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Abstract. The Shock jump conditions for the Euler equations in their primitive form are derived by 
using generalized functions. The shock profiles for specific volume, speed, and pressure and shown to be 
the same, however, density has a different shock profile. Careful study of the equations that govern the 
entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We 
demonstrate that because of this phenomenon, the entropy propagation equation cannot be used as 
a conservation law. 

1. Introduct ion 

A consequence of the nonlinearity of the equations of motion is the steeping of compression waves into 
a shock wave. Within the shock layer, the gradients of velocity and temperature become large, and 
irreversible thermodynamic processes caused by friction and heat conduction become dominant. At high 
Reynolds numbers, the shock-layer thickness is of the order of several mean free paths; for all practical 
purposes, the shock layer can be represented as a mathematical  abstraction that corresponds to a surface 
across which the flow variables experience a sudden jump. Away from this discontinuity surface, viscous 
and heat conduction effects are usually negligible and the inviscid equations of motion model the flow well. 
Remarkably the information needed to account for the final outcome of the irreversible processes that take 
place within the shock layer is contained in the inviscid equations. 

The study of shock waves is 150 years old. The jump conditions satisfied by the conservation of mass and 
momentum were discovered by Stokes [-11] in the middle of the 19th century. Stokes' excitement at making 
this discovery is evident in his paper: "These conclusions certainly seem sufficiently startling; yet a still more 
extraordinary result.., the result, however, is so strange.. ." The shock jump condition associated with the 
conservation of energy was implicit in an investigation conducted by Rankine [81 in 1870; however, 
a precise exposition was not made until the work of Hugoniot  [6] in 1889. The increase in entropy across 
a shock was a more difficult concept to grasp. The leading fluid dynamicists in England (Stokes, Kelvin, and 
Rayleigh) questioned the validity of the shock discontinuity because it violated the conservation of entropy. 
The correct principles were not well understood, and did not  appear in their present form until around 1915. 

1 This research was supported in part under NASA Contract No. NAS1-19480, while the second author was in residence at the 
Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23681-0001, U.S.A. 
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Xo Figure 1. Entropy profiles through viscous shock layer. 

Detailed studies of the viscous shock layer emerged several years later with the work of Becker [ 1], who 
solved exactly the one-dimensional equations of a real fluid. In a related study, Morduchow and Libby [7] 
found the exact entropy distribution across the shock layer of a viscous heat-conducting gas. Morduchow 
and Libby observed, see Figure 1, that the entropy, unlike the other flow variables that behave monotoni- 
cally, increases through the shock layer until it reaches a maximum at the center of the layer and then 
decreases to its expected value on the other side of the shock. Morduchow and Libby explained this 
phenomenon as follows: "It may at first sight appear that the recovery of mechanical energy on the 
downstream side of the center of the wave thus indicated by this solution would violate the second law of 
thermodynamics... However, the second law applies to an entire system--that is, to the end points--and 
permits energy recovery in separated sections thereof. The negative entropy gradient here might also be 
interpreted as physical effects that are not taken into account by the governing equations..." 

Today, the shock jump conditions are obtained for the inviscid equations by casting them in their 
integral conservation form. A brief derivation, based on this standard procedure, is given Section 2. 
However, the purpose of this work is to show that the shock jump conditions can be derived from the 
primitive differential form of the equations. The genesis of the analysis presented here was contained in an 
unpublished work of Gino Moretti written in the early 1970s. The significance of this work is primarily that 
it demonstrates how to obtain the shock jump conditions for equations that cannot be cast in a conserva- 
tion integral. Similar work has been presented by Colombeau in [2]. An interesting consequence of this 
exposition is a better understanding of why the entropy equation does not yield the proper jump. 

2. Standard Shock Jump Analysis 

The derivation of the jump conditions across a shock associated with the Euler equations is well known. 
See, for example, [10]. The derivation, which is valid for the equations expressed in conservative form, is 
included here so that it can be contrasted with the "nonstandard" approach introduced in Section 3. 

