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A b s t r a c t  

A n  ana lys i s  is p r e sen t ed  for l a m i n a r  r ad ia l  flow due  to  a n  osci l la t ing 
source b e t w e e n  para l le l  p la tes .  T he  source  s t r e n g t h  var ies  accord ing  to  
(2 ~ Q0 cos cot, a n d  t he  so lu t ion  is in  t h e  fo rm of a n  in f in i te  series in  t e r m s  
of a r educed  Reyno lds  n u m b e r ,  R~ = Qo/4~ra/(r/a) 2. (Qo ~ a m p l i t u d e  of 
source  s t r eng th ,  o ) ~  f requency ,  a = ha i l  d i s t ance  b e t w e e n  pla tes ,  r = 
= r ad i a l  coord ina te ,  t = t ime,  a n d  v = k i n e m a t i c  viscosi ty.)  The  resu l t s  
are  va l id  for  smal l  va lues  of R a a n d  all va lues  of t h e  f r e q u e n c y  Reyno lds  
n u m b e r ,  ~ = coa2/v. The  effects of t h e  p a r a m e t e r s  R* and  a are discussed.  
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ha l f  d i s t ance  b e t w e e n  p la tes  
r ad i a l  coo rd ina t e  
d imens ion less  r ad ia l  coord ina te ,  ¢/ct 
ax ia l  c o o r d i n a t e  
d imens ion less  axia l  coord ina te ,  2/a 
t i m e  
d imens ionless  t ime,  iv/a 2 
dimens ion less  r ad ia l  coo rd ina te  of a cross-sect ion in t he  flow 
ve loc i ty  c o m p o n e n t  in  r ad ia l  d i r ec t ion  
d imens ion less  ve loc i ty  c o m p o n e n t  in  r ad ia l  d i rect ion,  ~a/v 
ve loc i ty  c o m p o n e n t  in axia l  d i rec t ion  
d imens ion less  ve loc i ty  c o m p o n e n t  in axia l  d i rect ion,  ~a/v 
pressure  
d imens ion less  pressure ,  }a2/pv 2 
i n s t a n t a n e o u s  source  s t r e n g t h  
a m p l i t u d e  of source s t r e n g t h  
f r e q u e n c y  
a m p l i t u d e  of source Reyl lo lds  n u m b e r ,  Qo/4=vct 
a m p l i t u d e  of r educed  Reyno lds  n u m b e r ,  R~/r 2 
f r e q u e n c y  Reyno lds  n u m b e r ,  em2/v 
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p density 
tt viscosity 
v kinematic viscosity, #/# 
el shear stress at the upper boundary 
• 1 dimensionless shear stress at the upper boundary, el/(#Qo/4zra2~) 

§ 2. Introduction 

Oscillating flow is of practical significance in many areas of engi- 
neering, e.g. acoustics, biomedical engineering, and lubrication. 
Oscillating radial flow is of primary interest in the design of thrust 
bearings and radial diffusers. 

A system that has received considerable attention is that  of flow 
in circular tubes, e.g. Uchida [1]. The only analysis published on 
oscillating radial flow is by  Na, Neilsen, and Grossman [2]. In their 
analysis, a small sinusoidal oscillation in the flow rate about a 
finite mean value was considered. Their solution is valid for very 
small frequencies and for large distance from the center. 

In this paper an analysis is presented for a system in which the 
flow rate varies sinusoidally about a zero-mean value. The solution 
obtained for the oscillation of the fluid is in the form of an infinite 
series expansion in terms of a reduced Reynolds number, R~-~ 
= (Qo/47rva)/(¢/a) 2, which signifies the importance of convective 
inertia. Another  dimensionless group a = o~ag/v, a frequency 
Reynolds number, also appears in the solution and signifies the 
effect of local inertia. 

The effects of the parameters R~ and c~ on the pressure, velocity, 
and shear stress are presented. The results presented herein provide 
an understanding of the effect of frequency on the characteristics 
of laminar radial flow between parallel plates over the whole range 
of frequencies from 0 -+ c~. 

