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Part A of this review describes the particular computer-assisted identification 
service operated by the NCTC. In Part B, the use of probability matrices is 
examined, discussing various methods of calculating likelihoods and the pro- 
blems that arise when calculating these from probability matrices. Part C de- 
scribes the alternative numerical methods of'constructing identification keys and 
the supplementary methods of selecting "best sets" of characters to aid identifi- 
cation. Finally, in Part D, the prospects and limitations of numerical methods in 
bacterial identification are assessed, first with regard to methodology used and 
then in terms of performance and practical limitations. 
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PART A. A COMPUTER-ASSISTED SERVICE FOR THE 
IDENTIFICATION OF BACTERIA 

l. INTRODUCTION 

The computer-assisted identification service described here is for the identifi- 
cation of gram-negative, mainly rod-shaped bacteria which grow aerobically on 
nutrient agar and which public health and hospital laboratories have found 
difficult to identify. The service was experimental from 1966 to 1971 (Lapage et al., 
1970; 1973) and has been operated as a service since January 1972. 

The methods used in the computer program are described by Willcox et al. 
(1973) and reviewed in Part B. The identification program was tested by applying 
it to 1079 reference strains, aberrant and typical strains, whose identity had 
already been well established (Lapage et al., 1973). Of the 827 strains of fermen- 
tative bacteria, 91~o were correctly identified, a single strain was incorrectly 
identified (Salmonella abortusovisidentified as S. choleraesuis), and the remainder 
were not identified by the program. The results for nonfermentative bacteria were 
less satisfactory, of 201 strains 82~/o were correctly identified, the remainder were 
not identified. Since that trial a separate identification matrix has been developed 
for nonfermentative bacteria with tests more suitable for these bacteria. The 
original matrix for fermentative bacteria (Bascomb et al., 1973) has remained in 
use with minor changes. The taxa and tests currently in the two matrices are given 
in Tables 1 and 2. 

Table 1. Taxa in the identification matrices for fermentative and non-fermentative bacteria 

Fermentative bacteria 

Acinetobacter calcoaceticus 1 
Actinobacillus equuli 
Actinobacillus lignieresi 
Aeromonas formicans 
Aeromonas hydrophila 
Aeromonas salmonicida 
Chromobaeterium violaceum 
Citrobacter freundii 
Citrobacter koseri 
CDC group EF-4 
Edwardsiella tarda 
Enterobaeter aerogenes 
Enterobacter cloacae 
Erwinia herbicola 
Escherichia adecarboxylata 
Escherichia coli 
Hafnia alvei 
Klebsiella aerogenes and K. oxytoca 
Klebsiella ozaenae 

Plesiomonas shigelloides 
Proteus mirabilis 
Proteus morganii 
Proteus rettgeri 
Proteus vulgaris 
Providencia alcalifaciens 
Providencia stuartii 
Salmonella choleraesuis 
Salmonella ferlac 
Salmonella gallinarum 
Salmonella paratyphi A 
Salmonella pullorum 
Salmonella subgenus I 
Salmonella subgenus II 
Salmonella subgenus III = Arizona 
Salmonella subgenus IV 
Salmonella typhi 
Serratia liquefaciens 
Serratia marcescens 
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Table 1. Continued 

Klebsiella pneumoniae 
Klebsiella rhinoscleromatis 
Kluyvera spp. 
Neisseria pharyngis 
Pasteurella haemolytica A 
Pasteurella haemolytiea T 
Pasteurella multoeida 
Pasteurella multoeida (atypical) 
Pasteurella pneumotropiea 
Pasteurella ureae 

Non-fermentative bacteria 2 

Achromobacter group 
Achromobaeter sp. (biotype 1) 
Achromobaeter sp. (biotype 2) 
Aehromobacter xylosoxidans 
Acinetobacter calcoacetieus 
Aeinetobacter lwoffii 
Agrobacterium tumefaeiens 
Agrobaeterium rhizogenes 
Agrobacterium rubi 
Agrobaeterium yellow group 
Alealigenes faecalis 
Bordetella bronehiseptiea 
Bordetella parapertussis 
Branhamella spp. 
Brueella spp. 
CDC group IIB 
CDC group IIF 
CDC group IIJ 
CDC group IIK, type 2 
CDC group IVE 
CDC group VE, type 1 
CDC group VE, type 2 
Chromobaeterium lividum 
Eikenella eorrodens 
Flavobacterium breve 
Flavobaeterium meningoseptieum 
Flavobaeterium odoratum 
Kingella spp. 
Moraxella anatipestifer 
Moraxella non-proteolytic group 

