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A stochastic model is proposed to describe time-dependent lethal effects of toxic compounds. It is based on 
simple mechanistic assumptions and provides a measure for the toxicity of a chemical compound, the so-called 
killing rate. The killing rate seems a promising alternative for the LC50. The model also provides the no-effect 
level and the LC50, both as a function of exposure time ~. The model is applied to real data and to simulated 
data. 
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1. Introduction 

The analysis of survival data is important in toxicological studies. In many laboratories, bioassays 
are done routinely to investigate toxicological properties of new chemical compounds. Determina- 
tion of LC50 values and no-effect concentrations (NEC) is the main objective. The LC50 value of a 
compound is the concentration expected to cause death of 50% of the population within a fixed 
time. The no-effect concentration is the maximal concentration having no lethal effect within the 
duration of the experiment. Both LC50 and NEC depend on the species chosen, the exposure time, 
the temperature at which the experiment is performed, the age of the experimental animals, etc. In 
routine experiments, animals are exposed to a compound in a range of concentrations. After a fixed 
time chosen on the basis of experience and intuition, and depending on the species used, the 
numbers of survivors are counted for every concentration. The resulting LC50 and NEC estimates 
only tell something about exposure during that fixed time and as such they have a limited meaning. 
In more elaborate experiments survivorship is measured after several exposure times. This enables 
the study of the time-dependence of LC50 and NEC. 

For simple experiments, a wide variety of statistical methods is used to estimate LC50 and NEC. 
Nonparametric methods, such as moving average or (trimmed) Spearman-K~irber, as well as 
parametric methods, such as probit or logit analysis, are used to estimate LC50; for a review see 
Hoekstra (1991). Morgan (1988) reviews several extensions of the classical logit and probit models. 
Estimation methods of NECs can be found in Cox (1987). Kooijman (1981) proposed models to 
estimate NEC and (time-dependent) LC50 in various experimental designs. 

In most parametric procedures, distribution functions are chosen ad hoc to describe the stochastic 
behaviour of the data. Biological knowledge is rarely incorporated in the stochastic model. In 
this paper we develop a stochastic model based on simple assumptions that are still realistic from 
a biological point of view. The key assumption is that the hazard rate is proportional to the 
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concentration of the compound in the animal. The idea of relating the hazard rate to the dose is not 
new. Puri and Senturia (1972), Laurence and Morgan (1989), Morgan (1992, Chapter 5) proposed a 
stochastic model in which the hazard rate is a function of the concentration of the compound. 

A second assumption concerns the kinetics of the compound. We assume a simple linear one- 
compartment model. The incorporation of the kinetics of the compound in the dose-response 
model is also not new. Puff and Senturia (1972) constructed a stochastic process underlying the 
concentration in the animal. Van Ryzin and Rai (1987) used Michaelis-Menten nonlinear kinetics 
to describe the internal concentration as a function of the external concentration. They only con- 
sidered steady-state conditions, so their approach cannot be used in the study of time-dependent 
toxicity. 

The usual experimental data sets consist of counts of surviving organisms that have been exposed 
to a chemical compound at a range of concentrations during a fixed time of exposure. Most statis- 
tical methods only provide estimates in simple designs involving a single exposure time. In order to 
analyse experiments involving several exposure times, the time-dependence of the parameters must 
be modelled. Kooijman (1981) proposed an extension of the log-logistic tolerance distribution. His 
model will be compared with the present model. Carter and Hubert (1984) proposed a growth-curve 
model approach. 

Maximum likelihood methods are used to estimate the parameters of the model. To study the 
statistical properties of the estimators, we applied the method to data obtained by Monte Carlo 
simulation. In addition, we applied the method to experimental data. 