The one-dimennsional conservation laws for the inviscid flow of a perfect gas are 

fEp, + (pu)x] = 0, dx 

fE(pu), + + pL] = 0, (1) 
( .u  2 dx 

fE(pE)t + ax = 0, (puH)~] 
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where p is the density, p is the pressure, E is the specific total energy, H is the specific total enthalpy such 
that 

t t = E +  p-, 
P 

and u is the velocity of the gas. In the standard analysis for the shock jump conditions, we weaken the usual 
smoothness requirements associated with the classical notion of a function by introducing the concept of 
a weak or generalized solution. Basically, the integrand of(I) is multiplied by a test function that is at least 
C 1 smooth and has compact support. Then we integrate over space and time in the neighborhood of the 
shock and use integration by parts to move differentiation from the discontinuous fluid variables onto the 
smooth test function. Thus let (1) be symbolically represented by 

f ( v ,  + Fx) = 0, (2) dx 

where 

and 

U = (p, pu, pE) r 

F = (pu, p u  2 q- p, pull) r, 

and let the initial conditions be given by 

U(x, o) = Uo(x). 

Let (p be a test function that is continuously differentiable and has compact support. Consider the domain 
D around the shock Y~ defined in the rectangle 0 _< t _< t, and a _ x < b, see Figure 2. Let p be zero outside of 
D and on its boundary. Multiply the integrand of (2) by qo, integrate over x and t, and use integration by 
parts to obtain 

fD£>o(U~ot+F(px)dxdt=O. (3) 

We say that U is a weak solution of the initial value problem 

U t + F x = 0 

with initial data U o if (3) holds for all differentiable test functions q) with compact support. 
Let D 1 be the subset of D on the left of Y, and let D r be the subset on the right of Z as in Figure 2. Assume 

that U is differentiable everywhere except across Z; hence, on D 1 with the divergence theorem, we find 

fv~f>o(UCpt+Fcpx)dxdt=fD~£>_o[(UcP)t+(Fqo)~]dxdt=faD~o(-Udx+Fdt) (4) 

and similarity for D r. Because ~0 is zero on the boundary of D, the line integrals are only nonzero along the 

~ Z 

Figure 2. Domain  of integration, x 
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shock E. Let the shock be defined by x(0 and let U 1 be the value of U on the left of the shock; similarly, let U r 
be the value of U on the right side of the shock. Then by using (4) and the equivalent expression on the right 
of £, we obtain 

f~o( -  [g] + [F] d0 = 0, dx  

where [U] = Ur -- U1 and [F] = F(Ur) - F(U1). Because cp is arbitrary. 

c[U]  = I-F] (5) 

along Z, where c = dx /d t  is the speed of the shock. Equation (5) results in the following Rankine-Hugoniot  
(RH) jump conditions: 

[p(c - u) 3 = o, 

[pu(c -- u)] + [p] = 0, (6) 

[pE(c - u)] + [pu] = O. 

One solution to (6) corresponds to no mass flow across the discontinuity and leads to the conditions across 
a slip line. The other solution results in jumps in pressure, density, and velocity. After some manipulation, 
the RH jumps can be expressed as 

plfil = pr~r, 

Pl + (p~2), = Pr + (PuZ)r, (7) 

1 1 
~ ~___ 2 1 ~ 2  7_1a +½"  7 ar + Ur' 

where ~ = u - c, a is the speed of sound, and 7 is the ratio of specific heats. The above relations indicate 
that 

~rffl __ Pr - -  P l ,  (8) 
,Or - -  Pl 

which is known as Prandtl 's relation, and 

~j = (7 + 1)& + (7 - 1)Pl (9) 
~ ( 7 -  1)& +(7 + 1)p1" 

These results imply that the entroyp jumps across a shock. Its jump is given by 

IS] = In ~ - In P~. (10) 
Pr P~ 

Although the entropy propagation equation can be expressed in the form of a conservation law as 

f E (ps)~ dx : O, (1 + (puS)x3 1) 

it cannot be used to obtain the correct entropy jump across a shock wave. 