§ 2. Basic equations and solutions 

a) Basic equations 
Consider the nonsteady axially symmetric flow of a Newtonian 
fluid with constant properties between parallel infinite disks, which 
lie in the planes 2----- - -a  and ~ = + a ,  Fig. 1. The flow through 
the system shown in Fig. 1 is due to a source, at f = 0, whose 
strength varies according to 

Q = Qo cos ~,E 
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Q = Qo cos ~ t  

Fig. 1. F low sys tem and coordinates.  

In terms of the dimensionless variables defined, see nomen- 
clature, the Navier-Stokes equations are 

Ou ~ Og 
t ~ ~ .  + u ~ - + v  ~z  - 

and 

- er + \ ~ r 2  + r ~r r2 + ~z2 )  (1) 

~-T + U ~ r  + v ~z ~z + \ ~r2 + - -  - -  + (2) 

and the equation of continuity is 

~u u ~v 
- -  + - -  + - -  = 0 ( 3 )  
~r r 8z 

The boundary conditions for the flow system under consideration 
are 

u = v = 0  at z =  ~ 1  

and 
+i 2Ra 

u dz - -  cos at (4) 

where Ra = Qo/4~va is the amplitude of the source Reynolds 
number and a = coa2/v is a dimensionless frequency parameter. 
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In order to obta in  a solution for (1), (2) and  (3), we assume the  
following expansions,  which are valid for small  values of R~ (-~ R~/r~), 
Elkouh  [3]: 

and 

R~ /6(z, t) ± /l(z, t) + ]~(z, t) -1- (5) 
r - ~ -  "'" 

v [ \ r2 j h(z,t) + 4 h(z,t) + . . .  (6) 

p = h(z, t) + R~ x 

× ho(z,t) l n r +  - ~ -  h l ( Z , t ) + \ r  2 I 

where the  pr imes denote  par t ia l  different iat ion wi th  respect  to z. 
The  bounda ry  condi t ions on the  funct ions [n and their  deriva- 

t ives are 

/ ~ ( ±  1, t) = 0 s = 0, 1, 2 . . . .  
(8) 

/ n ( ± l , t ) - - o  . =  1,2 . . . .  
and 

/o(1, t) - - / 0 ( - -  1, t) = 2 cos at, 

which upon  choosing 

gives 
/o(--1,  t) = --  cos at 

/0(1, t) = cos at 

The  expressions for the veloci ty componen t s  (5) and  (6) satisfy 
the  cont inu i ty  equat ion.  Subs t i tu t ing  (5), (6) and  (7) in (1) and  (2), 
and  equat ing  coefficients of equal  powers in r, reduces the  Navier-  
Stokes equat ions  to an infinite set of systems of s imul taneous  linear 
par t ia l  differential  equations.  The  first two systems considered 
here are: 

System I 
~3/o ~Z/o 

- -  h o  
~z 3 ~t~z 

(9) 
~ho 

- -  0 i . e . ,  ho(z,  t) -~ ho(t) ~z 
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The differential equation for h is 

~h 
- -  0 i . e . ,  h(z,  t) : h(t),  ( 1 0 )  

~z 

where h(t) is determined from a known pressure at a point in the 
flow. 

System H 

8all (~2/1 
~z 3 Ot~z \ ~z ] 

~hl 
- - 0  

8z 
i.e., hi(z, t) = h1(¢) 

(11) 

b) Solutio~, o/ system I 

The solution of (9) subject to the boundary conditions (8) represents 
the limiting case when (R~/r 2) -+ O. The linearity of (9) and the 
form the boundary conditions suggest a solution of the form 

and 
/o = Fo(z) cos at + Go(z) sin at 

ho = Ho cos at + Po sin at 

12) 

18) 

Substitution of (12) and (13) into (9) yields 

m 
F o -- ~G6 = Ho 

and 
Go' + aF6 = Po 

14) 

(15) 

The boundary conditions on F0 and Go and their derivatives are 

F 0 ( ~  1) = -t- 1, F 6 ( ~  1) = 0 and  

G 0 ( ~  1) = G 6 ( ~  1) = 0 
(16) 

