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Homogenitiitscharakterisierung fester Standardproben 
unter Verwendung chemometrischer Methoden 

Summary. For characterizing the homogeneity of a copper 
standard for optical emission spectrometry, the results of 
spark source mass spectrographic (SSMS) milliprobing have 
been treated by diverse chemometric methods. The proposed 
strategy includes visualization of the data, global homo- 
geneity testing for each element, testing the anisotropy of 
elemental distributions, search for correlation between 
elements, and statements on the homogeneity with respect 
to other analytical procedures. The copper standard was 
proved to be non-homogeneous for SSMS but homogeneous 
for techniques of optical emission spectroscopy having 
larger sampling volumes. 

1 Introduction 

Nowadays, distribution analysis is one of the most out- 
standing fields of solid-state analysis. It comprises the deter- 
mination of concentration profiles (e.g. depth-profiles) as 
well as the analysis of preselected small regions of a sample 
(micro-areas, surfaces, interfaces). Characterization of the 
chemical homogeneity may be considered as the lowest level 
of  distribution analysis as far as it aims only at stating 
whether there are significant deviations from the mean 
composition within the samples and - in some cases - to 
give rough information on the "structure" ofinhomogeneity, 
e.g. stochastical or periodical fluctuations or monotonous 
concentration gradients called "trends". 

When investigating the homogeneity of a solid, one has 
to bear in mind that homogeneity is a relative property of 
a solid-state material depending on the parameters of the 
analytical test procedure and on the ultimate purposes of 
the material, respectively [1, 2]. 

Recently, various approaches to computer-aided evalu- 
ation of spatially resolved analytical measurements for 
detecting chemical inhomogeneities have been published 
[3-9] .  It results that each of them has its particular 
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advantages and restrictions. Therefore, several variants 
should be applied complementarily to get relevant informa- 
tion. 

In the following some well-known and some uncon- 
ventional approaches will be applied to characterize the 
homogeneity of a standard material. Generally, a standard 
material is considered to be homogeneous, if the variance of 
analytical results, obtained by repetitive sampling, does not 
exceed significantly the procedural random error. That 
means the aptitude of a given material as standard material 
depends on the precision and the spatial resolution (e.g. 
sampling volume) of the procedure to be calibrated. Thus, 
often the question arises, whether a standard material 
certified for a given analytical procedure may be used for 
another one having different procedural parameters. 

As an example a reference material for optical emission 
spectrometry has been tested with respect to its suitability 
for three spectroscopic techniques of different precision and 
sampling volume: conventional spark source mass spectro- 
graphy (SSMS), SSMS milliprobing, and glow-discharge op- 
tical emission spectrography (GD-ES). 

2 Methodological 

2.1 Experimental 

The disc-shaped copper standard sample under investigation 
(CuII/2, ASMW/DDR) contains Cr, Mn, Fe, Ni, Zn, Ag, 
Sn, Sb, Pb, and Bi in the concentration range between 15 
and 600 ppma. 

For homogeneity characterization of this standard 
sample the SSMS milliprobe technique was used under 
working conditions listed in Table 1. When analysing this 
standard sample by conventional SSMS (i.e. sparking be- 
tween two sample rods), sampling volume and procedural 
standard deviation are comparable with that of SSMS 
milliprobing. However, a considerably larger sampling 
volume and a lower procedural error are valid in GD-ES. 

Figure 1 shows the arrangement of the measuring points 
(sub-samples) along polar co-ordinates (~, r) for SSMS 
milliprobing. Since relative concentration values are suffi- 
cient for homogeneity characterization, quantification was 
done according to [10, 11]. The data sets obtained in this 
way for Bi, Ni, Ag, and Zn, as representatives of the 10 
elements included in this study, are given in Table 2. 
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Table 1. SSMS conditions 

Analysis facility 
Mass spectrometer 
Ionization 

Electrode configuration 
Sample electrode 
Probe electrode 
Gap 

Operating parameters 
Main slit width 
Spark variac 
Spark pulse length 
Spark pulse repetition rate 
Accelerating voltage 
Electrostatic analyser 
Pressure in the analyser 
Exposition 

Detection 
Crater dimensions 

Diameter 
Depth 
Volume 

Analytical lines 

Reference line 
Procedural RSD 

MS 7 (AEI Manchester) 
rf spark source 
point to plane 
plane 
tantalum tip 
< 0.08 mm 