3. Nonstandard Shock Jump Analysis 

The shock jump conditions can be derived without relying on the integral conservation laws. The 
importance of this method is threefold. First, this method provides a means for determining the jump 
conditions for physical laws that cannot be expressed in conservation form. Second, it will ultimately lead to 
an understanding of the nature of the entropy structure across an inviscid shock. Thirdly, it may suggest 
how to derive shock-capturing algorithms with proper jumps from the nonconservation form of the Euler 
equations. 
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Cons ide r  the fol lowing system of equat ions:  

v t - vu x + uvx = 0, (12) 

u t + uu x + vp~ = 0, (13) 

Pt + uPx + 7Pux = 0, (14) 

where v = 1/p. The reason  for using v ins tead of p will become clear in Section 4. 
We look  for so lu t ion  to v, u, and  p of the form 

v = v 1 + l-v]H(~), (15) 

u = u I + [u]K(~),  (16) 

P = Pl + [p]L(~), (17) 

where  for now we only require  tha t  

H , K , L = f O  for x ~ -  oo, 
(18) tl  for x - ~  oo, 

= x -- ct, and  [w] = w r - w 1. The funct ions H, K, and  L provide  a descr ip t ion  of the shock profile or  
s t ructure  with end condi t ions  w~ at  x = - oo and w r at  x = 0% where w s tands  for v, u, and  p. 

Cons ide r  (12) and  in t roduce  (15) and (16): 

- c [ v J H ' -  (v I + [ v J H ) [ u J K '  + (u I + [ u J K ) [ v J H '  = 0. (19) 

W e  can then rewri te  (19) as 

d H  H F 1 

d K  a + K -  [ v ] ( a +  K ) '  (20) 

where 

U 1 - -  C 
a -  [ u ] "  (21) 

By in tegra t ing  (20) we ob ta in  

H = v~ _ b(a + K),  (22) 
[ v ]  

where b is a cons tan t  of in tegrat ion.  Now,  for x-- ,  - o% bo th  H and K ~ 0 ;  therefore,  the cons tan t  of 
in tegra t ion  is 

b -  Vl 
[v]a (23) 

and 

H _ V l  K 
Iv] a"  (24) 

In the same way  as for x ~ ~ ,  bo th  H and K ~ 1; therefore, 

vl - 1. (25)  
[v]a 

This last  re la t ion,  together  with (21), gives (with ff = u - c) 

fir _ Pl (26) 
51 p~' 
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which is the R H  j u m p  for the conserva t ion  of mass  equat ion  found in Section 2 (equation (6)). By using (24) 
and  (25), we find that  

H = K. (27) 

N o w  consider  (13); if we int roduce equat ions  (15)-(17), then 

- -  c [ u ] g t - }  - (u 1 -q- I -L/ ] / )  [ u ] g t  q- (/)1 -~ [v]H)[p]E = 0. (28) 

With  (27) and (25), we can rewrite (28) as 

We can integrate  

dL [u] 2 
-I - O. ( 2 9 )  

aK Iv] [p] 

[u] z 
L + ~ K = d, (30) 

where d is a cons tant  of  integrat ion.  As K - + 0 ,  L--+0, we can conclude that  d = 0 .  Hence,  for K--+ 1, 
L--+ 1, 

[u ]~  - 1. (31) 
Iv] [p] 

This reduces to Prandt l ' s  relation: 

If  we use (31) in (30), we get 

~ Pr--P~ (32) U r U l - - - - .  
P r - - P l  

K = L. (33) 

F r o m  the first two of (12)-(14), we find that  the functions H,  K, and L must  be the same to obta in  solutions as 
in (15)-(17). 