The solutions of (14) and (15) subject to the boundary conditions 
(16) are 

1 
Fo = ~ [Poz + ~{(Bo --  Co) sh 2z cos ~z + 

+ (Bo + Co) ch 2z sin 2z}] (17) 
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and 

1 
Go = ~ - ~  [--Hoz q- 2{(Bo + Co) sh 22 cos 22 + 

+ (Co - -  Bo) ch 22 sin 22}] 

where 

2 = , /~ /2 ,  
1 

B0 = ~ -  [422(-- ch 2 cos 2) @ 22(sh 2 cos 2 + ch 2 sin 2)] 

1 
Co = ~ [422( - sh 2 sin 2) + 22(ch 2 sin 2 - -  sh 2 cos 2)] 

(18) 

and 

1 
Ho = ~ -  [22a(sin 22 - -  sh 22)] (19) 

1 
Po = ~ -  [424(ch 22 @ cos 22) - -  22a(sh 22 + sin 22)] (20) 

k = [222(ch 22 + cos 22) - -  22(sh 22 + sin 22) + (ch 22 - -  cos 22)] 

c) Solution o~ system I I  

Subst i tu t ing for (O/o~&) 2 from the solution of Sys tem I into the 
r ight-hand side of (11) will contr ibute  terms with cos 2 st  and 
sin 2 st. These, in turn, can be reduced to terms with cos 2~t, sin 2~t 
and s teady-state ,  i.e., t ime-independent  terms. Taking into account  
these circumstances, one can express the solution for Sys tem II, 
(11), in the form 

i1 = Fs(z) + Fl(z) cos 2at + Gl(z) Sill 2at (21) 

and 

hi = Hs + H I  cos 2~t + P1 sin 2~t (22) 

Subst i tu t ing these expressions into (11), yields 

F~' = - - 2 H ~  - -  ½(F6 ~ + G6 2) (23) 

F ~ '  - -  2o, Gi  = - - 2 H 1  + ½(G6 ~ - -  F69) (24) 

and 
/ / /  s t G 1 + 2o~F~ ~- - -2P1  --  FoGo (25) 
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The boundary conditions on Fs, F1, G1 and their derivatives are 

F~(:~  1) = F ; ( ±  1) = 0 

F I ( ±  1) =- F i ( ~  1) = 0 

and 

G1(-4- 1) = G i (~  i) = 0 (26) 

The solution of (23) subject to the boundary conditions, (26), is 

f , = A ~ ( } z a  - -  ~) + ~ y  ~22z(ch 24 - -  cos 22) + 

- -  (sh 222 --  sin 22z)] + (Bs --  Cs) ch 22 sin 2z -}- 

--  (Be + Cs) sh 2z cos 22 (27) 

with 

1 [ (P~ + H i )  15(sh 22 -- sin 22) -- 62(ch 22 -- cos 22)] 
H,  = ~ -  24 + 2k 

where (28) 

(1) 
A s =  ~ E62(ch 24 -- cos 22) -- 15(sh 22 -- sin 22)] 

B s = - -  2~-k 2- [222( - c h 3 2 c o s 2 - c h x c o s 3 4 - 2 c h 2 c o s t ) +  

+ 22(sh 32 cos 2 + ch 2 sin 32 + sh 2 cos 2 q- ch 2 sin 2) + 

+ (-- ch 32 cos 2 + ch 2 cos 32)] 

and 

Cs ch 2 cos 2 = Bs sh 2 sin 2 

The solutions of (24) and (25) subject to the boundary conditions, 
(26), constitute the fluctuating components of System II. The 
detailed expressions for F1, G1, HI,  and P1 are long and are omitted 
to conserve space; readers interested in these expressions are 
invited to write to the author. 
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§ 3. Resul ts  and  discussions 

a) Velocity distribution 
We define a dimensionless radial velocity such that 

u r  
U ~ - -  

R~ 

Substituting for/0 and/1 from (12) and (21) into (5), and neglect- 
ing higher order terms, yields 

u* = 1; + ~ / i  

_ R * / ~ '  -- (F~ cos st -b G8 sin st) + a ~ s  + F~ cos 2~t -b G~ sin 2~t) (29) 

The first term on the right-hand side of (29) represents the radial 
velocity for R a : 0, i.e. as r -~ oo, while tile second term represents 
the effect of the nonlinear inertia. The nonlinear-inertia contri- 
bution is in the form of steady streaming, F~, superimposed on an 
oscillating motion of frequency twice that  of the source strength. 

