MORPHOLOGICAL RESPONSES AMONG CROP SPECIES TO FULL-SEASON EXPOSURES TO ENHANCED CONCENTRATIONS OF ATMOSPHERIC CO₂ AND O₃†

C. MULCHI¹, B. RUDORFF¹, E. LEE², R. ROWLAND² and R. PAUSCH²

¹ Department of Agronomy, University of Maryland, College Park, MD, 20742 USA, ² Climate Stress Laboratory, U.S. Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA.

Abstract: Field studies using open-top chambers were conducted at USDA-BARC involving the growth of soybeans ('89 & '90), wheat ('91 & '92), and corn ('91), under increased concentrations of atmospheric CO₂ and O₃. Treatment responses were compared in all cases to plants grown in charcoal-filtered (CF) air (seasonal 7-h mean = 25 ± 3 n mol O₃ mol⁻¹) having 350 or 500 μ mol CO₂ mol⁻¹. Elevated seasonal O₃ levels for the soybean, wheat, and corn studies averaged 72.2±4, 62.7±2, and 70.2 n mol O₃ mol⁻¹, respectively. Results presented were obtained for plants grown in silt loam soil under well-watered conditions. Grain yield increases in response to elevated CO₂ in the absence of O₃ stress averaged 9.0, 12.0, and 1.0 % for soybean, wheat, and corn, respectively. Reductions in grain yields in response to the elevated O₃ treatments at 350 μ mol CO₂ mol⁻¹ averaged 20.0, 29.0 and 13.0% for soybean, wheat, and corn, respectively. Reductions in grain yields in response to elevated O₃ at 500 μ mol CO₂ mol⁻¹ for soybeans and harvest index in wheat were significantly reduced by O₃ stress at 350 μ mol mol⁻¹ CO₂ but not at 500 u mol mol⁻¹ CO₂. Seed weight 1000⁻¹ for soybeans and wheat was significantly increased by CO₂ enrichment and decreased by O₃ stress. Seed weight 1000⁻¹ in corn was increased by O₃ stress suggesting that O₃ affected pollination resulting in fewer kernels per ear.

Key words: Global climate change, photochemical oxidants.

[†] Scientific Article No. A7784, Contribution No. 9105, Maryland Agric. Exp. Sta., Univ. of MD, College Park, MD 20472.

1. Introduction

Progressive changes currently taking place in the earth's atmosphere regarding the increasing concentrations of gases such as CO_2 , CH_4 , O_3 , N_2O , and chlorofluorocarbons (CFC's) have prompted concerns about future impacts such changes may have on the earth's food and fiber crops (Krupa and Kickert, 1989; Kimball, 1986; Kimball et al., 1990; Adams, et al., 1990; Allen, 1990; Mulchi, et al., 1992; and Stockle, et al., 1992). Factors being linked to changes in the atmospheric composition include: acidic deposition; shifts in the solar radiation spectra reaching the soil surface with particular emphasis on ultraviolet B; and increased ambient temperatures which will affect relative humidity, evapotranspiration, clouds and precipitation patterns (White, 1989; Kimball, et al., 1990).

Over the past century, atmospheric CO₂ levels have risen from approximately 270 μ mol CO₂ mol⁻¹ during the preindustrial period of the late 1800's to about 355 μ mol CO₂ mol⁻¹ in the mid 1990's. Based on the current rate of increase in CO₂ of 0.4% per year, the earth's atmosphere will likely double in CO₂ concentration by the middle of the 21st century. The major causes for the rapid rise in CO₂ concentrations include the burning of fossil fuels as a primary energy source in combination with deforestation practices (Burke and Lashof, 1990). Emissions from liquid fossil fuels are primary sources for VOC's (volatile organic compounds) and the burning of fossil fuels are major sources for

ACID REIGN '95?

 NO_x , precursors which form O_3 in the presence of ultraviolet radiation. The depletion of O_3 in the stratosphere associated with the buildup of CFC's are partially being offset by the increase in tropospheric O_3 concentrations (Krupa and Kickert, 1989).

