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OSCILLATING RADIAL FLOW
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Abstract

An analysis is presented for laminar radial flow due to an oscillating
source between parallel plates. The source strength varies according to
@ = Qg cos wf, and the solution is in the form of an infinite series in terms
of a reduced Reynolds number, R} = Qof4nva/(r/a)?. (Qo = amplitude of
source strength, o = frequency, a = half distance between plates, » =
= radial coordinate, ¢ = time, and v = kinematic viscosity.) The results
are valid for small values of R} and all values of the frequency Reynolds
number, « = wa?/y. The effects of the parameters R} and « are discussed.

Nomenclature
a  half distance between plates
7  radial coordinate
v  dimensionless radial coordinate, 7/a
Z  axial coordinate
z  dimensionless axial coordinate, £/a
I time
¢t dimensionless time, #v/a2
R dimensionless radial coordinate of a cross-section in the flow
#  velocity component in radial direction
u  dimensionless velocity component in radial direction, #a/v
7 velocity component in axial direction
v dimensionless velocity component in axial direction, a/v
p  pressure
#  dimensionless pressure, pa?/pv?
@ instantaneous source strength
Qo amplitude of source strength
w  frequency
R, amplitude of source Reynolds number, Qo/4mva
» amplitude of reduced Reynolds number, R,/r?

Q

frequency Reynolds number, wa?/y
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p  density

p viscosity

v  kinematic viscosity, u/p

71 shear stress at the upper boundary

71 dimensionless shear stress at the upper boundary, 71/(uQo/4na??)

§ 1. Introduction

Oscillating flow is of practical significance in many areas of engi-
neering, e.g. acoustics, biomedical engineering, and lubrication.
Oscillating radial flow is of primary interest in the design of thrust
bearings and radial diffusers.

A system that has received considerable attention is that of flow
in circular tubes, e.g. Uchida [1]. The only analysis published on
oscillating radial flow is by Na, Neilsen, and Grossman [2]. In their
analysis, a small sinusoidal oscillation in the flow rate about a
finite mean value was considered. Their solution is valid for very
small frequencies and for large distance from the center.

In this paper an analysis is presented for a system in which the
flow rate varies sinusoidally about a zero-mean value. The solution
obtained for the oscillation of the fluid is in the form of an infinite
series expansion in terms of a reduced Reynolds number, R} =
= (Qo/4mva)/(7|a)2, which signifies the importance of convective
inertia. Another dimensionless group o = wa?/y, a frequency
Reynolds number, also appears in the solution and signifies the
effect of local inertia.

The effects of the parameters R and « on the pressure, velocity,
and shear stress are presented. The results presented herein provide
an understanding of the effect of frequency on the characteristics
of laminar radial flow between parallel plates over the whole range
of frequencies from 0 —> co.

§ 2. Basic equations and solutions

a) Basic equations

Consider the nonsteady axially symmetric flow of a Newtonian
fluid with constant properties between parallel infinite disks, which
lie in the planes Z = —a and Z = +a, Fig. 1. The flow through
the system shown in Fig. 1 is due to a source, at 7 = 0, whose
strength varies according to

Q = Qo cos wi
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Fig. 1. Flow system and coordinates.

In terms of the dimensionless variables defined, see nomen-
clature, the Navier-Stokes equations are

on © ou . ou
—ty—tr— =
ot or 0z
op 2y 1 ou u 02u
=———+|—t— — — — (1)
or ord y or 2 072
and
ov ov ov op 0%y 1 ov 0%
Tdtu == (ot — o) ()
ot or oz oz or? r or 072

The boundary conditions for the flow system under consideration
are

w—=v=0at 2= +1
and

+1 2R
f wdz =" cos ot (4)

—1 (4

where R, = Qg/4mva is the amplitude of the source Reynolds
number and « = wa?/v is a dimensionless frequency parameter.
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In order to obtain a solution for (1), (2) and (3), we assume the
following expansions, which are valid for small values of R (= R,/r2),
Elkouh {3]:

Ra a Ra
L. {fé(z, ) -+ (%)fi(z, )+ (72—>2 e, )+ } ©)

v = {2 (%)2 fi(z, f) + 4 <%)3 fa(z, t) + } (6)
and

p = hiz, t) + Ry X
X {ho(z, Hinr 4 (%) hi(z, 1) + (%)2 ha(z, t) + }, (7)

where the primes denote partial differentiation with respect to z.
The boundary conditions on the functions f, and their deriva-
tives are

f(E1LH=0 =n=012..

fa1,8) =0 w=12.. (8)

i

and
fo(1,8) — fo(—1,4) = 2 cos of,

which upon choosing

fo(—1,8) = — cos o
gives :
fo(l, ) = cos o

The expressions for the velocity components (5) and (6) satisfy
the continuity equation. Substituting (5), (6) and (7) in (1) and (2),
and equating coefficients of equal powers in 7, reduces the Navier-
Stokes equations to an infinite set of systems of simultaneous linear
partial differential equations. The first two systems considered
here are:

System 1
3fo o

023 otez

—— =0 e, holz,t) = ho(t)
174
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The differential equation for 4 is

% =0 e, bz t) = h(t), (10)

where A(t) is determined from a known pressure at a point in the
flow.

System 11

P f1 9o \?
. — —on — 2
o023 atoz oz

(11)
oh .
_azi =0 e, Mzt = h)

b) Solution of system 1

The solution of (9) subject to the boundary conditions (8) represents
the limiting case when (R4/r2) — 0. The linearity of (9) and the
form the boundary conditions suggest a solution of the form

fo = Fo(z) cos af 4+ Go(z) sin o (12)
and
ho = Hg cos of 4 Py sin of (13)

Substitution of (12) and (13) into (9) yields
Fy — oGy = Hy (14)

and
Gy + aFy = Py , (15)
The boundary conditions on F¢ and Gg and their derivatives are
Fo(+£1) =41, Fo(4+1) =0 and
Go(£1) = Gi(£1) = O e

The solutions of (14) and (15) subject to the boundary conditions
(16) are

1

Fo— ——
0= e

[Poz + A{(Bo — Co) sh Az cos Az +
+ (Bo + Co) ch Azsin A2}]  (17)
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and
1
G() = ?}L-Z— [—Hoz + l{(BQ —I— Co) sh Az cos Az +
4 (Co — Bo) ch Azsin Az}]  (18)
where
A =+af2,
1
By = s [442(—ch A cos A) -+ 24(sh 4 cos 4 4 ch 4 sin )]
1
Co = " [4A2(—sh A sin A) 4+ 2A(ch A sin 4 — sh 4 cos 4)]
1
Ho = — [21%(sin 21— sh 24)] (19)
1
Py = " [424(ch 22 + cos 24) — 243(sh 24 + sin 24)] (20)
and

k = [2A%(ch 24 + cos 24) — 2A(sh 24 + sin 24) 4 (ch 24 — cos 24)]

c) Solution of system 1T

Substituting for (9fe/2)2 from the solution of System I into the
right-hand side of (11) will contribute terms with cos? «f and
sin2 af. These, in turn, can be reduced to terms with cos 2af, sin 2at
and steady-state, i.e., time-independent terms. Taking into account
these circumstances, one can express the solution for System II,
(11), in the form

f1 = Fs(2) + F1(2) cos 2ot 4 G1(2) sin 2t (21)
and
h = Hg + Hjy cos 2ot + P sin 2o (22)

Substituting these expressions into (11), yields
F{ = —2H, — }{F¢* + Go?) (23)
FY — 206Gt = —2H; -+ 3(Gi# — Fi?) (24)

and
Gl + 2uF} = —2P; — FiGg (25)
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The boundary conditions on Fy, I'1, G1 and their derivatives are
Fy(41) = Fi(£1) =0

Fi(1) = Fi(1) = 0
and
G+ 1) =G+ 1)=0 (26)

