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Summary. A series of non pathological human tibial
and femoral bones have been tested in torsional loading
at high strain rates.

Elastic (torsional stiffness) and ultimate properties
(Twax) have been determined. A geometrical description
of the individual bone structures has been performed by
determination of the polar moment of inertia (as-
suming axial symmetry), variation of this parameter
along the long axis of the bone and length of the
specimen between the grips.

A fairly accurate prediction of mechanical behav-
iour of bone structures could be obtained using these
geometrical parameters.

The high variation of elastic and ultimate properties
of whole bone structures in torsional loading is
primarily the result of the high variation of polar
moment of inertia for the different bone specimens.

Introduction

Important experimental work has been conducted in
the last two decades on the material properties of
human cortical bone (Currey 1970; Evans 1973).
However studies on the mechanical behaviour of whole
bone structures are scarce. The strength of whole bone
has been tested in bending by Knese et al. (1956),
Motoshima (1960), Mather (1968) and Ehler (1970).
Azang (1972) tested tibial bones in bending and
torsion and noticed a relationship between fracture
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moment and frontal diameter of the proximal tibial
epiphysis for bending and torsional loading.

Frankel and Burstein (1965) conducted torsional
loading tests on preserved tibiae determining thereby
the weakening of a bone structure after removal of a
cortical bone graft due to the open section effect.

Viano et al. (1976) determined young’s modulus (E),
density (p) and shear modulus (G) of compact cortical
bone by a non invasive approach on whole bone
structures (female femurs) measuring resonance fre-
quencies and associated mode shapes for bending, axial
and torsional vibration modes. Geometrical features as
compact area, moments of inertia and radii of gyration
at different cross sections of the femurs were used for
the calculation of resonance frequencies, mode shapes
and material properties. Geometrical properties of
human tibiae have been studied by Minns (1975) et al.
by determinating the second moments of area about the
antero-posterior and medio-lateral planes of four
human tibiae.

The most accurate method to establish a relation-
ship between geometry and mechanical behaviour of a
bone structure would be a two or three dimensional
finite element analysis. Only a few studies deal (Orne et
al. 1976) with the approach and many assumptions
were still introduced. Since the shape of a bone varies
considerably from one individual to another the whole
intricate and time consuming procedure would have to
be repeated for every individual bone and a description
of the geometry of a bone, accurate enough to serve the
cause of a finite element analysis, can hardly be
obtained from an in vivo situation.

This study analyses the mechanical characteristics
of the human tibia and femur in torsional loading with
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special reference to material and geometrical properties
of the individual bones.

Material and Methods

This study is concerned with femoral and tibial bones from forty-
two autopsy subjects ranging in age from 27 to 92 years of age.
Fresh human tibial and femoral bones were dissected, labeled
and stored in a freezer at —20° C before testing. Careful screening
of the bone samples was performed by taking A.P. and lateral
‘radiographical films of the bones, studying medical records and
sending questionnaires to the family and family doctor of the
deceased. As a result of this check several bones have been
discarded from the group because of local alterations in the bone
(old fracture, metastasis, Paget disease) or pathophysiological
osteoporosis (steroids medication, hemiplegia, bedridden for a
long period).

Through a cooperative program with the Biomechanics
Laboratory of Case Western University, Cleveland, Ohio, one
bone has been tested on its material properties while the mate for
several pairs of bone was used to determine the mechanical
behaviour of a whole bone structure in torsional loading. The
mechanical tests were performed on wet specimens at high strain
rates.

The method of sample preparation and torsion tests for
material specimens (Burstein 1972; Reilly 1974) and for whole
bone structures (Burstein 1971; Martens 1980) have been
described previously. The geometrical properties of the bone
specimens have been determined as follows.

Using a Cameron Bone Mineral Analyzer (Cameron 1968)
bone mass and width of the cross section were determinated at
2 ¢m intervals along the length of the bone sample (Fig. 1) which
is kept in wet condition during this procedure. The polar moment
of inertia, assuming a hollow cylinder with circular cross-
section can be computed from these data by the equation

M 2M
b= e ()

I, = polar moment of inertia
M = mineral mass per unit length
d = diameter of the cross section

pm = mineral content per cubic centimeter (obtained from a
scanning of cortical bone samples with known dimen-
sions).