Serratia marinorubra 
Serratia plymuthica 
Shigella sonnei 
Shigella spp. other than sonnei 
Vibrio spp. other than parahaemolytieus 
Vibrio parahaemolytieus 
Yersinia enterocolitica 
Yersinia pestis 
Yersinia pseudotuberculosis 
Yersinia ruckeri 

Moraxella phenylpyruvica 
Moraxella proteolytic group 
Moraxella saccharolytiea 
Moraxella urethralis 
Neisseria meningitidis 
Neisseria spp. other than meningitidis 
Pseudomonas acidovorans 
Pseudomonas aeruginosa 
Pseudomonas alealigenes 
Pseudomonas cepacia 
Pseudomonas diminuta 
Pseudomonas fluorescens 
Pseudomonas fragi 
Pseudomonas lemoignei 
Pseudomonas mallei 
Pseudomonas maltophilia 
Pseudomonas mendocina 
Pseudomonas paucimobilis 
Pseudomonas piekettii 
Pseudomonas pseudoalcaligenes 
Pseudomonas pseudomallei 
Pseudomonas putida 
Pseudomonas putrefaciens 
Pseudomonas stutzeri 
Pseudomonas taetrolens 
Pseudomonas testosteroni 
Pseudomonas vesicularis 
Rhizobium meliloti 
Xanthomonas hyaeinthi 
Xanthomonas spp. other than hyacinthi 

x Acinetobacter calcoaceticus is included in both matrices because although it is non-fermentative it 
resembles some fermentative taxa in certain reactions. 
2 Some of  the organisms in the matrix for non-fermentative organisms may be strictly fermenters (i.e. 
they grow aerobically and anaerobically) but they behave as non-fermenters in the tests we use. 
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Table 2. Tests in the identification matrices for fermentative and non-fermentative bacteria 

Tests in bothmatrices 

Motility at 37°C 
Motility at RT 1 
Growth at 37°C 
Growth at RT 
Pigment production 
Growth on MacConkey's agar 
Catalase production 
Oxidase production 
Hugh and Leifson O - F  test 
Nitrate reduction 
Indole production 
Methyl red test at 37°C 
Methyl red test at RT 
Voges-Proskauer test at 37°C 
Voges-Proskauer test at RT a 
Growth on Simmons' citrate 
Alkali production on 

Christensen's citrate 
Urease production 
KCN tolerance 
H2S production (lead acetate 

paper method) 

H2S production (triple sugar 
iron agar method) 

Gluconate oxidation 
Malonate utilization 
~-Galactosidase production 

(ONPG) 
Phenylalanine deamination 
Arginine dihydrolase 

production 
Lysine decarboxylase 

production 
Ornithine decarboxylase 

production 
Selenite reduction 0.4 g/100 ml 
Gelatinase production (stab 

method) 
Gelatinase production (plate 

method) 
Casein digestion 
Deoxyribonuclease production 
Acid from glucose PWS 2 
Gas from glucose PWS 

Tests only in the matrix for non-fermentative bacteria 

Arginine desimidase production 
(Thornley's method) 

Tween 20 hydrolysis 
Tween 80 hydrolysis 
Tyrosine hydrolysis 
Pigment production on 

tyrosine 
Nitrite reduction 
Growth on ~-hydroxybutyrate 
Poly-13-hydroxybutyrate 

inclusion granules 
Aesculin hydrolysis 
Growth on cetrimide 
Fluorescence on King's B 

medium 

Growth at 5 °C 
Growth at 42°C 
3-Ketolactose production 
Lecithinase production 
Starch hydrolysis 
Acid from glucose 10 g/100 ml 
Acid from lactose 10 g/100 ml 
Production of acid from: 

glucose ASS a 
adonitol ASS 
arabinose ASS 
cellobiose ASS 
dulcitol ASS 
ethanol ASS 