Profiles for the amplitude of the first-harmonic fluctuation, ([~)a, 
are presented in Fig. 2. From Fig. 2 it is shown that ([~)a approaches 
a parabolic distribution as ~ - +  0; while for high frequencies it 
assumes a fairly uniform value across the central portion of the 
flow domain and reaches its maximum values close to the solid 
boundaries. 

The distributions of the steady perturbation term, F~ for various 
values of ~ are shown in Fig. 3. From Fig. 3 it is shown that F~ is 
small when compared with (/8)a. Also, calculations of the amplitude 
of the second-harmonic fluctuation have shown that it is of the 
same order as F~ and that their combined contribution to the 
velocity distribution can be neglected for high values of ~. 

The instantaneous radial velocity distributions for c~ = 100 and 
for R~ = 0 and R~ = 3.00 are shown in Fig. 4. The magnitudes 
of the nonlinear inertia contributions to the velocity distributions 
are very small to be shown in these graphs. The velocity distri- 
butions presented in Fig. 4 show that the flow exhibits a boundary- 
layer character in the neighbourhood of the solid boundary, and 
that the flow in the central region lags behind that  in layers near 
the boundaries. 
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b) Pressure distributio~¢ 
Neglecting terms of higher order than  R~, and using (I0), the 
pressure distr ibution is of the form 

p - - - -  h(t) + Ra[ho(t) in r - / h l ( t )R* j  

where h(t) is a function of t ime only and is determined from a 
known pressure at  some cross-section in the flow. Assuming tha t  
the pressure is known at r = R, and using (13) and (22), the ex- 
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Fig. 5. Variation of Ho, Po, and H~ with ~. 
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pression for the pressure distribution is 

p(r, t) -- p(R, t) 
])* ~_ 

Rot [ (r) 
= (Ho cos at + Po sin o~t) in ~ -  -~ (Hs - / H I  cos 2od + 

+ P1 sin 2cct)(Rct'~(1 r2 )]  \ ~ / \  R~ ' (30) 

Values of the pressure coefficients for various ~ are given in Table I, 
and are presented graphically in Figs. 5 and 6. From Table I it is 
shown that  t-I8 and I71 are of the same order. 

0.7 

0.6 % 

0.5 

0.4 ~ x  ~. P,x I0 

o.~ I 

- -  - -  ~-{ I 

0.1 

0.25 
~.... 

0.0 

0 20 40 60 80 100 

Ct 

Fig. 6. Variation of HI and Pz with ~. 
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T A B L E  I 

~z 1 10 20 30 40 50 

--Ho(lO -1) 0.3006 0 .3473 0 .4289 0 .4993 0 .5582  0.6098 
Po( lO -2) 0 .0120  0 .1179 0 .2294  0.3371 0 .4433 0 .5488 

--Hs 0.3855 0.3701 013486 0 .3283 0.3171 0 .3095 

- - H 1  0 .3846  0 .3286  0 .2953 0 .2848 0 .2798 0 .2765 
- - P I ( 1 0 )  0 .1132  0 .5737  0 .4608 0 .3639  0 .3095 0 .2749 

100 200 300  400 500 600  

- -  Ho(10-~)  0.8141 1 . I050  1,3288 1.5177 1,6843 1.8349 
Po(lO -~) 1 . 0 6 9 9  2 .0994  3 .1220  4 .1410  5 , I578  6 .1729 