These values of Ip, taken at 2 cm intervals, are plotted versus the
position along the long axis of the bone (Figs. 8 and 9).

FElastic Behaviour

Torsional stiffness (S) of a structure can be defined as the ratio of
applied torque to resultant angular deformation in the elastic
region of the load deformation curve. The slope of the elastic
portion of the curve represents the structural stiffness in torsion.
This value has been determined for tibial and femoral bone
specimens. This elastic parameter for structures has also been
estimated based upon information of minimum polar moment of
inertia along the long axis of the bone specimens, length of the
specimens, and for a particular group also the material property
(shear modulus G) was taken into account. In model one the
bone is supposed to behave as an uniform hollow cylinder with a
polar moment of inertia equal to the minimum I, determined for
each bone specimen (Fig. 2).

Fig. 1. Bone mass and width of the cross section are determinated
at 2cm intervals using a Cameron Bone Mineral Analyzer
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Fig.2. For estimation of elastic and ultimate properties of
femoral and tibial bone structures the bone geometry in model
is an uniform hollow cylinder with 7, equal to I, for each bone
specimen and a length equal to the distance between the epoxy

imbedding for a given specimen

The calculated stiffness (S1) is given by the equation:

S = Gn 'LIEmin (1)

where G = shear modulus = 3.28 x 10° N/m”.

This value is the mean of the values measured by Reilly et al.
(1975) in a torsion test for 166 prismatic cortical bone specimens.

Iymin = minimum polar moment of inertia, calculated from the
measurements with the Cameron Bone Mineral Analyser.

L = length between the imbedding in the epoxy blocks of the
specimen.

Estimated and actual value of torsional stiffness for tibial and
femoral bone specimens are correlated (Fig. 3).

For a particular group with known shear modulus (G) this
material property was taken into account using the equation:

S,l — Gi 'l{gmin



M. Martens et al.: Geometrical Properties of Human Femur and Tibia 115

1000~ Estimated

Nm /r Value S
7501
SO0
250 .. n=3l
y = 0542X +
R=079
Actual Value S
1 1 1 L 1
200 400 600 800 1000

Nm/r
Fig.3a, b. Scatter plot of actual value of torsional stiffness (S)
versus estimated value (S)) based upon model one. a Femoral
bone specimens
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where G = individual shear modulus of the mate tested for
material properties.

These estimated values for torsional stiffness (S") are plotted
versus the actual values on a scatter plot (Fig.4a) and for the
same group of specimens a correlation was computed for the
estimated value S versus actual value (Fig. 4b).

In the second model, the bone structure is assumed to have a
circular ring-shaped cross section, the polar moment of which
varies along the length of the bone (Fig. 7).

The torsional stiffness for each specimen can be calculated
from this model using the following equation:

Gm
Ly @

h(2)

The nominator is calculated using the values for I, as determined
by means of the Cameron Bone Mineral Analyser, and then

. . 1 .
integrating numerically over the length (L) of the bone.
Lz

The estimated value of torsional stiffness using this equation
is correlated with the measured value for tibial and femoral bone
specimens (Fig. 5).
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Fig.4a. Scatter plot for a group of femoral bone specimens
correlating actual torsional stiffness versus estimated value (S")
based upon model one, but taking into account the actual shear
modulus G for each bone specimen
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Fig. 4b. Scatter plot for same group of femoral bone specimens
but with a constant value for G for the estimated value S;

As a check for the validity of the above described models, we
also looked for the correlation between another simple mathe-
matical model and the measured values of stiffness.

Here we assume that

4
d min

S~ 12

where dnin = minimum outer diameter of the shaft.
In the case of a circular ring cross section this would mean
that the inner diameter is proportional to the outer diameter.

Ultimate Properties

Maximum torque (7r.x) at failure is read from the load-deforma-
tion curves for tibial and femoral bone specimens.