Production of acid from 
adonitol PWS 
arabinose PWS 
cellobiose PWS 
dulcitol PWS 
glycerol PWS 
inositol PWS 
lactose PWS 
maltose PWS 
mannitol PWS 
raffinose PWS 
rhamnose PWS 
salicin PWS 
sorbitol PWS 
starch PWS 
sucrose PWS 
trehalose PWS 
xylose PWS 

Production of acid from: 
fructose ASS 
glycerol ASS 
inositol ASS 
lactose ASS 
maltose ASS 
mannitol ASS 
raffinose ASS 
rhamnose ASS 
salicin ASS 
sorbitol ASS 
sucrose ASS 
trehalose ASS 
xylose ASS 

1 RT, room temperature (18 22°C) or incubator at 22 or 30°C. 
2 PWS, peptone water sugar. 
3 ASS, ammonium salt sugar. 
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The service shows that numerical methods of identification and test selection 
can be used in a flexible way in which the bacteriologist has final control, 
overriding the automatic scheme if necessary; the examples used to illustrate the 
serviee show different ways in which numerical methods can contribute to the 
identification of bacteria. 

II .  O P E R A T I O N  OF THE SERVICE 

The sending laboratory will have carried out a number of tests on the strain and 
these test results are sent together with a culture of the strain. The number of tests 
done by the sending laboratory varies, typically it is about 20. The test results are 
entered on an application form which lists the 90 tests in the full computer 
identification matrices. The source of the strain, clinical details if available and the 
sending laboratory's tentative identification of the strain are also entered. Space is 
provided on the form for the results of tests not used in the matrices, e.g. 
serological data. This additional information helps the bacteriologist to assess the 
results of the computer identification of the strain. 

The operation of the service is most easily described by examples. Figs 1 to 7 

FOR: 

DATE: 19/07/79 (M518 LAB. 

YOUR REF: 

COMPUTER I DENTIFI CATION BASED 0N YOUR RESULTS, 37 TESTS DONE: 

IDENTIFIED AS PASTEURELLA MULTOCIDA 

YOUR RESULTS USED IN CALCULATION: 

OUR REF:9981/79 RUN WI 
-0) 

MOTILITY 37 1 MACCONKEY 25 SIMMONS CITR 
MOTILITY RT 1 CATALASE + 99 UREASE 

GROWTH 37 + 99 0XIDASE + 50 PPA 
GROWTH RT + 75 H&L FERM + 50 GLUCOSE PWS 
PIGMENT l NITRATE + 99 GAS GLUCOSE 

ADONITOL PWS 1 LACTOSE PWS + 5 SORBITOL PWS 
ARABINOSE PWS 15 MALTOSE PWS - 1 SUCROSE PWS 
CELLOBIOSE PWS - 1 MANNITOL PWS + 90 TREHALOSE PWS 
DULCITOL PWS 15 RAFFINOSE PWS - 5 XYLOSE PHS 
GLYCEROL PWS 15 RHAMNOSE PWS 1 STARCH PWS 

INOSITOL PWS 1 SALICIN PWS - 1 

MR 37 1 VP 37 I INDOLE 

MR RT 1 UP RT i 

DETAILS OF CALCULATION: 

1 
1 
1 

99 
1 

GROUP SCORE 
PASTEURELLA MULTOCIDA .999847 
PASTEURELLA MULTOCIDA(ATYPICAL) . 0 0 0 1 5 0  

90 
99 
30 
50 

1 

Fig.  1. A report printed by the identification program. This strain is identified on the sending 
laboratory's test results ("W" run). 