0.04 mm 
40% 
0.1 ms 
30 Hz 
20 kV 

2 kV 
< 10 -4 Pa 
1.5 x 10 .9 As 
photoplates ORWO UV 2 

0.49 mm 
0.034 mm 
0.0064 mm a 
52Cr+ 55Mn+ 
56Fe+ 60Ni+ 
67Zn+ 10TAg+ 
12OSn+ 1218b+ 
2oapb+ 2O9Bi+ 

5 o V + (external standard) 
0.2 

2.2 Chemornetrical 

For  elaborating a strategy widely applicable to analogous 
practical problems of  homogeneity characterization, it is 
assumed that only one set of  measurements without repli- 
cates is available. The strategy will be divided into five steps: 

- visualization of  the measured data set for each ele- 
ment, e.g. by a so-called three-dimensional ("3D") plot or 
as isoconcentration lines, 

- testing the global homogeneity for each element, 
- testing anisotropy of  the elemental distributions, 
- search for correlation between the elements, 
- extrapolation of  results to other analytical pro- 

cedures. 
Only pecularities of  these steps will be noted here. All 

statistical tests were carried out assuming normal dis- 
tributed, statistical independent measurements, a probabil- 
ity of  0.95, and stability of  the analytical procedure. 

2.2.1 Visualization 

In our case, the 3D-plot -- a diagonal parallel projection - 
is based on the "hidden line" algorithm. Isoconcentration 
lines were plotted using cubic splines. 

2.2.2 Global tests 

Global tests may be carried out by methods used in time 
series ("process") analysis. Therefore, each data matrix o f  
Table 2 was linearized into a "vector" having 84 "com- 
ponents". This was done by joining either column by column 
(called here process of  type I) or row by row (process of  

�9 "~176 oC 
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Fig. 1. Subsample arrangement for SSMS milliprobing 

type II). In both cases, the data vector of  a homogeneous 
sample realizes a stochastic process. The test to be applied 
depends on the structure of  the inhomogeneity. 

Trends in a process can be revealed by the C U S U M  
(cumulative sum) technique [12]. It is based on the fact that 
a plot of  the cumulative sum of  the differences between 
single readings cl and a "target value" c scatters about  c so 
long as the process remains stationarily. When, however, 
some consecutive readings systematically deviate from c, 
then the cusum will steeply increase/decrease, thus indicating 
a possible trend earlier than the original values ci. Using the 
significance coefficient [13] 

D e x t  

Ho = , (1) 

V } (Dj-Dj+I) 2 
=I 

(0A65n + / . 7 1 )  2 ( n - -  1) 

] 
where Dj = S ( c l -  c) is the cusum, Dext = Max([DJ) the 

i = 1  

most extreme cusum, and n the total number of  readings ca, 
the trend is significant, i.e. the sample is non-homogeneous,  
if holds Ho > 1. When applying C U S U M  to our problem - 
contrary to a real time series - the process can be evaluated 
retrospectively, and thus all parameters in Eq. (1) are easily 
to be computed. Particularly, the sample mean e may be 
used as an estimator for c. 

Periodicities in a process can be treated by means of  the 
theory of  generalized stochastic processes. Therefore, the 
computer program STOPRO had been developed to evalu- 
ate data from a microprobe linescan considered as a realiza- 
tion o f  a stochastic process [14]. The current version [15] 
enables visualization of  the autocorrelation function and the 
periodogram (spectral density after Fourier transformation) 
which hint to possible periods. Furthermore, computed 
periods are tested for significance. Thus, periodicities are 
revealed which can never be discerned directly from the 
original data. 

Applied to our "puzzled" data vector, periodicities may 
be caused by trends along the co-ordinate axes. Nevertheless, 
any significant period means sample inhomogeneity. 