The solution of (23) subject to the boundary conditions, (26), is

Fo= 4,328 — 2) 4 <—8—;k—) [2Az(ch 24 — cos 24) +

— (sh 24z — sin 242)] + (Bs — Cs) ch Az sin Az 4

— (Bs + Cs) sh Az cos Az (27)
with
o 1 (P? + HY) n 15(sh 24 — sin 24) — 64(ch 214 — cos 22)
TS e Ak
where (28)

I
As= (T%) [6A(ch 24 — cos 24) — 15(sh 24 — sin 24)]

1
By= — <_27k—2_> [222(——ch 34 cos A —ch Acos 34 —2ch Acos A} +

4+ 2A(sh 34 cos A+ chisin34+shAcos A+ chisinil) +
4+ (—ch 34 cos A 4 ch A cos 34)]

and
Cschicosd = Bgshaisini

The solutions of (24) and (25) subject to the boundary conditions,
(26), constitute the fluctuating components of System II. The
detailed expressions for Fi, G1, H1, and Py are long and are omitted
to conserve space; readers interested in these expressions are
invited to write to the author.
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§ 3. Results and discussions
a) Velocity distribution
We define a dimensionless radial velocity such that

o

=R

Substituting for fo and f; from (12) and (21) into (5), and neglect-
ing higher order terms, yields

“=fo+ Rif1
= (Fp cos ot + Go sin at) + RA5(Fs + Ii cos 2at -+ G sin 20f)  (29)

The first term on the right-hand side of (29) represents the radial
velocity for R} = 0, i.e. as 7 —> oo, while the second term represents
the effect of the nonlinear inertia. The nonlinear-inertia contri-
bution is in the form of steady streaming, F§, superimposed on an
oscillating motion of frequency twice that of the source strength.

Profiles for the amplitude of the first-harmonic fluctuation, (fo)a,
are presented in Fig. 2. From Fig. 2 it is shown that (fo)4 approaches
a parabolic distribution as « — 0; while for high frequencies it
assumes a fairly uniform value across the central portion of the
flow domain and reaches its maximum values close to the solid
boundaries.

The distributions of the steady perturbation term, Fg for various
values of o are shown in Fig. 3. From Fig. 3 it is shown that Fj is
small when compared with (fg),. Also, calculations of the amplitude
of the second-harmonic fluctuation have shown that it is of the
same order as Fi and that their combined contribution to the
velocity distribution can be neglected for high values of a.

The instantaneous radial velocity distributions for o = 100 and
for R} = 0 and R} = 3.00 are shown in Fig. 4. The magnitudes
of the nonlinear inertia contributions to the velocity distributions
are very small to be shown in these graphs. The velocity distri-
butions presented in Fig. 4 show that the flow exhibits a boundary-
layer character in the neighbourhood of the solid boundary, and
that the flow in the central region lags behind that in layers near
the boundaries.
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Fig. 3. Steady radial velocity, Fj.
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b) Pressure distribution

Neglecting terms of higher order than R}, and using (10), the
pressure distribution is of the form

b = h{t) + Ralho(t) In # + hy(t) R*]

where %(¢) is a function of time only and is determined from a
known pressure at some cross-section in the flow. Assuming that
the pressure is known at 7 = R, and using (13) and (22), the ex-~

) /-
72N
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Qa
Fig. 5. Variation of Hy, Py, and H; with a.
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pression for the pressure distribution is

. P t) — PR, )
P = R,

= [(HO cos af + Py sin of) In (-;-) -+ (Hg 4 Hy cos 20 +

i+ msna(52) 1 2] -

Values of the pressure coefficients for various « are given in Table I,
and are presented graphically in Figs. 5 and 6. From Table I it is
shown that Hs and H; are of the same order.
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0.2 T—