The beneficial effects of atmospheric CO_2 enrichment on crop productivity have been documented by numerous investigators as reviewed by Krupa and Kickert (1989). Among the positive effects from enhanced CO_2 concentrations on plants include: increased photosynthesis, leaf area, dry matter accumulation and yield in C3 crops; decreased stomatal conductance and increased water use efficiency in both C3 and C4 plants and increased specific leaf weight and crop maturation rate.

The effects of increased exposures to chronic O_3 air pollution on crop species have likewise been extensively examined since O_3 was identified as among the most damaging components in photochemical smog (Heggestad and Bennett, 1984; Heck, et al., 1988; Krupa and Kickert, 1989). Among the negative impacts on crops attributed to chronic O_3 exposure include: decreased photosynthesis, leaf area, dry matter production and yield. Crops sensitive to O_3 stress exhibit increased specific leaf weight, decreased stomatal conductance and water use efficiency. Crops typically become less sensitive to O_3 during periods of moisture stress but more sensitive to O_3 under mineral deficiency such as nitrogen (Krupa and Kickert, 1989).

Mulchi et al., (1992) grew soybeans (<u>Glycine max</u>. Merr.) full-season in open-top chambers in 1989 at 350, 400 or 500 μ mol CO₂ mol⁻¹ under three air quality regimes: charcoal filtered (CF) air, nonfiltered (NF) air, and nonfiltered air + 40 n mol O₃ mol⁻¹ (NF+O₃). They reported: a) leaf photosynthesis rates were stimulated by increased CO₂ concentration even in the presence of high O₃ exposure; b) plant biomass, pods per plant, and grain yields were likewise stimulated by increased CO₂ in the presence of high O₃ exposure; c) the negative impact of current ambient O₃ concentrations on growth and productivity of soybeans were largely counteracted by increasing the CO₂ concentrations by 150 μ mol CO₂ mol⁻¹; and d) the effect of enhanced CO₂ in combination with O₃ exposure on stomatal conductance appeared to be additive. The objectives of the present investigations were to examine the effects of increased atmospheric CO₂ and O₃ on winter wheat (<u>Triticum aestivum L.</u>) and corn (<u>Zea mays L.</u>). Also, results from a sequel soybean investigation in 1990 were combined with data from the 1989 study.

2. Materials and Methods

Open-top chambers (OTC's) described by Heagle, et al., (1973) were used in all investigations Table 1. The general procedures followed in all instances were similar to that described for the 1989 soybean study (Mulchi et al., 1992). The studies were carried out at the USDA Beltsville Agricultural Research Center (BARC) at Beltsville, Maryland on a Codorus silt loam soil. The soil was amended with fertilizers at rates recommended for the individual crops and pre- or post-emergence herbicides were applied to control weeds. Sprinkler irrigation units were utilized to maintain soil moisture levels near field capacity during periods of below normal rainfall amounts or distribution. Due to the high moisture holding capacity in the silt loam soil, no symptoms of moisture stress were observed on any of the plants. No irrigations were necessary during the two wheat studies (Rudorff, 1993).

2.1 Carbon Dioxide and Ozone Treatments.

The chambers were installed over the plots soon after seedling stands were insured for

VOLUME 3

TABLE 1

Year Species Cultivar Design Reps **Chamber Treatments** 3 x 3 1989 Soybean Clark 2 350,400 & 500 µ mol CO, mol'; Factorial CF, NF & NF+40 n mol O, mol" 3 x 3 350,400 & 500 µ mol CO2 mol-1; 1990 Soybean Clark 2 Factorial CF, NF & NF+40 n mol O, mol⁻¹ 1991 Wheat 2 x 2 4 350 & 500 µ mol CO2 mol-1; Massev NF & NF+40 n mol O3 mol1 Pioneer 3714 2 x 2 3 350 & 500 µ mol CO2 mol-1; 1992 Corn Factorial CF & NF+40 n mol O₂ mol⁻¹ 2 x 2 350 & 500 µ mol CO2 mol-1; 1992 Wheat Saluda 4 Factorial CF & NF+40 n mol O, mol-1

Summary of species, cultivars, and chamber air quality treatments from 1989-1992. USDA-BARC.

the soybean and corn; however, the wheat plots were chambered in late March immediately following the application of ammonium nitrate at 60 kg ha⁻¹ N prior to the beginning of spring growth. Gas treatments were initiated normally within 10 days following chamber installation and extended until physiological maturity. Carbon dioxide was injected into the blowers at rates sufficient to raise the chamber air concentrations to the levels listed in Table I for 12 h day⁻¹ (0700-1800 h EST). The flow of CO₂ to the OTC's was metered through flowmeters and individual rates were checked daily.