Noise (stochastical fluctuations) in a stationary process 
can be proved by testing the relative standard deviation 
(RSD) of  the whole data set sr against a given RSD of  the 
analytical procedure err for the element under investigation 



Table 2. Data matrices: concentrations/ppma of Bi, Ni, Ag, and Zn measured at different positions (polar co-ordinates) 

r/mm c~ 

15 ~ 45 ~ 75 ~ 105 ~ 135 ~ 165 ~ 195 ~ 225 ~ 255 ~ 285 ~ 315 ~ 345 ~ 
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Bi 

1 28 46 55 45 60 36 42 98 63 54 
4 45 46 44 38 35 48 50 65 42 41 
7 36 32 34 33 46 39 45 33 33 41 

10 31 24 18 28 19 43 34 15 17 32 
13 22 19 17 31 31 30 21 17 55 19 
16 33 26 25 39 26 35 27 19 40 34 
19 37 21 26 57 24 41 24 26 25 39 

Ni 

1 240 320 300 480 630 450 450 580 360 510 
4 240 240 240 320 330 480 340 430 210 290 
7 330 300 220 310 310 300 320 190 220 310 

10 370 230 260 290 320 320 300 290 300 250 
13 300 260 240 310 410 420 290 300 260 140 
16 350 280 260 350 390 340 210 300 250 260 
19 330 250 280 370 350 310 210 220 230 260 

Ag 

1 340 680 500 870 630 780 660 920 1100 1000 
4 480 590 600 500 530 560 700 700 430 490 
7 1100 820 750 510 580 550 660 320 410 470 

10 1300 890 340 500 310 610 470 240 260 390 
13 820 390 820 590 500 600 430 230 520 180 
16 960 360 900 730 560 590 450 240 460 340 
19 780 260 740 800 430 670 520 260 290 400 

Zn 

1 720 570 630 990 830 1000 710 1000 930 1000 
4 780 830 840 760 780 670 1100 1100 600 t000 
7 890 530 500 750 700 710 1000 440 600 950 

10 760 430 340 710 370 830 690 420 440 560 
13 470 390 370 590 550 620 570 370 780 420 
16 750 370 460 840 570 720 580 410 860 620 
19 610 300 430 940 520 800 560 390 430 710 

59 48 
50 46 
29 34 
16 41 
20 42 
24 32 
51 38 

560 450 
320 460 
320 300 
280 270 
310 340 
320 370 
360 340 

520 1000 
500 480 
450 380 
220 510 
350 540 
380 420 
420 430 

910 960 
1100 990 
960 630 
400 720 
540 860 
550 620 
850 710 

("analyte ' ) .  Using the significance coefficient derived from 
z2-test 

s~.f 
H~ - (2) 

2 ~2 (p, f) O" r 

[Z 2 (P, f) quantile of the zZ-distribution, P probability, f 
degree of freedom (d. f.)], non-homogeneity is proved if 
holds Hx > 1. 

2.2.3 Testing anisotropy 

If homogeneity has been rejected by any global test, often the 
question arises, whether the deviations from homogeneity 
depend on the spatial direction. 

This question can be answered by analysis of variance 
(ANOVA) or by regression [3]. These methods were applied 
to the data matrices as shown in Table 2 and to the trans- 
posed matrices of them. 

Two-way ANOVA is based on the model 

cij = C -~ ai -t- bj + wij + e. (3) 

Here % are the measured values, ~ is the overall mean, ai 
and bj are contributions of the factors i and j, wij represents 

interaction of the two factors, and e is the random error of 
the analytical procedure. 

If, as in our case, there are no replicates, wij and e 
are mixed to an error term %. Therefore, the absence of 
interchanges between the factors must be proved by special 
tests [16], or one takes into account that the test may become 
less rigorous. The latter was done by us using the wide- 
spread computer program ABSTAT. 

Even one-way ANOVA may be used to investigate the 
homogeneity in one spatial direction assuming homogeneity 
in the other one. Since this supposition is not  fulfilled exactly 
in most cases, usually the test will be still more insensitive. 

For  ANOVA a significance coefficient, called "coeffi- 
cient of homogeneity", was introduced by Danzer et al. [4] 
according to 

Hk = Fk/F (P, f~, f2), (4) 

where Fk is the well-known value for k-way ANOVA (k = 
1 ; 2), F (P, fl, f2) the quantile of Fisher's F-distribution, P 
the probability, fl and f2 the d.f. 

The )~2-test applied separately to both directions is a 
further approach for testing anisotropy. In this case the 
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numerator of  Eq. (2) is to be replaced by the numerator of  
the test value F of two-way ANOVA which reads - noted 
for j  - 

I: ( e i . - e )2  
J i =  t 1 llj 

Sr= (hi 1) w i t h a l . -  1: % (5) -- nj j=i 

(i = 1,2 .... ni indicates the r axis and j = 1,2 .... nj the O~ axls 
or vice versa). 