+ 99 
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F[SR: 

DATE: 1 8 / 0 7 / 7 9  

YOUR REF: 

[13MPUTER I D E N T I F I C A T I O N  BASED DN YOUR RESULTS, 

NOT IDENTIFIED. FURTHER TESTS SELECTED 

YOUR RESULTS USED IN CALCULATION: 

OUR REF:9982/79 RUN WI 

(M518 LAB. -0) 

28 TESTS DONE: 

MOTILITY 37 30 H&L FERM + 99 MALONATE I 

MOTILITY RT 55 NITRATE - 99 UNPG - 90 

GROWTH 37 + 99 SIMMONS CITR - I PPA - I 

GROWTH RT + 99 UREASE I ARGININE - 40 

PIGMENT I GELATIN PLATE - [ L Y S I N E  + 90 

MACCONKEY + 99 KCN I 0RNITHINE + 75 

CATALASE + 99 H25 TSI I GLUCOSE P~S + 99 

0XIDASE ] GLUCONATE i GAS GLUCOSE + 90 

ARABINUSE PWS + 99 

MR 37 + 99 MR RT + 99 INDULE + 95 

I 5 

FURTHER TEST5 SELECTED: 

F I R S T  SET SECOND SET 
GLYCEROL PW5 1 95  H 2 S  PAPER 
MALTOSE PWS 1 99  

SET VALUE = 2/ 2 SET VALUE = I/ 2 

DETAILS OF CALCULATION: 

GROUP SCORE 

ESCHERI CHI A C(SLI • 99853~] 
SALMONELLA PULLORUM . 000894. 

Fig. 2. A report printed by the identification program. This strain cannot be identified on the 
sender's test results ("W" run) but further tests are selected. 

show computer printouts of  various strains (the name of the sending laboratory, 
their reference number for the culture and the patient's name have been deleted 
from each printout). Before any results can be processed the bacteriologist must 
decide whether the strain is fermentative or non-fermentative in order to select the 
appropriate identification matrix. This is usually possible on the results supplied 
by the sending laboratory but, if not, a Hugh and Leifson Oxidatative- 
Fermentative (O-F) test is carried out in our laboratory. 

The sending laboratory's test results are processed first, printing a report such 
as in Fig. 1. Each computer analysis of  a set of  results is called a "run" and the run 
number for this printout is W 1 ; "W" indicates a run using only the sender's results. 
In this case the strain is identified by the program as Pasteurella multocida. The 
printout is assessed by a bacteriologist and, unless there was any reason to query 
the computer identification, a copy of  the printout would be returned to the 
sender. For strains such as this example, which identify on the sender's results, the 
sending laboratory has carried out a good number of  tests and is probably fairly 
certain of  the identity of  the strain but requires confirmation because the strain 



240 W . R .  WILLCOX, S. P. LAPAGE AND B. HOLMES 

shows an aberrant reaction. This organism for instance produces acid from 
lactose which is an unusual reaction for P. multocida. The number beside each test 
result on the printout is the estimate of the probability of a positive result for this 
test for the most likely taxon. Here the printout shows that 5 ~ of strains of P. 
multocida are expected to be positive in lactose. The result is certainly uncommon 
though not completely unexpected. This shows how a numerical identification 
method can use a definition of a taxon which allows for occasional aberrant 
reactions in particular tests. 

Only a minority (about 5~o) of the strains received can be identified on the 
results supplied by the sending laboratory. Fig. 2 shows a case where the strain 
cannot be identified on these results, but the program has selected some tests as the 
most useful ones to continue the identification (see Part C). The selected tests are 
printed in sets; following each test is printed first a theoretical value of the 
usefulness of the test alone in the set, then the probability figure for that test for 
that taxon which had achieved the highest identification "score". The total 

FUR: 

DATE: 19/07/79 

YOUR REF: 

CJ3MPUTER IDENTIFICATION 

BASED DN OUR RESULTS COMBINED WITH YOURS, 30 TESTS D~NE~ 

IDENTIFIED AS ESCHERICHIA COLI 

RESULTS USED IN CALCULATION: 

OUR REF:9982/79 RUN RI 

(M518 LAB. -0) 

ARABINOSE PWS + 99 GLYCEROL PWS + 95< MALTOSE P~S + 99< 

MR 37 + 99 MR RT + 99 INDOLE + 95 

*:OUR RESULT AGREES WITH YOURS <:OUR RESULT ONLY 

#=OUR RESULT(CL) DIFFERS FROM YOURS(SL), OURS USED 

CL SL 

NITRATE + - @ 

@:YOUR RESULT UNEXPECTED FOR THIS ORGt%NISM 

DETAILS OF CALCULATION: 

GROUP SCORE 
ESCHERI CH]A C0LI • 9997614 

SHIGELLA SPP.-NOT SONNEI • 000166 

Fig. 3. A report printed by the identification program. This is the same strain as in Fig. 2. Further 
tests have been carried out in our laboratory and the strain is identified on our results combined with 
the sender% results ("R" run). 