Ozone was injected into blowers supplying air to the NF + O_3 treatments (Table I) only 5 day wk⁻¹ for 7 h day⁻¹ (1000-1600 h EST). No O_3 additions were made on weekends or during periods of rain; however, the plants in the NF + O_3 treatments were exposed to ambient O_3 concentrations during the weekends. The O_3 concentrations in the high O_3 treatments were increased by an average of 40 n mol O_3 mol⁻¹ above ambient levels; however, the maximum O_3 levels were limited to 120 n mol O_3 mol⁻¹, the current national secondary air quality standard for O_3 in the USA. During the daily fumigation periods, air samples were continuously collected from approximately 10 cm above the crop canopy using Teflon[•] tubes (6.4 mm O.D.) attached through 3-way solenoid valves to a central vacuum system. The O_3 levels in all chambers were monitored on an hourly basis using one of several O_3 monitors calibrated to U.S.E.P.A. standards by the Maryland Department of Environment (Mulchi et al., 1992; Rudorff, 1993).

3. Results and Discussion

3.1 Chamber Air Quality Treatments.

Summaries of the seasonal 7-h (1000-1600 EST) mean O₃ concentrations for each of the studies conducted over the period 1989-1992 are listed in Table II. The charcoal filters typically reduced the chamber O₃ concentrations to levels 50% below the existing ambient levels. The resulting O₃ concentrations in the carbon filter (CF) treatments were below threshold concentrations (i.e. 40 n mol O₃ mol⁻¹) which cause phytotoxic effects on the crops (Heck et al., 1988; Krupa and Kickert, 1989) being investigated. The

TABLE II

			Chamber		1
Year	Сгор	Charcoal Filter (CF)	Nonfilter (NF)	Nonfilter +O3 (NF+O3)	Ambient Air
1989	Soybean	24.1	42.5	68.8	43.8
1990	Soybean	27.8	54.8	76.6	55.5
1991	Wheat	18.6	-	60.7	45. 5
1991	Сога	28	—	70.2	60.8
1992	Wheat	20.2	-	64.8	40.7

Ambient and chamber seasonal 7-h mean O₃ concentrations (n mol O₃ mol-¹ for experiments at USDA-BARC 1989-1992.

 $NF+O_3$ treatments were \geq to the threshold levels where phytotoxic effects from O_3 exposures have been reported. The seasonal 7-h mean O_3 concentrations for the NF treatments during the summer of 1989 and 1992 was slightly below the 55 \pm 5 n mol O_3 mol⁻¹ range typically found for Maryland conditions (Mulchi, 1993).

3.2 Soybeans.

Combined over years, grain yield and oil content increased and grain protein content decreased in soybeans in response to atmospheric CO₂ enrichment (Table III). The grain yield increases were likely caused by the combination of increased pod plant⁻¹ and seed wt.1000⁻¹, both of which trended upward with increased levels of atmospheric CO₂. Increased exposure to O₃ caused significant reductions in seed wt.1000⁻¹ and pod plant⁻¹ which resulted in progressively lower grain yields. Grain oil content was lower in the high O₃ treatment compared to the CF control. Increasing the atmospheric CO₂ concentration by 150 μ mol CO₂ mol⁻¹ negated the negative impact of O₃ in the NF treatments on pods plant⁻¹, grain yield, oil and protein contents thereby confirming the initial report by Mulchi et al., (1992). Recent studies by Pausch (1993), using ¹³C-labled CO₂, showed that soybean plants exposed to chronic high O₃ concentrations retained larger quantities of the ¹³C in their leaves and thereby transported smaller quantities of ¹³Clabeled photosynthate to roots and nodules compared to plants grown in CF air. The stimulation in pod counts in response to increased CO₂ concentration, especially under high O_3 exposure, suggests that the added CO_2 may have a role in protecting the plant's ability to transport photosynthate from source to sinks. Studies designed to provide greater insights into the mechanism(s) involved are in progress.