Polynomial regression is useful if trends in a direction 
have been suggested e.g. by visualized data. The sample is 
considered to be non-homogeneous, if the null hypothesis 
(all coefficients are equal to zero) is rejected in any order 
of the polynom. Additionally, the polynom providing the 
maximum F-value and the minimum variance of residuals, 
respectively, approximates best the concentration profile 
along the direction under investigation, thus also describing 
the structure of inhomogeneity. At this, one has to bear in 
mind that the results of  regression depend on the "starting 
point", which especially in e-direction may be chosen 
arbitrarily. In the case of regression, the significance 
coefficient HR is calculated analogous to Eq. (4) using as 
numerator the F-value from regression 

0 2 __f2 with ft = m, f2  = n - m - 1, (6) 
FR = 1 -- ~2 ft 

where 0 is the correlation coefficient, 1"1 and f2 d.f., m order 
of the polynom (m = 1 means a straight line), n the total 
number of measurements (data pairs of the analyte). 

2.2.4 Correlation between elements 

A direct information on correlations between elements with 
respect to its spatial distribution in the sample will be pro- 
vided by the correlation matrix containing the correlation 
coefficients of each element with each other. 

The hierarchical cluster analysis (HCA) [17, 18] may serve 
for grouping the elements by their correlation. Agglo- 
merative HCA was applied to a data matrix, in which each 
row contains the process vector of  one element. Thus, the 
columns of the matrix represent the variables or features 
(concentrations in the sub-samples), whereas the rows corre- 
spond to the objects (elements). HCA was carried out using 
the distance measure derived from correlation coefficients 

d j k = l - - I  ~7 xijxlk j , k = l , 2  ..... p (7) 
n i = l  

with 
Cij - -  C .  j 

Xij ~-- 

V _~I (Ci j  -- C).j) 2 
~---7 

where j, k indicate the p elements and i denotes one of the 
n subsamples (components of the data vector). From this 
definition follows d = 0 for 0 = 1 (strong correlation), d = 
1 for 0 = 0 (no correlation) and d = 2 for 0 = - 1  ("anti- 
correlation"). The single linkage mode used by us facilitates 
the interpretation of the dendrogram, since the linkage levels 
are directly proportional to the "distances" according to 
Eq. (7). 

Ni - .--m~-~L ~ 

F i g .  2 .  3D-plot of normalized (divided by sample mean) concentra- 
tions for the representative elements Bi, Ni, Ag, and Zn 
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Fig. 3. Isolines plot of normalized concentrations. The isoline 
markers correspond to the following values of normalized concen- 
trations: 1 0.5; 2 0.75; 3 1.0; 4 1.25; 5 1.50; 6 1.75; 7 2.0; 8 2.25; 
9 2.5; 10 2.75 

2.2.5 Extrapolation of results to other analytical procedures 

Principally, the RSD values obtained by a higher (spatially) 
resolving procedure may be transformed into corresponding 
values of a lower resolving procedure (or vice versa) by 
means of the program STOPRO [14]. However, in our case 
this program was unable to transform the RSD from SSMS 
to GD-ES, mainly because of the"low-pass filter action" due 
to the wide distances between the measuring points. 



A useful approach in this case is the approximate equiva- 
lence of an increased sampling volume and an increased 
number  of replicates. It yields 

s,, ~.h, m (8)  
sr . , . . ,o  

with 

Sr ,  i n h ,  m ~ S , t o t ,  m - -  f i r ,  rn  

where m, o refer to the measurement procedure and the 
optional procedure, respectively, st, tot is the total RSD, 
Sr, ~,h the RSD from inhomogeneity, ar the procedural RSD, 
V the sampling volume. 