2. Modelling survivorship 

The key assumption in this paper is that the hazard rate is proportional to the concentration of the 
chemical compound in the animal, as far as it exceeds a so-called no-effect level. To be more precise, 
we assume the hazard h(t) to be proportional to the (positive) difference between the concentration 
C(t) and the no-effect level Co. Generally, we do not know the actual concentrations in the animal. 
We only know the concentration in the environment c(t). (Note that throughout this paper capital C 
is used to denote the concentration in the animal and lower-case c for the concentration in the 
environment. Symbols used are shown in Table 1.) We therefore have to make assumptions 
about the uptake dynamics of the compound in the animal. A simple model, which is still realistic 
from a biological point of view, is the so-called one-compartment model (Jacquez, 1985). 
That is, 

dC(t) _ kuc( t) _ keC.( t ) (1) 
dt 

where ke is the elimination rate and k u the uptake rate. The solution of (1) is easily found to be 

C(t) = C(0) exp(-ket) + ku exp(-ke(t - ~-))c(~-) d•. (2) 

Here we consider experimental situations in which c(t) is constant, say c(t) = c. We also assume that 
C(0) is negligibly small. Then (2) reduces to 

ku 
C(t) = ~--~ c(1 - exp(-ket)). (3) 

The ultimate concentration is given by t imt_~ C(t) = cku/ke, the ratio k u / k  e being known as the 
bioconcentration factor. If this value is smaller than the no-effect level Co, i.e. if c < Coke/ku, there 
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Table 1. List of symbols. T, M and L denote the dimensions time, mass and length. 
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Symbol Dimension Interpretation 

h T -1 
t T 
C ML -3 
Co ML -3 
e ML -3 
k, T-1 
k e T -1 
Co ML -3 
t c T 
kt L3M-1T -1 
A T -1 
t~ t L3M-1T -2 
CLso ML -3 

x/j 
p~/ 
n/j 

hazard rate 
time 
Concentration of the compound in the animal 
no-effect level in the animal 
Concentration of the compound in the environment 
uptake rate 
efimination rate 
no-effect level in the environment 
time at which C exceeds the no-effect level 
killing rate 
control mortality rate 
killing acceleration 
ultimate LC50 value 
slope parameter of the logistic distribution 
number of surviving animals at time t i and concentration ej 
probability of an animal to die between ti_ 1 and ti, at ej 
number of animals died between ti_ 1 and ti, at ej 

will be no effect at all, even after long exposure times. This defines the environmental (ultimate) no- 
effect level c o = Coke/ku. 

I f  c > Co there is a point  in time tc at which C(t) exceeds Co (see Fig. 1). F r o m  (3) te can be 
calculated to be 

tc = - ~ l n  (1 - ~ ) .  (4) 

C(t) 
C>C 0 

. . . . . .  C<CO 

////'" i 
tc 

t 
Figure 1. Accumulation curves for two values of the environmental concentration c, one below and one 
above c 0. 
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Figure 2. Survivor functions for various values of c (from top downwards 1, 2, 4, 8, 16, 32 and 64). 
Parameter values are Co = 1.5, k t = 0.1 and ke = 0.5. Left A = 0, right A = 0.05. 

The hazard rate is now given by 

h(t; c) oc C(t) - Co = ~ (c(1 - exp(-ket) )  - Co)+ 
I% 

o r  

h(t; c) c( (c(1 - exp(-ket) )  - Co)+, (5) 

where (x)+ means the maximum of  x and 0. This notation will be used frequently in the following. 
The proportionali ty constant in (5), written as kf, will be called the killing rate, as proposed in 
Kooijman (1993, p. 277). It has dimension (concentration x time) -1 and can be viewed as a measure 
for the toxicity of  the compound with respect to survival. The hazard rate can now be written as 

h(t; c) = kt(c(1 - exp(-ket) )  - Co)+. 

The survivor function S(t; c) of  the time of  dying caused by the chemical compound at concen- 
tration c, is then given by 

S(t; c) = exP(kee c(exp(-kete)  - exp(-ket) )  - kt(c - c°)(t - te)) 

1 

if c > c o and t > t c 

otherwise. 

(6) 
In this model formulation, control mortality is readily included. Assuming independence of  death 
caused by the chemical compound and death caused by natural circumstances, we can simply add 
the corresponding hazard rates. The hazard rate due to control mortality, A, will be taken constant. 
This is reasonable because the duration of  the experiments is mostly short compared with the mean 
lifetime of  the organisms used. The resulting survivor function is the one obtained in (6) multiplied 
by exp(-At) .  In Fig. 2 some survival curves are plotted with and without control mortality, for one 
choice of  parameter values. 