3.3 Wheat.

The added CO_2 likewise stimulated significant increases in grain yields, plant biomass, straw, harvest index and seed wt. 1000⁻¹ in wheat (Table IV). As was reported by Rudorff (1993), these results can be attributed to several factors including: a) the

VOLUME 3

TABLE III

Chamber Trea	tments	Grain Yields	Seed Wt.	Seed Protein	Seed Oil	Pods Plant ¹
CO ₂	O ²	g/m²	g/100	%	%	_
	-			Year Means		
	1989	204.3	17.8	39.6	21.9	56.8
	1990	191.8	12.1	41.8	20.1	54.6
	Stat. Sign (P ≤ 0.05)	*	*	*	*	NS
		<u> </u>	C	0, Treatment M	ean s	
Ambient		184.1b	14.4a	41.1a	20.6b	53.8a
+50 µ mol mot'		200.9a	14.6a	40.6ab	21.2a	56.3a
+150 μ mol mol ^{1.}		208.9a	15.8a	40_5b	21.1a	57.0a
	LSD (0.05)	8.4	NS	0.6	0.4	NS
				O, Treatment Me	ans	
	CF	220.7a	16.2a	40.6a	21.0a	57.5a
	NF	205.46	15.1ab	40.6a	21.1a	56.0ab
	$NF + O_1$	167.8c	13.6b	41.0a	20.7Ь	53.5b
	LSD (0.05)	8.4	1.8	NS	0.3	3.7
			C0: 10), Treatment Rela	tive Means*	
Ambient	CF	1.00bc	1.00bc	1.00abc	1.00bc	1.00ab
	NF	0.934	1.09abc	1.00abe	1.00bc	1.02ab
	NF+O,	0.75e	0.96bc	1.01a	0.98c	0.94b
Ambient +50 μ mol CO ₂ mol ⁻¹	CF	1.12a	1.15ab	1.00abc	1.01abc	1.10a
	NF	1.00bc	1.03bc	0.98bc	1.05a	1.06ab
	NF+03	0.80e	0.91c	1.00abc	1.00bc	0.94b
Ambient +150 µ mol CO ₂ mol ¹	CF	1.09a	1.26a	0.98bc	1.03ab	1.07a
	NF	1.06ab	1.07abe	1.00abc	1.00bc	1.01ab
	NF+O ₃	0.89d	1.01bc	1.00abc	1.02ab	1.06ab
	LSD (0.05)	0.06	0.21	0.02	0.03	0.12

Summary of the interactive effects of atmospheric CO₂ enrichment and chronic O₃ air pollution on soybean combined over years. USDA-BARC 1989-1990.

+Means are relative to ambient ambient CF air treatment means.

NS, not statistically significant at P ≤ 0.05; *, statistically significant at P ≤ 0.05. Column means having similar letters

are not significantly different at P≤0.05.

combination of increased leaf photosynthesis and reduced photorespiration which results in an increased supply of photosynthate from the source under elevated CO₂; and b) an increase in productive tillers per plant thereby increasing the number of spikes per unit area. In the absence of O₃ stress, the added CO₂ stimulated seed wt. 1000⁻¹ by 7% and grain yield by 12%. Grains per spike (data not shown) were not greatly influenced, but straw yields showed a modest 4% increase in response to the added CO₂.

Combined over CO_2 treatments, the increased exposure to O_3 produced significant reductions in grain yields, plant biomass, straw, harvest index and seed wt. 1000⁻¹. Under ambient CO_2 conditions, exposures to high O_3 under ambient CO_2 caused

reductions in seed wt. 1000^{-1} , plant biomass, and grain yield equal to 10, 15 and 20% respectively compared to the CF control. However, the effects from high O₃ exposures under elevated CO₂ were greatly diminished and were not significantly different from the ambient CF control except for seed wt. 1000^{-1} . Compared to CF air, harvest index values were reduced by 7% in response to the high O₃ treatments under ambient CO₂. Harvest index values were raised in response to elevated CO₂ under both O₃ regimes with the differences between the two O₃ regimes being nonsignificant. As was noted for soybeans, the added CO₂ would appear to protect the ability of the plant to partition photosynthate to the developing grain thereby negating the negative impact of O₃ stress