9 4 9  

cance coefficients > I for each element, the former proving 
significant trends in the "process", the latter showing overall 
RSDs significantly higher than procedural error of SSMS. 
Therefore, the general conclusion can be drawn that the 
sample is non-homogeneous with respect to SSMS. The 
C U S U M  technique applied to the process of type I is less 
sensitive because of more alternating values due to the 
shorter "periods" in this case. Figures 4 and 5 illustrate 

Table 3. Significance coefficients of global tests 

Element CUSUM-technique z2-test 
Ho Hx 

3 R e s u l t s  a n d  d i s c u s s i o n  Cr 
Mn 

The 3D-plot (Fig. 2) and the isolines plot (Fig. 3) visualize Fe 
the distributions of normalized (by sample mean divided) Ni 
concentrations of Bi, Ni, Ag, and Zn in polar co-ordinates. Zn 
The figures suggest that there may be some inhomogeneities, Ag 
especially along the radial co-ordinate r. Sb 

The visual impression is objectively confirmed by the Sn 
Pb 

results of global tests (Table 3). For  the process of type II, Bi 
the CUSUM-technique as well as the z2-test yield signifi- 

1.15 1.71 
1.50 1.21 
1.13 2.21 
1.61 1.49 
2.14 1.90 
1.40 3.28 
1.95 3.66 
2.03 1.94 
2.21 2.99 
2.17 2.91 

Table 4. Periods computed by analysis of stochastic processes 

Process Type I Type II 

L Period frequency Cr Mn Fe Ni Zn Ag Sn Sb Pb Bi Cr Mn Fe Ni Zn Ag Sn Sb Pb Bi 

1 84.000 0.01190 * 
2 42 .000  0.02381 + 
4 21 .000  0.04762 * 

5 16.800 0.05952 
6 14.000 0.07143 
7 12.000 0.08333 * 

8 10.500 0.09524 
10 8.400 0.11905 * 
11 7.636 0.13095 

12 7.000 0.14286 + 
13 6.462 0.15476 
14 6.000 0.16667 

15 5.600 0.17857 + 
16 5.250 0.19048 + 
20 4.200 0.23810 + 

22 3.818 0.26190 
23 3.652 0.27381 
24 3.500 0.28571 - 

25 3.360 0.29762 
26 3.231 0.30952 
27 3.111 0.32143 

28 3.000 0.33333 
29 2.897 0.34524 
30 2.800 0.35714 

31 2.710 0.36905 
32 2.625 0.38095 + 
36 2.333 0.42857 * 

40 2.100 0.47619 

+ + 
+ + 

+ * 

+ 

+ + 

§ * * m * * * * 

+ 

+ 
+ + 
+ + 

+ 
+ * 

-- + 

+ 

+ 

m w 

+ * + 

* * * ~ -  * * 

+ - + + 
+ - + + + 
+ + + 

+ + + 
+ + - 

+ + + 

+ + 
+ + 

+ + 

m 

+ 

* P > 0.95 (significant) 
+ 0.95 > P > 0.5 
- P<0.5  
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Table 5. Significance coefficients of tests in two spatial directions 

Element 
*\\ 13 

re- Z 2-test 1.4 " \  
gression \ 
H R  H x  1.3 

1.57 2.84 X~ 
~ X  

0.79* 2.73 1.2 

3.23 2.46 
0.78* 1.60 1.0 

1.07 3.49 
0.02* 3.46 o.9 

3.73 4.39 
0.31" 2.00 o.8 

6.74 5.94 o .r 

co- 1-way 2-way 
ordinate ANOVA ANOVA 

H1 H2 

I 

r/Innl 

Cr r 1.45 1.96 
1.47 1.85 

Mn r 1.86 2.34 
1.12 1.50 

Fe r 1.35 1.78 
1.42 1.74 

Ni r 3.16 4.36 
1.15 1.96 

Zn r 3.46 4.70 
c~ 1.06 1.88 1.24 2.41 

Ag r 0.90 1.06 1.65 3.68 
1.13 1.24 3.45 4.36 

Sb r 2.20 2.08 4.20 8.39 
0.28 0.37 0.31 1.50 

Sn r 3.44 3.23 6.05 6.02 
c~ 0.22 0.34 0.06 0.64 

Pb r 4.50 3.98 7.04 10.89 
0.09 0.15 0.04 0.40 

Bi r 4.66 4.35 7.05 10.81 
0.19 0.32 0.50 0.80 

c/ff  

1 . 4  

1 . 3  

1 .2  

1 .0  

Inhomogeneity proved for H > 1. 
HR values tabled for linear regression (polynom of lth order); the 
wild card (*) marks significance in 4th and 5th order 
Test values: 
1-way A N O  VA: 
F(0.95,6,77) = 2.21 along r, F(0.95,11,77) = 1.91 along c~ 
2-way A N O  VA - 
F(0.95,6,66) = 2.24 along r, F(0.95,11,66) = 1.94 along 
Regression: 
F(0.95,1,82) = 3.96 for polynoms of the lth order 
Z 2 test: 
Z2(0.95,6) = 12.59 along r, Z2(0.95,11) = 19.68 along c~ 