MOTILITY 37 - 30 H&L FERM + 99 MALONATE - I 
MOTILITY RT - 55 NITRATE + 99# ONPG (-) 90. 

GROWTH 37 + 99 SIMMONS CITR - I PPA - ] 

GROWTH RT + 99 UREASE - 1 ARGININE - 40 

PIGMENT - I* GELATIN PLATE - I LYSINE + 90 

MACCDNKEY + 99 KCN - ! 0RNITHINE + 75 

CATALASE + 99* H2S TSI - 1 GLUCOSE PUS + 99 

0XIDASE - I* GLUCONATE - I GAS GLUCOSE + 90 
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FI3R: 
DATE: 18/07/79 

Y[3UR REF: 

COMPUTER IDENTIFICATION BASED ON YOUR RESULTS, 30 TESTS DONE: 

NOT IDENTIFIED, FURTHER TESTS SELECTED 

YOUR RESULTS USED IN CALCULATION: 

OUR REF:9983/79 RUN WI 
(M624 LAB. -0) 

MOTILITY 37 + 90 NITRATE + 99 0NPG I 
MOTILITY RT + 90 SIMMONS CITR 35 PPA I 
GROWTH 3 7  + 9 9  U R E A S E  10 A R G I N I M E  2 5  
GROWTH RT + 9 9  G E L A T I N  P L A T E  1 L Y S I N E  l 
YELLOW P I G M E N T  + 1 KCN 1 0 R N I T H I N E  I 
MACCONKEY + 99 H2S PAPER + 45 GLUCOSE PWS l 
CATAL~SE + 99 GLUCONATE i GAS GLUCOSE 1 
0XIDASE + 99 MALONATE I DNASE l 
HUGH & LEIFSON - 90 

IN DOLE i 

KINGS B I GROWTH 42 99 STARCH HYD I 
GROWTH 5 I0 

FURTHER TESTS SELECTED: 

SECOND SET 
ARABINOSE ASS 20 I 
CELLOBIOSE ASS 20 I 
TYROSINE PIG 7 55 

SET VALUE = 47/ 90 

SCORE 
3 8 8 7 3 7  
2 5 1 9 6 8  
1 2 3 3 3 6  
0 7 2 4 3 9  
0 7 2 3 6 9  
0 2 5 0 7 8  

.022779 

.014848 

.007433 

.007276 

FIRST SET 
MALTOSE ASS 28 I 
XYLOSE ASS 25 I 
GLYCEROL ASS 10 45 
GLUCOSE ASS 6 I 
3-KETOLACTOSE 6 I 
ETHANOL ASS ~ 9 0  
TWEEN 80 3 I0 
FRUCTOSE ASS 2 90 
CHRISTEN.CITR I 2 5  
ADONITOL ASS 1 1 
LACTOSE ASS I 1 
TWEEN 20 1 5 5  

S E T  V A L U E  = 8 5 /  9 0  

DETAILS OF CALCULATION: 

GROUP 
PSEUDOMONAS PSEUDOALCALIGENES 
PSEUDOMONA8 L EMOIGNEI 
AGROBACTERIUM YELLOW GROUP 
ACHRQMOBACTER XYLOSOXIDANS 
AGROBACTERIUM TUMEFACIEN$ 
ACHROMOBACTER SP.(BIOTYPE 2) 
ACHROMOBACTER GROUP 
PSEUDOMDNAS ACIDOVORAN8 
ALCALIGENES 8PP. 
PSEUDOMONAS V E S I C U L A R I S  