\—L'—H. T
0.1
0.0
0 20 40 60 80 100 120 140
Q

Fig. 6. Variation of Hy and Py with a.
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TABLE I
o 1 10 20 30 40 50
— Ho(10-1) 0.3006 0.3473 0.4289 0.4993 0.5582 0.6098
Po(10-2) 0.0120 0.1179 0.2294 0.3371 0.4433 0.5488
— H 0.3855 0.3701 0.3456 0.3283 0.3171 0.3095
— H; 0.3846 0.3286 0.2953 0.2848 0.2798 0.2765
— P31(10) 0.1132 0.5737 0.4608 0.3639 0.3095 0.2749
o 100 200 300 400 500 600
— Ho(10-1) 0.8141 1.1050 1.3288 1.5177 1.6843 1.8349
Py(10-2) 1.0699 2.0994 3.1220 4.1410 5,1578 6.1729
— Hg 0.2906 0.2778 0.2723 0.2691 0.2670 0.2654
—Hy 0.2685 0.2630 0.2606 0.2592 0.2582 0.2875
~ P1(10) 0.1916 0.1339 0.1087 0.0938 0.0837 0.0763
Pressure coefficients
6.0
* N
50 3.0
Ra 0.0 ———~
40 ]F
2.0
o
P /
0.0 / //
/
/)l
/ /
/
[ |
-2.0 =7
/
—-a = 1.0
-4.0 ‘
-6.0 L
0.0 1.0 2.0 3.0 4.0 5.0 6.0
at

Fig. 7. Variation of p* with time for small «, /R = 0.5.
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Examination of the expressions for the pressure coefficients shows
that Hof. - — 1, PoJaa — 1, Hg —~ — 1, Hy - — %, and P; -0 as
o — OO.

The variation of $* with time for /R = 0.5, R, = O and R}, = 3.0,
and for various « are presented in Figs. 7 and 8. From Figs. 7 and 8
it is shown that the effect of the nonlinear-inertia is significant for
small frequencies, while for large frequencies the effect is negligible.
For R} = 0, the pressure oscillates with the same frequency as the
source strength and with a phase lead that approaches =/2 as «
approaches co.

The quasi-steady state pressure distribution, valid in the limit
as « — 0, agrees with the results of ref. [2] and is given by

P* = cos af [-—3 In <—£—> — 2Z§* (1 — %)], (31)

where R* = R}, cos of.
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Fig. 8. Variation of p* with time for large «, /R = 0.5.
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Substituting the asymptotic expressions for Py and Hy in (30),
one obtains

7 R
p* — o cos (zxt -+ 7) In (7> as a — oo (32)

c) Skin friction
The shear stress at the upper boundary is given by

_ ot pv2 [ ou
T S a2 \ &z J,_4

_ Mo [fol, &) + REi(1, 8)]

4ma’p

Defining a dimensionless shear stress as 71 = 71/(uQo/4ma??),
we have

11 = — [{Fy(1) cos af + Gg(1) sin at} +
+ RE{F4(1) + Fi(1) cos 2of + Gi(1) sin 28)]  (33)

2.0
l
F(1) % 10 ] [ (

L& % — 1

‘ F'(1) x 10

1.2 ) —

— G (1) x
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></

&

g

=
T

1 —_|
0.4 1 T ]
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0.0 ‘
0 20 40 60 80 100 120 140
a

Fig. 9. Shear stress coefficients.
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Fig. 10. Variation of m1 with time for small a.

The shear stress coefficients Fg(1), Gg(1), Fi(1), Fi(1), and Gi(1)
are presented graphically in Fig. 9. Examination of the expressions
for the shear stress coefficients shows that Fy(1)/A — —1,
Go(L)/A — 1, Fi(1) -0, Fi(1) -0, and Gji(1) -0 as « — oo.

The variation of 71 with time for R} = 0 and R} = 3, and for
various values of « are presented in Figs. 10 and 11. Fig. 10 indi-
cates that the effect of the nonlinear-inertia can be significant for
small «, while Fig. 11 shows that such an effect can be negligible
for high values of «. As o — O the shear stress approaches values
obtained from the quasi-stecdy-state solution, given by the ex-
pression

12
71 = cos od (3 - R*> (34)
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Fig. 11. Variation of =1 with time for large o.

For R} = O the shear stress at the boundary oscillates with the
same frequency as the source strength, and with a phase lead
that approaches n/4 as « approaches co, Fig. 11.

Substituting the asymptotic values of the shear stress coefficients
into (33), we obtain

1 —>\/22C05(ai+—2~), as a — 0o (35)
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