0 . 9  

0 . 8  

03"  

b 

/ 1 

I I I I l I I I [ I I ) 

30* 60* 90* 120 ~ 150 ~ 180 ~ 210 ~ 240 ~ 2?'0 ~ 300 ~ 3300 ~ . ~  

Fig. 6a, b. Normalized concentration distributions: a mean values 
over azimuthal scans vs. radii r; b mean values over radial scans vs. 
azimuthal angles c~ 

for the process of  type I and II, respectively, the measured 
concentrat ion values (a), the cusum values (b), the 
autocorre la t ion functions (c), and the spectral densities (d) 
of  Bi, Ni, Ag, and Zn. F o r  a -  c, the abscissae are scaled in 
subsample distances of  1. On this way the process ranges 
from 1 to 84. Only in the per iodograms d the reciprocals, 
called frequencies, are used. Whereas the original concentra-  
t ion values (Figs. 4a and 5a) fluctuate nearly stochastically, 
the cumulative s i m s  (Figs. 4b and 5b) as integrated values 
show smoothed,  element-specific courses. In the process of  
type II  all cusums turn one-sided to positive values. Con- 
t rary to it, for processes o f  type I almost  the cusum values 
are more al ternating and nearer to zero. The autocorre la t ion 
functions (Figs. 4c and 5c) hint more or less clearly to 
(spatial) "oscil lat ions" in the processes. Some well-defined 
frequencies arise in the most  per iodograms (Figs. 4d and 
5d). The detected frequencies were tested for significance. 
The results are summarized in Table 4. In accordance to [14], 
the detected periods range from 84 - the lenght of  the 
process - down to the value of  2 - the twofold of  the 
sampling distance. Moreover,  all detected periods are self- 
explaining as upper  harmonics  of  the value of  84 (84 divided 
by natural  numbers  1 = / , 2 , . . . ) .  Obviously, the periodicities 

of  7 and 12 are induced by the "puzzling" of  the process 
vector. That  means the periods of  7 are caused by inhomoge- 
neity along the co-ordinate  r, whereas periods of  12 result 
from azimuthal  inhomogeneit ies (along the co-ordinate  e). 

The individual  tests in the two spatial  directions c~ and r 
(Table 5) prove the elemental distr ibutions to be somewhat  
anisotrope.  Significant deviations are detected for radial  
direction in each case with the only exception of  1-way 
A N O V A  applied to Ag. 

In azimuthal  direction, however, the judgement  about  
homogenei ty differs from element to element and sometimes 
from method to method.  There is no objection against  
homogenei ty  of  the elements Sn, Pb, and Bi. F o r  Sb in e- 
direction the homogenei ty  is only rejected by the x2-test. Ag 
and Zn are non-homogeneous  by each method.  Fo r  Cr, Mn,  
Fe, and Ni  inhomogenei ty in e-direction is detected by all 
methods,  if one accepts the results of  regression in the 4th 
and 5th order. 

The results of  the tests in two spatial  directions are better 
unders tandable  by Fig. 6, showing the normalized concen- 
trat ions averaged over ~, i.e. depicted vs. r (Fig. 6a), and 
vice versa (Fig. 6b). F r o m  Fig. 6a it becomes clearly that  
linear regression ( l t h  order)  along the r-axis yields 
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Table 6. Correlation coefficients between the elements 

Cr Mn Fe Ni Zn Ag Sb Sn Pb Bi 

Cr 1 
Mn 0.93 1 
Fe 0.87 0.85 1 
Ni 0.87 0.90 0.86 1 
Zn 0.36 0.60 0.28 0.52 1 
Ag 0.18 0.35 0.43 0.41 0.45 1 
Sb 0.41 0.61 0.48 0.53 0.66 0.75 1 
Sn 0.51 0.71 0.54 0.67 0.76 0.71 0.92 
Pb 0.50 0.68 0.45 0.57 0.75 0.49 0.86 
Bi 0.51 0.69 0.44 0.58 0.76 0.43 0.80 