An interesting special case concerns extremely small elimination rates, so ke ~ 0. This occurs for 
instance with cadmium in some soil arthropods (Janssen et al., 1991). The accumulation process 
reduces to (d /d t )C = kuc, so that C(t) = kuCt if  again the initial concentration in the tissue is 
negligibly small. The no-effect level (in the environment) now equals 0, because a very small 
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Figure 3. Possible shapes of survivor curves with changing elimination rate. Parameter values (c0 = 0, 
k t = 0.5, A = 0, k~ = 0.01) (left) or 100 (right). 

concentration in the environment will result ultimately in a very high concentration in the tissue. A 
no-effect level in the tissue, i.e. the upper boundary of  the tolerance range, still exists, of  course, and 
is exceeded at tc = Co(kuc) -1. The hazard rate amounts to hc = n t c ( t -  to)+. The relationship 
between the killing acceleration n t and the killing rate k t is n t = limko_~ 0 ktke. The survival prob- 
ability is 

S(t; c) = e x p { -  at~tc((t - tc)+)2}. (7) 

This represents a Weibull distribution with shape parameter 2. 
For  very large values of  ke, on the other hand, the survivor function becomes an exponential 

function 

S( t; c) = exp(-k , t (c  - Co)+), 

which can also be seen as a Weibull function, with shape parameter 1. In Fig. 3 some possible shapes 
of  S(t; c) for varying elimination rates are shown. 

As an alternative we will discuss the model proposed by Kooijman (1981), which is an extension 
of  the standard log-logistic model. The extension involves a no-effect level and a LC50-t ime relation 
consistent with the first-order kinetics (1). It can be summarized as follows. The probability to 
survive an exposure time t at concentration c is given by 

where CLS0 is the ultimate LC50, i.e. the LC50-value after a very long exposure time. Kooijman 
(1993, p. 279) compares models (6) and (8). An important difference is the behaviour after long 
exposure times, if e > c0: in model (6) we have limt__+o ~ S(t; c) = 0 and in (8) l i m t ~  S(t; c) > O. 

3 Estimation of parameters 

In experiments which are set up to evaluate the lethal effect of  toxic compounds, the resulting data 
sets consist of  counts xij of surviving organisms on fixed times ti, i = 0 , . . . ,  r, exposed to a chemical 
compound at concentration cj, j = 1 , . . . ,  k. An example of  such a data set is given in Table 2. To fit 
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Table 2. Number of surviving guppies Poeeilia retieulata in natural sea water after exposure to the 
pesticide dieldrin. Data kindly provided by Ms T. Adema (IMW-TNO Laboratories, Delft). 

Concentration ofdieldrm (#g1-1) 
Time (d) 0 3.2 5.6 10 18 32 56 100 

0 20 20 20 20 20 20 20 20 
1 20 20 20 20 18 18 17 5 
2 20 20 19 17 15 9 6 0 
3 20 20 19 15 9 2 1 0 
4 20 20 19 14 4 1 0 0 
5 20 20 18 12 4 0 0 0 
6 20 19 18 9 3 0 0 0 
7 20 18 18 8 2 0 0 0 

the model (6) to such a data set we use the maximum likelihood (ML) method. For  this experimental 
set-up the likelihood function is not the product  of  the density function of t t in the data points 
(ti, @, since we do not know exact times of  death of the organisms. We only know the time intervals 
in which death has occurred. Before deriving the likelihood function we have to introduce some new 
symbols. 

The probability p~j of  an organism, exposed to concentration cj, to die between ti-1 and t i is given 
by PO = S( t i -1 ,  cj) - S(t i ,  cj). The number of organisms n/] which died in that period is given by 
n~j = x i - l , j  - xo. The number of  organisms surviving at t r will be denoted by nr+u. The probability 
of  surviving at t r is denoted by Pr+l,j and equals S(tr,  cj). 