N o w  consider (14) and int roduce (16) and (17): 

[p](U 1 - -  C)IJ, -I- 7pI[u]K' + [u] [p](KE + 7LK') = 0. (34) 

However ,  we see f rom (33) tha t  K = L such that  

[p] (u~-  c)K' + 7p~[u]K' + [ul [p](y + 1 )KK'  = 0. (35) 

We integrate  (35) f rom x = - o0 to x = oo as 

{ [p] (u l - c )+Tp l [u]} f~dK+[u][p] (7+l )~KdK=O.  (36) 

Equa t ion  (36) yields 

(Pr - -  p,)~7, + '~pl(/~r - -  ul) -1- (Ur - -  Ul)(Pr - -  Pl) ~ = 0, (37) 

which can be reduced to the final R H  j u m p  condition: 

uj = (7 + l)pr q- (7 -- 1)pl (38) 
~r (7--  1)pr +(7  + 1)P1" 

This analysis has shown that  if H = K = L (i.e., if the shock profiles for v, u, and p are identical) then the full 
set of correct  R H  jumps  condi t ions can be recovered f rom the equat ions in primit ive form. 
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4. Multiplication of Discontinuous Solutions 

Consider (35) rewritten as 

{ [P] ( u l -  c) + 7pl[u] + [u] [P] (? + 1)K}K' = 0. (39) 

I l K  belongs to the set of C 1 functions, then the equation above only admits K = constant as a solution. If 
K is allowed to be a discontinuous solution, then K' cannot be factorized from (39). Here we follow the 
mathematical construction of generalized functions proposed by Colombeau in [21 and Colombeau and Le 
Roux in [41. The main advantage in using this construction is that most of the operations admissible with 
smooth functions can be defined for discontinuous functions, including differentiation. (See Appendix A). 
We restrict our attention to the Heaviside function and its derivative, the Dirac delta function. 

The Heaviside function is such that 

H(x) = J'0 for x < 0 ,  (4O) 
for x > 0. 

The Dirac delta function fi(x) is 0 in [ -  oo,0[w]0,  oo1 and is such that 

f~_~oa(x)dx=l. 

Let C~(fl) denote the set of all C ~ functions on fl with compact support. Given Gl(x), G2(x), and the test 
function ~P(x)eC~(fl), if 

fa[~l(x)- G2(x)]~I'(x)= dx 0 

for all ~(x), then we say that G~(x) and G2(x ) are associated and write Gl(x ) ~ G2(x ). According to the 
definition above, G~ ~ G 2 does not imply that G3G ~ ~ G3G2, where G 3 is some other function. Consider, for 
example, H" (the nth power of the Heaviside funcion H). We can show that H " ~  H, but H"H' is not 
associated with HH'. In fact, we have 

H"-  *H' ~ 1 H'. (41) 
n 

Note that if we replace the associative symbol ~ in (41) with the equal sign, then we obtain, for example, 
HH' = ½ H' and multiplication by H yields H2H ' = ½HH'. Now by substituting again an equal sign into (41) 

1 r 1 1  we get ~H = ~ H ' ,  which is absurd. 
In conclusion, if we replace the equal sign in (35) with the symbol ,-~, then the subsequent integration is 

fully justified. 
In another example, we present a case in which the Heaviside functions describing the shock are not 

equal because of their behavior at zero. Consider the mass conservation equation 

Pt + PUx + upx = 0. (42) 

If we seek a solution for p of the form 

substituting in (42), we obtain 

The solution to this equation is 

P = Pl + [P]I(~), (43) 

dI I p~ 1 - 0. (44) 
dK + a ~  4 [p] a + ~  

k Pl 
I - -  - -  

a + K  [p]' 
where k is the constant of integration. For  x ~ - oo both K and I ~ 0, therefore 

(45) 

P1 
k = TCq a. (46) 

kP3 
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For x ~ oo both K and I ~ 1, so that 

a + 1 - Pl (47) 
i -p ] '  

(21) with the above equation reduces to the jump condition expressed by (26). Finally, 

a + l  
I - a + K K (48) 

is obtained. Equation (48) is significant because it shows that the microscopic behavior of the Heaviside 
function that describes the p jumps is not the same as that for p or u. For  example, consider K defined as 

K(~) = lim ( t a n k ( S )  + 1 ) ~-+~ , (49) 

K(0) is defined as 

lim K(~), 
¢~0 

therefore it follows that K(0) = ½. For  I it follows from (48) that 

a + l  
I(0) = lim - -  K(~), (50) 

~ o  a + K(~) 

hence 

a + l  1 
I(0) = 2a + 1 ¢ 2" (51) 

5. Entropy Structure in a Shock Wave 

As pointed out in Section 2, although a "conservation law" can be written for entropy, this law does not lead 
to the correct jump. Although this fact is well known, the reason why is not well understood. In this section 
we show that the shock profile that corresponds to the entropy cannot be represented by a Heaviside 
function; hence, the entropy propagation equation does not yield the correct jumps. 