			Wheat	Wheat (1991 and 1992)	992)				Corn (1991)	0	
Сћатње	Chamber Treatments	Grain Yield	Dry Biomass	Straw	Harvest Index	Seed wt.	Grain Yield	Dry Biomass	Stalk	Harvest Index	Seed w1.
CO,	0,	g/m1	g/m²	g/m²	(%)	g/1000	g/m²	g/m ¹	g/m ²	(%)	g/1000
						CO ₁ Treat	CO ₁ Treatment Means	_			
ambient +150 µmol mol ⁻¹	 Stat. Sign. (P < 0.05)	476 574 **	1400 1570 **	923 996 *	34.0 36.6 **	31.0 33.7 **	1167 1210 NS	2005 2079 NS	858 870 NS	58.1 58.1 NS	333 327 NS
						O, Treat	O, Treatment Means				
	CF	562	1560	1000	36.0	33.8	1244	2103	859	59.1	325
	NF + O, Stat. Sign. (P < 0.05)	**	1405	¢16	34.6	30.9 **	1133	1981 NS	618 SN	57.2 *	335 *
					CO	CO ₂ x O ₃ Treatment Relative Means ⁺	ent Relative	Mcans ⁺			
ambient	CF NF + 0,	1.00 b 0.80 a	1.00 h 0.85 a	1.00 b 0.88 a	1.00 b 0.93 a	1.00 b 0.89 a	1.00 b 0.87 a	1.00 a 0.91 a	1.00 ab 0.94 a	1.00 ab 0.97 b	1.00 ab 1.02 b
ambient	CF	1.12 c	1.07 bc	q F0.1	1.05 b	1.07 c	1.01 b	1.00 a	0.99 ab	1.01 a	0.98 a
+150 µmol mol'	NF + 0, LSD (0.05)	1.04 bc 0.09	1.01 b 0.07	0.99 b 0.09	1.03 b 0.07	0.99 b 0.07	0.94 ab	0.98 a	1.02 b 0.07	0.97 b	1.01 b 0.03

TABLE IV

+ Means are relative to ambient CF air treatment means.

*, ** Statistically significant at $P \le 0.05$ or 0.01, respectively (Rudorff, 1993).

Column means followed by similar letters are not significantly different at P_{\leq} 0.05.

ACID REIGN '95?

VOLUME 3

on harvest index and grain yield in wheat. Followup studies to identify the mechanisms by which CO_2 reduces the effects of O_3 stress on wheat are also in progress. 3.4 Corn.

Corn, a C4 species, showed no significant differences in response to the elevated CO_2 treatment when combined over O_3 treatments or in the absence of chronic O_3 exposures. (Table IV); however, significant effects of O_3 treatments on grain yield, harvest index and seed wt. 1000⁻¹ were found when combined over CO_2 treatments. Under ambient CO_2 levels, the high O_3 treatment reduced grain yield by 13% and harvest index by about 3% compared to the CF controls. Under elevated CO_2 , grain yield was reduced only 6% by the elevated O_3 with the differences between the means for the two O_3 regimes being nonsignificant. Although the effects of CO_2 enrichment regarding yields for corn were less spectacular than were found for the C3 species soybeans and wheat, the added CO_2 again exhibited a role in reducing the negative impact of the high O_3 treatment. It is noteworthy that the high O_3 treatment resulted in slightly higher seed wt. 1000⁻¹ compared to the ambient CF control. These results were attributed by Rudorff (1993) to a slight reduction in kernels per ear likely caused by reduced pollination in the high O_3 treatments.

