mt, as t runs through the real numbers. Put 
N - - N  O u N 1 and U = S(B)\N, so that N is a dosed nowhere dense Baire 
subset of S (B) and U is an open dense subset of S(B). Define a real-valued 
func t ionfon  S(B) by putting f - -  0 on N and f ( s )=  inf{t ]seMt} for se  U, 
noting that f is a Baire measurable function on S (B) and that f is continu- 
ous on U. Obviously, the B-random variable f corresponds to the original 
Mackey observable A. If g is any B-random variable, then g will corre- 
spond to A if and only if g is equivalent to f Furthermore, if the Mackey 
observable A is bounded in the sense that A (A) =- 1 for some bounded open 
interval A on the real line, then U = S(B) a n d f i s  actually continuous on 
S(B). 

If B is a block in H ( d ) ,  there will (in general) exist B-random variables 
that do not correspond to any Mackey observable; however, if B happens 
to be a ~r-complete Boolean algebra, then any B-random variable g will 
correspond to some Mackey observable A for which B is an A-block. 
Clearly, ifA and B are two Mackey observables and if B is both an A-block 
and a B-block, then A = B if and only if A and B correspond to equivalent 
B-random variables. 

Suppose now that c~ is a state on the orthomodular poset H(~¢) and 
that B is a block in H(~¢) with Stone space S(B). The restriction c~lB of c~ 
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to the Boolean algebra 6 is then a state on 6; hence, it induces a finitely 
additive probability measure ~* on the field of compact open subsets of 
S (6). By Heider (! 958, p. 216), ct* admits a unique extension to a countably 
additive probability measure as defined on the a-field of Baire subsets of 
S(6). Thus, if f is a 6-random variable, we can define the expectation 
value o f f  in the state a by n:(f ~)=Ss fdas, S=S(6) ,  provided that this 
integral exists. If~l B is not only finitely additive, but countably additive 
on B, then ~s vanishes on all meager Baire subsets of S(6); hence, in this 
case, ~:(f, ~) = n:(g, ~) will hold for equivalent B-random variablesfand g. 

I fA is a Mackey observable for ~¢, B is an A-block in/-/(~¢), and ~ is a 
state on H(~¢), then we define the expectation value of A in the state ~ by 
~:(A, ~)= ~:(f ~), wheref is  the particular 6-random variable constructed 
as above to correspond to A. Evidently, if ~ is countably additive on B, 
then ~ o A is a Borel probability measure and E(A, ~) coincides with the 
expected value of the probability distribution ct o A. 

V I I I .  TH E P R O T O T Y P E S  -- C L A S S I C A L  P R O B A B I L I T Y  

A N D  O R T H O D O X  Q U A N T U M  M E C H A N I C S  

Above, we have generalized many of the basic notions of quantum physics, 
in particular, observables and states, within the operational context of 
empirical logic. Now, we shall examine these notions in more detail in 
connection with both classical probability theory and orthodox quantum 
mechanics. 

Since the publication of Kolmogorov's (1933) well-known monograph, 
it has been generally appreciated that all classical probability questions 
can be cast in terms of a probability space ( X , ~ ,  P), where X is a non- 
empty set, ~ is a a-field of subsets of X, and P is a normed measure 
defined on ~-. The classical random variables of interest can then be rep- 
resented as ~--measurable functions on X. We regard X as being the set 
of all outcomes of a (perhaps idealized) physical operation. An event 
D ~  is construed as being an observable event in some appropriate 

X Do sense; hence, a countable partition = Ui= 1 Xi of X into disjoint non- 
empty observable events is regarded as representing a physically acces- 
sible coarsened version of the original operation. 

Thus, let ~ consist of all countable ~'-measurable partitions of X. It is 
easy to check that d is a Dacey manual and moreover that the logic 
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/ / ( d )  is isomorphic to the a-field ~ (a countably complete Boolean 
algebra) under the correspondence that associates p({D}) with the non- 
empty set D e ~ and associates p (0) with 0e ~ .  Notice that any countable 
collection of propositions in / - / (d)  is simultaneously testable. Also, the 
weights coef2(~¢) are in natural one-to-one correspondence co~--~P with 
the normed measures P defined on the a-field ~', that is, the regular states 
o n / / ( d )  correspond to the normed measures on ~ .  In general, there may 
exist nonregular states on//(~¢) corresponding to finitely additive, but 
not countably additive, probability measures on ~ .  Evidently, the prob- 
ability measures concentrated on points of X provide a strong set of 
regular states and these states are deterministic in the sense that they can 
assume only the values 0 or 1. 

Clearly, there is but one block B in H (d), namely, B = / / ( d ) .  Since B 
is a-complete, then, as noted earlier, there is a natural one-to-one cor- 
respondence between Mackey observables for ~¢ and equivalence classes 
of B-random variables. Notice that if Y is a real-valued ~-measurable 
function defined on X - that is, if ¥ is a random variable in the classical 
sense - then Ydefines a unique Mackey observable A for ~¢ in such a way 
that, for each real Borel set A, A(A) is the proposition in / - / (d)  corre- 
sponding to the set Y-I(A)e°J. In this way, we obtain a one-to-one 
correspondence Y.-.A between ~-measurable functions Y on X and 
Mackey observables A for d .  Consequently, there is here a one-to-one 
correspondence between random variables in the classical sense defined 
on the measurable space (X, ~) and equivalence classes of B-random 
variables for the manual d .  A classical random variable will be bounded 
if and only if there is a (necessarily unique) continuous B-random variable 
in its corresponding equivalence class. In this way, the bounded, classical 
random variables are in natural one-to-one correspondence with the 
continuous B-random variables. 

Since the publication of the celebrated monographs of Dirac (1930) and 
von Neumann (1932) the customary mathematical framework for or- 
thodox quantum mechanics has been a separable, complex, infinite 
dimensional Hilbert space ~ .  Recall that here the physical observables 
are presumed to correspond to self-adjoint operators on g and that the 
latter (by the spectral theorem) correspond to Mackey observables. In 
particular, the projection operators correspond to quantum mechanical 
propositions (von Neumann, 1955, p. 247) and the collection P of all such 
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projections is called the quantum logic for ~ .  The quantum logic P 
forms a complete or thomodular  lattice and the quantum mechanical 
states are customarily regarded as being the states on the orthologic P 
which are a-additive. According to Gleason's (1957) theorem, these 

states can be represented mathematically by von Neuman  density opera- 
tors. 

By analogy with the above classical situation, we now form the manual  
consisting of all countable collections of pairwise, orthogonal non- 

zero projections in P that sum to the identity. A g a i n , / / ( d )  is naturally 

isomorphic to P. In this case, a countable collection of propositions in 
/7 ( d )  is simultaneously testable if and only if the corresponding projec- 
tions in P commute  algebraically with one another. Moreover, the wieghts 
in f2(d)  are in natural one-to-one correspondence with the quantum 
mechanical states - that is, the regular states f o r / / ( d )  are exactly the 
countably additive states - and these form a strong set of states. 

Since H(~¢) is complete, then the blocks B of H ( d )  are complete 
Boolean algebras. As a consequence, if B is such a block, then every 

B-random variable corresponds to a Mackey observable, and therefore 
to a self-adjoint operator  whose spectral projections correspond to 
propositions in this block. 

University o f  Massachusetts 
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