1 
0.87 i 
0.85 0.96 

Table 7. Extrapolation of the inhomogeneity-caused RSD Sr, l.h 
from measurement procedure (index m) to an optional one 
(index o) 

Procedure SSMS GD-ES 
Sampling 
volume/mm 3 0.064 0.6 

eND % tot, m Sr, inh, m Sr, inh, o 

Element 

Cr 0.294 0.216 0.022 
Mn 0.248 0.146 0.015 
Fe 0.335 0.269 0.028 
Ni 0.275 0.189 0.020 
Zn 0.311 0.238 0.025 
Ag 0.408 0.356 0.037 
Sb 0.431 0.381 0.039 
Sn 0.313 0.241 0.025 
Pb 0.389 0.334 0.034 
Bi 0.384 0.328 0.034 

coefficients significant deviating from zero, whereas Fig. 6b 
explains why these coefficients are almost non-significant in 
e-direction. Obviously, the test by regression can only be 
sensitive, if the model is adequate to the process. 

Some of the results suggest a certain similarity between 
groups of analytes. Table6 contains the correlation 
coefficients for all pairs of elements as objective measures 
of the similarity. A more comprehensive information gives 
the dendrogram from agglomerative hierarchical clustering 
(Fig. 7). One recognizes two main groups of similar 
elements. Group I contains Fe, Ni, Mn, and Cr, whereas 
group II includes Bi, Pb, Sn, and Sb. As mentioned above, 

the  former are non-homogeneously distributed in both 
directions. For the latter, inhomogeneity in e-direction is 
almost not proved. Moreover, Ag and Zn are linked to the 
other elements only on a very high level, thus demonstrating 
their behaviour to be considerably different from all the 
other elements. All these correlations were also found for 
conventional SSMS analyses of rod-shaped samples of the 
same standard material. The local correlation between the 
elements Bi, Pb, Sn, and Sb in the ASMW copper standard 
confirms analogous results obtained earlier from a NBS 
copper standard [6]. 

Summarizing, it can be stated that the copper sample 
under investigation is not sufficiently homogeneous for 
calibration of SSMS analysis without hesitation. Therefore 
the question was to be answered, under which conditions 

Cluster Object 

I Ni 
Nn 
Cr 

Zn 

P b ~  
K Sn 

Sb 

i i  I 

Fig. 7. Dendrogram from agglomerative hierarchical clustering by 
the correlation measure, single linkage mode. The broken line marks 
the level for stable, reasonable clusters 

this sample can be notwithstanding used for calibration 
purposes. The results of extrapolation to the higher sub- 
sample volume of 0.6 mm 3, which is typically for our GD- 
ES analysis, are given in Table 7. It follows, that the copper 
standard should be sufficient for procedural calibration if a 
RSD from inhomogeneity of 0.05 is acceptable. However, 
because of the anisotropy, especially in radial direction, a 
preferred sampling of central parts is to be avoided. Also, 
the sample may be used for calibration of SSMS when 
scanning the whole surface. Stochastically positioning a high 
number (>25) of measuring points may sufficiently 
approximate this condition. 

4 Conclus ions  

Characterizing a standard material with respect to applica- 
tion in analytical techniques of a different sampling volume 
led to the following general ascertainments: 

Selecting the most suitable chemometric methods for 
homogeneity characterization of solids demands informa- 
tion on the "structure" of presumed inhomogeneities. 

However, even without a-priori information, an optimal 
strategy can provide global statements on homogeneity as 
well as rough impressions of the structure of inhomo- 
geneities (trends, noise, periodicities). 

Besides visualization of the results of spatially resolved 
measurements the strategy should include tests based 
on analysis of variance, regression models, statistics of 
stochastic processes (time series analysis), and multivariate 
data analysis. 

Particularly, transforming the data matrix to a vector 
(process) by joining together rows or columns enables simple 
statistical tests for global homogeneity of the whole data set 
which can be carried out within some minutes by personal 
computers. However, the results depend on the starting point 
what may be overcome by cyclic data change. 

In regression analysis, which is recommended for testing 
each spatial direction separately, polynomial models of 
higher orders should be taken into consideration. 

A generalized test strategy, valid in most practical cases 
and including multivariate methods, is still to be elaborated. 
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