The probability of  obtaining the counts x,j can now be written as a product  of  multinomial 
probabilities 

k r+lnn~ 

Pr(x_~ = x/j) = Pr(_n~ = n/j) = I I  xoj! I I  ~ .  (9) 
j = l  i = l  9" 

The log-likelihood function is then given by 

r + l  k 

g(O; (xij)) = Z E n i j l n ( p i J  ) with 0 = (co ,k t ,ke ,  A)', (10) 
i = l  j = l  

where the constant term has been ignored. Maximum likelihood estimates can be found by solving 
the vector equations 

G(O) Og r+l  k 0p~ - o o - Z  nij -o.  (11) 
i=1 j = l  P~ O0 

The information matrix I(O), defined as minus the expectation of the matrix of  second derivatives, 
can be shown to be 

,(0) ) = E 0,E ± 
j=l  i=I Pg 

This matrix can be used to estimate the asymptotic variance-covariance matrix. It can also be used 
in the so-called method of  scoring, an iteration scheme to find the ML estimates: 

Oi+ 1 = Oi + 1-1 (Oi)G(Oi). (13) 
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Table 3. Results of ML estimation on simulated data. In the first horizontal block theoretical values are 
shown: asymptotic expectations, standard deviations according to (12), multiplied by V~J,  and 
correlation coefficients. In the following blocks simulation results are shown: means, standard 
deviations (× v /~ j )  and correlation coefficients of parameter estimates of 1000 simulated data sets. 

Mean SD S D v / ~  Correlation coefficients 

Theoretical values Co 2 - 1.425 1 
k t 0.1 - 0.0875 -0.393 1 
ke 0.5 - 0.5827 0.755 -0.790 1 

Co 2.095 0.6442 1.441 1 
k t 0.1453 0.1052 0.2353 -0.377 1 
ke 0.5262 0.3721 0.8321 0.431 -0.454 1 

Co 2.033 0.4013 1.269 1 
k t 0.1179 0.0431 0.1364 -0.335 1 
ke 0.5053 0.1916 0.6057 0.635 -0.703 1 

Co 2.018 0.2970 1.328 1 
k t 0.1100 0.0251 0.1121 -0.308 1 
ke 0.4919 0.1286 0.5749 0.655 -0.748 1 

c 0 1.995 0.1863 1.318 1 
k t 0.1042 0.0137 0.0968 -0.354 1 
ke 0.4927 0.0815 0.5761 0.695 -0.799 1 

x0 j=5  

Xoj = 10 

Xoj = 20 

Xoj = 50 

As a rough measure of  goodness-of-fit we use the deviance of the model (McCullagh and Nelder, 
1989). The deviance is defined as twice the difference between the maximum achievable log likelihood 
and that attained under the fitted model. The maximum achievable log likelihood gsup ((x/j)) is obtained 
by estimating each p~ without any constraint, i.e./~,j = n~j/Xoj. Substituting this in (10) we get 

i,j \ Xoj .] 

where the summand should read 0 if n/j = 0. The difference in deviances between nested models can 
be used as a test statistic. I t  is equivalent to the usual likelihood-ratio test. The approximate dis- 
tribution of the test statistic is X~al, where d is the difference in the number  of  parameters between the 
two nested models. The deviance should not be used to test the absolute goodness-of-fit. Usually the 
asymptotic theory does not apply, because some of  the expected numbers E(nij) are too small. 

Equations (11), (12) and (13) were implemented in a computer  program written in APL. The 
numerical procedure appeared to be sensitive for starting values of  the parameters,  which cannot 
be easily found. I f  A = 0, relation (4) can be used to guess starting values for Co and ke. 

4. Monte Carlo Simulation 

We studied the performance of  M L  estimation by Monte  Carlo simulation. Data  sets resembling the 
data of  Table 2 were generated: 8 concentrations (an exponential series, 1, 1.8, 3.2, 5.8, 10, 18, 32, 
58), 8 time points (0, 1 , . . .  ,7) and fixed parameters (e0 = 2, k t = 0.1 and ke = 0.5) were chosen. 
Four  different values of  Xoj (5, 10, 20 and 50) were chosen to study the influence of  sample size. For  
every value of Xoj, 1000 data sets were generated, by simulating multinomial distributions according 
to (9) and (6). In every data set we estimated the parameters by solving (11) numerically, where the 
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Table 4. Results of ML estimation on empirical data given in Table 2. For each parameter, point estimates, 
standard deviations, and correlation coefficients are given. 