Consider (28) and (34). Multiply (28) by 7 and then divide by v; divide (34) by p and add the two equations. 
We obtain the following after simplifying: 

7(Pl + [p ]L) [v ]H'+ (v, + [v]H)[p]L' = O. (52) 
i r Because H = L we have H ' L  ~ H E  ~ ~ H ,  we get the RH jump, 

vr[p~(~: - 1) + Pr(? + 1)] = v~ [Pr(7 - 1) + P~(7 + 1)]. (53) 

This shows that the equation 

P ' + 7 ~ + u ( f + ~ : ~ ) = 0 p  (54) 

has a valid jump. However, (54) may be rewritten as 

S, + u S  x = 0, (55) 

because d S  = d p / p  + ~ dv/v .  Now we look for a solution for S of the form 

S = S~ + IS] r(~), (56) 

where T is a Heaviside function. If we substitute (56) and (16) into (55), then we get 

{ - cV '  + (u, + [ u ] K ) T ' }  IS]  = 0, (57) 
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S ~ 

S r 

S1 

Figure 3. Entropy structure across inviscid shock wave. X 

either the expression within the braces must be zero or the jump I-S] must be zero. In general, because no 
relation exists between Tand K, the expression within the braces is not zero, hence, we conclude that (57) 
gives the wrong jump, namely [S] = 0. In actuality, the problem lies elsewhere. In going from (54) to (55), we 
have gone from an equation with two jumps [-p] and [-v-I to an equation with a single jump IS]. By 
combining the two equations, we have lost some information; furthermore, the assumption that the solution 
can be expressed as in (56) is incorrect, which will be shown below. 

Consider the following. Without loss of generality, let v 1 = 1 and Pl = 1 and take $1 as the reference state 
for entropy. Because S by definition is 

S = lnp + 7 in v (58) 

we obtain, given (15) and (17) and the fact that L = H, 

d S  (1 + [v]H)7-1{(7 + 1)[p] Ev3H + Ep] + 7[v]} 
- -  = (59) 
d H ,  pv  ~ 

Because the jump [p] is 

27Ev] 
Ep] = (7 + 1)Ev] + 2'  (60) 

we can obtain the following by substituting and simplifying: 

d S  {1 + [v]H}'  1 7(7 + 1)Iv] Ev] 
(1 --  2H) (61) 

d H  pv ~ (7 + 1)[-v] + 2 '  

When H = 0 we have d S / d H  > 0, while if H -- 1 we have d S / d H  < 0; hence, S has a maximum when H takes 
values from zero to one. As a result, we conclude that S cannot be described by a simple Heaviside function 
but rather by the sum of two Heaviside functions 

S = S 1 .-~ (S • - S , )T({ )  + (S r - S*)N(~) ,  (62) 

where S* is the value of S at the maximum. (See Figure 3.) The figure shows clearly that by using a single 
equation such as (55) for the entropy, we cannot determine the two jumps that actually represent the 
structure of the entropy at the shock. A more technical proof of the fact that entropy cannot be represented 
by a single step function is given in Appendix B. 

6. C o m p u t a t i o n a l  R e m a r k s  

In this section we discuss some aspects related to the design of a shock-capturing scheme for systems of 
equations written in quasi-linear form, see also [-3]. Consider the equation 

u~+ ~- x=O (63) 

and its quasi-linear form 

u t + uu x = O, (64) 
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where 

u = u I + [u] g(x  - a),  (65) 

Y being a step function and [u] = u r - u I. It is well known that a conservative discretization of(63) leads to 
a shock-capturing scheme. In contrast, ifa characteristic scheme is used for (64), the speed of the shock is not 
properly computed. 