Maximum torque has also been calculated (T%.x) using the
following equation:

Tnax = Lomin. T
Rmin v
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Fig.5a,b. Scatter plot of actual value for torsional stiffness (S)
versus estimated value (S») assuming a ring shaped cross section
with a varying polar moment of inertia along the length of the
bone. a Femoral bone specimens
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Fig. 5h. Tibial bone specimens

Ruin = outer radius of the ring-shaped cross section of the
smallest polar moment of inertia (Zyyin)-

T, = the ultimate shear stress for cortical bone (= mean value

of the measurements by Reilly and Burstein (1975) on
twelve cylindrical samples of two human femurs (Reilly
et al. 1975).

This calculated value is correlated with the actually measured
value (Fig. 6).

Since in the literature (Azang 1972) correlations have been
presented between ultimate torque and some simple external
dimensions of the bone as the frontal diameter of the tibial
plateau, we have also looked for a correlation of T, with the
smallest external diameter of the bone structure (dmin) and also
with the frontal diameter of the upper tibial epiphysis (D hrox)-
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Fig.6a,b. Scatter plot of actual maximum torque (Tnax) versus
estimated value (77). a Tibial bone specimens
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Fig. 6b. Femoral bone specimens

Results and Discussion

Mechanical Properties

The mean torsional stiffness for the series (n = 37) of the
tibial bone is 326 Nm/r and for the femoral bones (n =
47) 562Nm/r. The mean maximum torque for this
group of tibial bones is 101 Nm and for the femoral
bone specimens 183 Nm.

The elastic (S) and ultimate properties (Zmax) Of
these series of femoral and tibial bone structures show
a high dispersion with a coefficient of variation for
torsional stiffness (S) of 29% for femoral bones and
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Fig.7a,b. The actual cross section (7op) of the bone and the
assumed circular ring shaped cross section (bottom) with varying
polar moment along the long axis of the bone. a Femoral bone
specimens. b Tibial bone specimens

31% for tibial bone specimens. The coefficient of varia-
tion for maximum torque (7max) 1s 29% for femoral
bone specimens and 34% for tibial bones.

Geometrical Properties

The plots of the polar moment of inertia (Z,) along the
long axis of the bone specimen are given in Figs. 8 and 9.

Differences in geometry between the specimens are
clearly visualized in these pictures. The weakest region
(Zpmin) for the tibia is invariably located in the distal
portion of the bone (Fig. 8). For the femur, however,
the location of the weakest section ({pmin) varies from
one femoral specimens to another (Fig.9). This
explains why the fracture site in the experiments and
also the clinical torsional fracture is typically situated in
the distal region of the tibial bone whereas the fracture
site for femoral bones varies considerably in location
along the long axis of the bone.

The majority of the femoral bones presented a
fracture throught the proximal part of the femoral shaft
and 15% of the femoral specimens revealed a fracture in
the distal region of the femoral shaft. This variability in
fracture location is also seen in vivo torsional fractures
of the femur.
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Fig. 8. Plots of the calculated polar moment of inertia (right) and
load deformation curves (Jeft) for some tibial specimens

Importance of Geometrical Properties
in the Mechanical Behaviour of Bone Structures

Correlation of the estimated stiffness and maximum
torque of the bone samples for the different models
with the actual values allowed an evaluation of the
relative importance of some geometrical and material
properties to explain the high variation in mechanical
behaviour of bone structures.
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Fig. 9. Plots of the calculated polar moment of inertia (*ight) and
load deformation curves for some femoral specimens

The accuracy of the different geometrical models is
shown in the scatter plots correlating the actual values
of torsional stiffness ('S) or maximum torque at failure
(Tmax) versus the estimated values using the different
equations (Figs. 3-6).

Elastic Behaviour of Femoral Bone Structures
in Torsional Loading

The correlation coefficient between actual and esti-
mated torsional stiffness based upon the minimal polar
moment of inertia is 0.79 which is quite high (Fig. 3).
Making use of the acutal material property (G) for each
bone sample the correlation coefficient increases to
R =0.84 in stead of R =0.77 for the same group of bone
specimens (n=12) (Fig. 4).

A refinement of the geometrical model by taking
into account the change of the polar moment of inertia
along the long axis of the structure also improves the
correlation (Fig. 5) R =0.84.

These increases in R are statistically not significant.
We may assume this is because of the small number of
specimens.