Model Parameter Units Estimate SD Correlation coefficients 

(6) A d -1 0 - - 
c o #g1-1 2.77 0.303 - 1 

k t l#g- ld  -1 0.0309 0.00549 - -0.233 1 
k e d - 1  0.727 0.201 - 0 .511 -0.790 1 

(6) A d -t  0.00835 0.00490 1 
e o #g 1-1 5.20 0.465 0.309 1 
k t l#g- ld  -1 0.0376 0.00777 0.046 -0.024 1 
ke d -1 0.791 0.281 -0.049 0.281 -0.811 1 

A d - I  0 - - 

e 0  # g  1 - 1  0 - - - 

A #gl-ad 62.8 4.05 - - 1 
/3 2.72 0.263 - - -0.052 1 

(14) 

' t rue '  parameters  were chosen as starting values. The resulting 1000 vectors of  parameter  estimates 
(~0,/~*,/~e) ~ were analysed by calculating means, standard deviations and correlation matrices. The 
latter were compared  with the theoretical asymptotic values. 

Results are shown in Table 3. The parameter  estimates behave quite differently with respect to 
sample size. Estimation of  Co is accurate, even for 5 animals per concentration, while reliable 
estimation of  k t apparently needs large sample sizes. The estimates of  the standard deviations, 
which can be compared with the theoretical value after multiplication with x / ~ ,  and the estimates 
of  the correlation coefficients indicate that  asymptotic theory should only be applied at large values 
of  Xoj, say Xoj >_ 20. 

5. Application to experimental data 

We have fitted model (6) - with and without control mortali ty - to the data set of  Table 2. Solutions 
were checked by Monte  Carlo searches. We also fitted model (8) to the same data. This led to some 
numerical problems. All parameters  but /3  grew very small and co even became zero. In the limit 
situation for small Ice we can then rewrite model (8) to 

( ( A ) I / 3 )  -1 S(t; c) = 1 + where A = lim CLS0 (14) 
ko-~O k e 

Results of  parameter  estimation are given in Table 4. Inclusion of control mortali ty in model (14) 
did not noticeably affect the results. 

Da ta  and estimated survivor curves are plotted in Fig. 4. The improvement  in fit f rom inclusion 
of  control mortal i ty  in (6) is apparent  for c = 5.6 and 10#g1-1. For  c = 0 the fit is worse. The 
deviances are 40.21 and 36.43, respectively. The difference is 3.78, which means that inclusion of  
control mortal i ty does not lead to a significant improvement  (a  = 0.05). The deviance of  model (14) 
equals 43.57, which is more than the previous values. However, because the models (6) and (14) are 
not  nested, we cannot  draw strong conclusions f rom the deviances. 

The second data set that  we analysed is given in Table 5. As mortali ty occurs at c = 0 we are 
forced to include control mortali ty in the model. 



Statistical analysis of bioassays, based on hazard modelling 311 

1 6  

1 2  

8 

,4 

0 

2 4 6 

t i m e °  d 

2 0  

> 1 6  
L. 

~ le 

B 

2 0  L 

12  

0 

0 2 

@ @ @ i • 

& m 

4 8 

t i m e ,  d 

2 4 6 

T i r n e ,  d 

Figure 4. Empirical data of Table 2 with estimated survivor curves. Upper left: model (6) without contro] 
mortality. Upper right: model (6) including control mortality. Middle: model (14). 

Table 5. Number of surviving daphnids Daphnia magna in potassium dichromate. 
Data were kindly provided by Ms T. Adema (IMW-TNO Laboratories, Delft). 

Concentration K2Cr207 (rag 1-1) 

Time (d) 0 0.1 0.18 0.32 0.56 1 

0 50 50 50 50 50 50 
2 50 50 50 50 50 48 
5 50 50 50 50 48 36 
7 50 50 50 50 48 35 
9 49 50 50 50 48 31 

12 49 50 50 50 40 15 
14 49 50 50 48 32 9 
16 49 50 50 47 30 3 
19 49 50 50 47 23 0 
21 49 50 50 45 16 0 
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Table 6. Results of ML estimation on empirical data are given in Table 5. For every parameter point estimates, 
standard deviations and correlation coefficients are given. 