-- H~ 0 .2906  0 .2778  0 .2723 0.2691 0 .2670  0 .2654  

- -  H1  0 .2685  0 .2630  0 .2606 0 .2592  0 .2582  0 .2575 
- -  PI ( IO)  0 .1916  0 .1339 0 ; I087  0 .0938 0 .0837 0 .0763 

Pressure coefficients 
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Fig.  7. V a r i a t i o n  of  p *  w i t h  t ime  for  smal l  ~, r/R = 0.5. 
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Examina t ion  of the expressions for the pressure coefficients shows 
tha t  Ho/,~ --> - -  1, Po/o~ -+ 1, H 8  ~ - -  2, H 1  --> - -  1, and P1 -~ 0 as 
0~ ---> OO. 

The variat ion of p* with t ime for r / R  = 0.5, R* = 0 and R~ = 3.0, 
and for various ~ are presented in Figs. 7 and 8. From Figs. 7 and 8 
it is shown tha t  the effect of the nonlinear-inertia is significant for 
small frequencies, while for large frequencies the effect is negligible. 
For  R~ = 0, the pressure oscillates wi th  the same frequency as the 
source s trength and with a phase lead tha t  approaches ~/2 as 
approaches oo. 

The quasi-steady state pressure distribution, valid in the limit 
as ~ ~ 0, agrees with the results of ref. [2] and is given by  

) ( 27R* 1 (31) 
35 R 2 ' 

where R* = R~ cos at. 
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Fig .  8. V a r i a t i o n  o f  p* w i t h  t i m e  for  l a r g e  % r/R = 0.5. 

6 . 0  



OSCILLATING RADIAL FLOW 415 

Substituting the asymptotic expressions for Po and Ho in (30), 
one obtains 

\ z /  \ r /  

c) Skin/riction 
The shear stress at the upper boundary is given by 

/*(20 
4rca2~ 

[10(1, t) + R~I~(1, t)] 

Defining a dimensionless shear stress as 71 = 41/(#Qo/4~a2~), 
we have 

(33) 

~-~ - - [{Fo(~) cos ~t + Go(~) sin ~,t) + 

+ R~(F~(1) + E l ( l )  cos 2o~t + Gi(1) sin 2o~t}] 
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0.0 
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FI'(1) x I0 I 

. . . .  ~ G ''F I X I0 I V ~ .  / - - - G , ( 1 ) x  lO r__.F,~,(1) x iC~I o( ) ---~..._ 

20 40 60 BO I00 120 140 
t~ 

Fig. 9. Shear stress coefficients, 
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Fig. 10. Variation of "rl with time for small ~. 

The shear stress coefficients F0(1 ), G~(1), F~(1), F~(1), and Gi(1) 
are presented graphically in Fig. 9. Examina t ion  of the expressions 
for the shear stress coefficients shows tha t  F0 (1 ) / ,~ -+ - - I  , 
G0(1)/~ -> 1, F"s(1 ) -+ 0, Fi(1) -+ 0, and Gi(1) -+ 0 as ~ --~ oo. 

The variat ion of T1 with  time for R~ = 0 and R~ = 3, and for 
various values of ~ are presented in Figs. 10 and 11. Fig. 10 indi- 
cates t ha t  the effect of the nonlinear-inertia can be significant for 
small ~, while Fig. 11 shows tha t  such an effect can be negligible 
for high values of ~. As ~ -+ 0 the shear stress approaches values 
obtained from the quasi-stevody-state solution, given by  the ex- 
pression 

( 1 2 / 7 " )  (34) 
~'1 = COS o~t 3 35 
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Fig.  1 1. V a r i a t i o n  of r l  w i t h  t i m e  for  l a rge  ~. 

For  R~ = 0 the shear  stress at  the bounda ry  oscillates with the 
same f requency  as the source s t rength,  and with a phase lead 
tha t  approaches  ~/4 as ~ approaches  co, Fig. 11. 

Subs t i tu t ing  the asympto t ic  values of the shear  stress coefficients 
into (33), we obta in  

~-l-->~/2~cos(~t+~-'l, as c~-->co (35) 
\ 9 /  
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