Since a good correlation exists between the actually
measured torsional stiffness and its value calculated,
using a simple tube-model with Imin as the polar
moment of inertia, it follows that S; must be pro-
portional to Iymin. Eq (2) can be transformed to:

G

SZ = ' Ipmin

when I, (z) = ?(Z)
pmin

L
dz

I (2)

The integral has been calculated for all specimens and
it shows a coefficient of variation of 10% for femoral
bones and 13% for tibial bone specimens.

Although the 1, (z) curves show important differ-
ences (Fig. 10) the area under the I/Ipr ) curves shows
only differences of a minor degree. This indicates that it
can be considered as a physical constant of the
bone.

The validity of the geometrical parameter 7,
determined in this experimental work for the prediction
of mechanical behaviour of whole bone structures in
torsional loading is confirmed by the low correlation
coefficients between estimated and actual values if
other geometrical criteria, namely some external
dimensions of bone structures, are taken into account.
Correlation between actual torsional stiffness and
estimated value based upon the equation
dnin

L
yielded a correlation coefficient of 0.41 for the same
group of femoral specimens. The difference in R is

Hence the dispersion of f
must be small. °

S ~
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Fig.10a,b. On the left the I(z) curves of different specimens are shown. On the right the area under the I/Ipr(z) curves for the same

specimens. a Tibial bone specimens. b Femoral bone specimens

statistically significant (P <0.05). Finally in contrast
with the high correlation between geometry and elastic
behaviour of femoral bone specimens a correlation
could not be found for a group of twenty specimens
between a material parameter (shear modulus G) and
torsional stiffness (S) of the structure. R =0.32. It is
granted that whole bone response is a function of
material properties and geometry of the structure.
However the high variation of elastic properties of
femoral bone structures (c.v. 29%) is primarily dictated
by the high dispersion of polar moment of inertia of the
structure (c.v. 31%) where the coefficient of variation
for shear modulus (G) for the same group is only 11%
and the dispersion for the length of the femoral bone
specimens is also relatively low (c.v. 8%). The actual
load deformation curves of the specimens and resulting
torsional stiffness of the structures presented in Fig. 9
illustrate how the influence of the material properties

can be ruled out by the influence of the geometry of the
structure.

Tibial Bone Specimens

The correlation between estimated torsional stiffness
(S) and true value is satisfactory for model one based
upon the minimum polar moment of inertia R =0.70.

An estimation of the elastic behaviour of tibial bone
specimen based also upon the calculated variation of
polar moment of inertia along the length of the
specimen yields a low correlation coefficient R =0.57.
Although this is statistically not significantly lower
than R =0.70 the decrease in R for model two can be
explained by the shape of the cross section area of the
tibia.

This approximates only a circular ring cross section
at the location of the minimum polar moment of inertia
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and in contrast with femoral bone structures the cross
section differ strongly from circular ring cross sections
away from the zone of minimum polar moment of
inertia (Fig. 7). Calculating values for I, along the
length of the tibial bones assuming circular ring cross
sections yields highly incorrect values. Therefore model
two estimating stiffness of a bone structure based upon
polar moment of inertia of circular ring cross sections
along the length a bone structure is only suitable for
femur and not for tibia. Correlation between actual

torsional stiffness and estimated value based upon
4

di"i“ is only 0.39.

external dimensions S ~

Ultimate Properties of Bone Structures

Correlation between estimated and true value of
maximum torque yields a correlation coefficient of R =
0.63 for femoral bone specimens and R =0.82 for tibial
bone specimens.

Correlation between actual ultimate torque and esti-
mated value based upon the minimum diameter (¢ min)
resulted in a R=0.42 for femoral specimens and
R =10.45 for tibial specimens.

In contrast with Azang (1972) we could not find a
definite relationship between fracture moment for
torsional loading and frontal diameter of the proximal
tibial epiphysis (D, ). Correlation between estimated
value (D 3p,°x) and torque is 0.49.

These low values for R if other geometrical criteria
are used for prediction of mechanical behaviour
demonstrate that distribution of bone mass with
respect to the centroid cannot be evaluated by measure-
ment of external dimensions.
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