Model Parameter Units Estimate SD Correlation coefficients 

(6) A d -1 3.08 × 10 -4 2.89 x 10 -4 1 
c o mg1-1 0.272 0.0179 0.058 1 
kf lmg -1 d -1 0.278 0.0414 0.024 0.016 1 
k e d -~ 0.214 0.0397 0.029 0.657 -0.501 1 

A d -1 3.94 x 10 -4 3.97 X 10 -4 1 
cL5 o mg1-1 0.161 0.106 0.136 1 
ke d -1 0.0186 0.0143 0.130 0.998 1 
/3 3.848 0.412 0.251 0.526 0.539 1 

(8) 

C 0 = 0  

Fitting model (6) we found several (local) maxima of  the likelihood. The deviance at the global 
maximum equals 35.55. The estimation procedure for model (8) ran into the same numerical 
problems as encountered with the first data set. Again c o became zero. The resulting deviance is 
38.38. Results of  parameter estimation are given in Table 6 and Fig. 5. The estimates of  control 
mortality are more or less the same in both models, with relatively large standard deviations. The 
other parameters in model (8) have small standard deviations. In model (8) only/3 has a small 
standard deviation. The extreme high correlation between ci~50 and ke and the small value of  the 
latter indicate that the resulting model approximates model (14). 

6. D i s c u s s i o n  

In the present paper we introduce a new model for the analysis of  survival data. There are several 
advantages of  our approach. First, our approach provides an alternative measure for the toxicity of  
a compound with respect to survival, the killing rate k,. The killing rate can be interpreted as the 
probability of  dying, per unit of  time and per unit of  (environmental) concentration exceeding the 
no-effect concentration. It does not depend on exposure time, as does LC50. In addition, the model 
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Figure 5. Empirical data of Table 5 with estimated survivor curves. Left: model (6) including control 
mortality. Right: model (8) including control mortality. 
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also provides NEC as well as LC50 as functions of time, in a single estimation procedure. The NEC- 
time relation can be found by calculating c from C(t) > Co in (3) at a fixed time t, leading to 
NEC(t) = e0(1 - exp(-ket)) -1. The LC50-time relation can be found by (numerically) solving c 
from S(t; c) = 0.5. Second, we model a survival function based on simple mechanistic assumptions 
which may, at least in theory, be tested in independent experiments. Most other parametric 
approaches assume some distribution function without any biological or mechanistic justification. 

A key assumption in the model is that the hazard rate is proportional to the concentration of the 
toxicant. This implies that the lethal effects of a toxicant should disappear as soon as the concen- 
tration decreases below the no-effect level, that is, the animals should completely recover instanta- 
neously. A different approach could be to assume that the toxicant causes irreparable damage to the 
animal, again proportional with the concentration. Diggle and Gratton (1984), Morgan (1992) 
suggested a comparable idea in their extension to the model of Puri and Senturia (1972). If, in 
our model, the hazard is taken to be proportional to the total damage, this results in a hazard 
proportional to the accumulated concentration. In an analogous way Kooijman models aging pro- 
cesses (Kooijman, 1993, pp. 105-12). For small values of ke, the survivor function approximates a 
Weibull function with shape parameter 3 instead of 2 as in (7). 

The model can, of course, be extended by changing the assumptions. For instance, the assumption 
about the accumulation process in the animal can be changed in a two-compartment model if a one- 
compartment model does not make sense. However, this will probably cause estimation problems 
unless the data set is very detailed. Another extension of our model could be the introduction of 
stochasticity between animals. As a matter of fact animals are supposed to be identical in the present 
model: they all have the same kinetic parameters. The only stochastic component is in the process of 
dying. In the log-logistic model (8) stochasticity is located entirely between animals. There the 
process of dying is completely deterministic. Therefore both approaches lack reality. To meet this 
objection we might consider the elimination parameter ke as a random variable. Stochastic 
parameters in accumulation models are discussed in Bedaux and Kooijman (1994). 
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