4. Conclusions

A series of investigations were conducted at USDA-BARC over the period 1989 to 1992 which involved full-season exposures of soybeans, wheat, and corn to single and combined atmospheric enrichments of CO_2 and O_3 . The C3 species exhibited significant gains in biomass and yields in response to the elevated CO_2 both in the presence or absence of O_3 . No such gains in response to CO_2 enrichment were observed for corn; however, the added CO_2 did reduce the negative effects from the high level O_3 exposures. Results initially reported by Mulchi, et al.,(1992) concerning the role of elevated CO_2 in partially counteracting the negative effects caused by current ambient levels of O_3 on soybeans were confirmed and expanded to include wheat and corn. The mechanism(s) involved concerning a possible protective role for CO_2 against O_3 are largely unknown. In addition to previously recognized stomatal actions, the results from the present studies support a hypothesis that the added CO_2 somehow protects the plant's ability to partition photosynthates to developing sinks such as grains.

Acknowledgements

These studies were supported by the Agricultural Research Service, U.S. Department of Agriculture, Climate Stress Laboratory at the Beltsville Agricultural Research Center, Beltsville, Maryland, and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland.

References

Adams, R.M., Rosenzweig, C., Pert, R.M., Ritchie, J.T., McCarl, B.A. Glyer, J.D., Curry, R.B., Jones, J.M., Boote, K.J. and Allen, Jr., L.H.: 1990. Global Climate Change and U.S. Agriculture, Nature. 345, 219-224.

Allen, Jr., L.H.: 1990, J. Environ. Qual. 19, 15-34.

- Burke, L.M. and Lashof, D.A.: 1990, Greenhouse Gas Emissions Related to Agriculture and Land-Use Practices, Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture, ASA Special Publication Number 53, American Society of Agronomy, Madison, WI 27-44 pp.
- Heagle, A.S., Body, D.E. and Heck, W.W.: 1973, J. of Environ. Qual. 2, 365-368. Heck, W.W., Tingey,
- D.T. and Taylor, O.C. (Eds): 1988, Proc. Int. Conf. Assessment of Crop Loss From Air Pollutants,

Elsevier Applied Science, London 552 pp.

- Heggestad, H.E. and Bennett, J.H.: 1984, Impact of Atmospheric Pollution on Agriculture, Air Pollution and Plant Life, Treshow, M. (Ed.) John Wiley & Sons New York 357-395 pp.
- Kimball, B.A.: 1986, Influence of Elevated CO₂ on Crop Yield Carbon Dioxide Enrichment of Greenhouse Crops, Vol. II - Physiology Yield and Economics Enoch, H.2. and Kimball, B.A. (Eds.) CRC Press Boca Raton, FL 105-115 pp.
- Kimball, B.A., Rosenberg, N.J. and Allen, Jr., L.H. (Eds.) 1990, Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture, ASA Special Publication No. 53. Amer. Soc. of Agronomy, Madison WI 133 pp.
- Krupa, S.V. and Kickert, R.N.: 1989, The Greenhouse Effect: Impacts of Ultraviolet-B (UV-B) Radiation, Carbon Dioxide (CO_2) and Ozone (O_2) on Vegetation, Env. Pollut. 61, 263-393.
- Mulchi, C.L.: 1993, Estimating the Economic Impact of Air Pollution on Maryland Agriculture, Maryland Agriculture Experiment Station, University of Maryland, College Park, MD 22 pp.
- Mulchi, C.L., Slaughter, L., Saleem, M., Lee, E.H., Pausch, R. and Rowland, R.: Agri. Ecosystems and Environ. 38, 107-118.
- Pausch, R.: 1993, Use of ¹³C and ¹⁵N Isotopes to Study Effects of Ozone on Carbon and Nitrogen Metabolism in Soybeans Grown in Open-Top Chambers, Ph.D. Thesis, University of Maryland, College Park, MD 170 pp.
- Rudorff, B.F.T.: 1993, Interactive Effects of Enhanced Tropospheric Ozone and Carbon Dioxide on Wheat and Corn, Ph.D. Thesis, University of Maryland, College Park, MD 192 pp.
- Stockle, C.O., Dyke, P.T., Williams, J.R., Jones, C.A., and Rosenberg, N.J.: 1992, Agricultural Systems 38, 239-256.
- White, J.C., (Ed.): 1989, Global Climate Change Linkages, Acid Rain, Air Quality and Stratospheric Ozone, Elsevier Applied Science, New York 261 pp.