According to the theory of multiplication of distribution, we discretize the product uu x in a way that 
mimics the behavior of the product Y Y '  at the shock. 

Substituting (65) into (63) and considering (41), we obtain 

ur + ul [u] Y'. 
uux - 2 

If we discretize I-u] Y' as (u r -ul) /Ax,  and we apply a characteristic scheme in which the derivative u~ is 
upwinded according to the speed (ur + @/2, we obtain the same results that we would obtain using 
a conservative scheme for integrating (63). 

In extending this method to the Euler equation we encounter the following difficulty: the characteristic 
variables are quantities that cannot be modeled with a step function, for the same reason as for entropy. 
Therefore a shock-capturing characteristic scheme for the Euler equations cannot be devised by a direct 
extension of these ideas. A way to overcome this difficulty is presently under investigation. 

7. Conclusions 

The shock jump conditions for the Euler equations in their primitive form were derived using generalized 
functions. It was shown that the structure of the shock profile is not the same for all variables. A study of the 
entropy propagation equation showed that if the shock structure for the entropy is represented by a single 
Heaviside function, then the wrong entropy jump is obtained. It was then shown that the proper 
representation of the entropy profile requires two Heaviside functions, but not all the information required 
to specify this profile can be obtained from the entropy propagation equation. 
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Appendix A. Some Definitions About Generalized Functions 

Here we briefly discuss generalized functions. For  more details on this subject, see [9] and [5]. 
A testfuncion (p(x) exists such that: 

1. ~0(x) is C% 
2. 99(x) has a compact support (i.e., q)(x) vanishes outside of some compact interval [a, b]). 

Furthermore, a sequence On(x) of test functions converges to 0 if: 

1. For  each k, the sequence of the kth derivative qo(~k}(x), ~o~k)(x),... converges uniformly to zero. 
2. Every ~o,(x) vanishes outside a given interval [a, b]. 

A generalized function T is a mapping from the set ~ of all test functions into the real or complex numbers 
such that if ( . , - )  is the interval product operator, then we have: 

1. ( T, a~o(x) + b~(x) ) = a ( T, (p(x) ) + b ( T, ~(x) 5. 
2. If ~o,(x) converges to zero in the manner defined above, then ( T, ~o,(x)) convergence to zero. 
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General ized functions are useful because their derivatives are always well defined. In  fact, we have the 
following definition: 

( r ' ,  (fi) = -- (Z ,  (fi'). 

A p p e n d i x  B.  E n t r o p y  S t r u c t u r e  P r o o f  

Consider  (58) and substitute (12) and (14). Because H = L, we have 

S = ln(1 + [p ]H)  + 71n(1 + Ev]H). 

The equat ion above  can be writ ten as 

S = ln(pr)f  + 7 ln(vr)G, 

where F and  G are two Heavis ide functions defined as 

f _ ln(1 + [-p]H) a - ln(1 + Iv ]H)  

ln(pr) ' ln(vr) 

We now show that  F ~ G, a l though they are not  identical in the sense that  FH' is not  associated with GH'. 
We take a test function ~0(x) (defined in Appendix A) and compute  the following integrals: 

f'ln(lEPnH) (x)aXfo Fop(x) dx = + = (p(x) dx, 
- 00 _ ln(p~) 

ff~o G~°(x)dx=f°°~ln(l+[v]H)~9(x)dx=fo q ° ( x ) d x ' -  ln(vr) 

f rom which we conclude F ~ G in accordance with the definition of association. To  verify whether  
FH' ~ GH', we have 

f f  f t  ln(1 + [p ]H)  1 1  FH' dx = ln(pr) dH = 1 -~ [p] ln(pr), 
oe 0 

• t ln(1 + I v ] H )  d H  = 1 q- 
G H '  dx = ln(vr) Iv] ln(vr)" co 0 

Thus, we conclude that  FH' and GH' are not  associated. Therefore,  F and G must  be considered as two 
locally different Heavis ide functions, a l though they are associated. 
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