Fig. 4. A report printed by the identification program. This strain cannot be identified on the 
sender's test results ("W" run). Further tests are selected but the value of each of the two sets of tests 
selected is less than the "key" value. 
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theoretical value of each set is printed followed by, for comparison the "key 
value". The key value is the value needed so that, according to the test selection 
model, a definite identification is probable if these test are carried out. I f  more than 
one set has the same value the bacteriologist will choose the most convenient set 
from the practical point of view. The identification "scores" on the printout show 
that the strain is very likely to be an Escherichia coli though the identification 
threshold level of  0.999 has not been reached. The probability figures printed 
beside the test results show that the negative results recorded by the sending 
laboratory in the nitrate and O N P G  tests are not the expected results for E. coli; 
the figures show that 99~o and 90~o ofE.  coli strains should be positive in these 
tests respectively. The identification was continued by carrying out the first set of 
tests shown on the printout and repeating the nitrate and O N P G  tests, as the 
printout suggested that these were suspect. These tests were carried out in our 
laboratory (also the pigment, catalase and oxidase tests as a standard procedure) 
and the results obtained were combined with the sender's results on the next 
computer run for the strain. Fig. 3 shows the printout produced, the run number is 
R1 ; t ' R "  indicates a run in which our results are combined with the sender's. The 
tests which we carried out are indicated by symbols beside the result and, as the 
printout shows, there was disagreement with the sending laboratory in the nitrate 
test. Where such conflicting results occur, the NCTC result is used in the calcu- 
lation. The strain now identifies and again after review by a bacteriologist copies of 
the W1 and R1 printouts would be returned to the sending laboratory. In this 
example identification was almost complete on the sender's results and no doubt it 
was the erroneous result in the nitrate test which caused difficulty. The numerical 
method was able to guide the identification in the right direction despite an 
erroneous result in what is a "key character" for conventional identification. 

In the next example (Fig. 4) the sender's results were again analysed by the 
program but although 30 tests had been carried out the printout was not very 
promising. Ten taxa are listed as likely and although two sets of  additional tests 
have been selected the value of the first of these sets is only 85, less than the key 
value of 90. Also the second and third highest scoring taxa were thought to be very 
unlikely considering the source of the isolate. Instead of continuing with the tests 
suggested by the program, a standard set of tests ("a basic set") was used. Two 
such basic sets of tests have been derived, one for fermentative organisms, and one 
for nonfermenters. Each set has been chosen to give good discrimination over all 
the taxa. Fig. 5 shows the analysis of the results of the basic set of 24 tests for non- 
fermentative organisms. The code letter for the run is "B",  indicating a run in 
which the sender's results are printed but not used in the identification calculation. 
The strain is now identified as Pseudomonas putrejaciens on the results of fewer 
tests than were originally carried out by the sending laboratory. 

Strains are occasionally received with very few test results or none at all. I f  it 
is considered that there are too few results, or the results are unsuitable for 
numerical analysis (because of differences in test methods for example), the 
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FOR: OUR REF:9983/79 RUN B1 

DATE: 19/07/79 (M624 LAB. -fl) 

YOUR REF: 

COMPUTER IDENTIFICATION BASED ON OUR RESULTS. 24 TESTS DONE: 

IDENTIFIED AS PSEUDOMONAS PUTREFACIENS 

RESULTS USED IN CALCULATION: 

M O T I L I T Y  37  + 7 0 *  ORANGE PIGMENT + 99# SIMMONS CITR 2 0 *  
MOTILITY RT + 99* CATALASE + 99* GELATIN PLATE + 99# 

GROWTH 37 + 80" 0XIDASE + 99* H2S PAPER + 99* 

GROWTH RT + 99* H&L ALKALINE + 90# 

GLUCOSE ASS 45< MALTOSE ASS + 45< XYLDSE ASS I< 

ARABINOSE ASS + 35 < TREHALOSE ASS I< ETHANOL ASS i< 

CELLOBIOSE ASS - 20 < 

INDOLE - 1 .  

TWEEN 20 + 99 < TYROSINE PIG + 55< 

TYROSINE HYD + 45 < PHBA GROWTH + 99< 

PHBA INC I< 

*=OUR RESULT AGREES WITH YOURS <=OUR RESULT ONLY 

#=OUR RESULT(CL) DIFFERS FROM YOURS(SL), OURS USED 

CL SL 

YELLOW PIGMENT + @ 

ORANGE PIGMENT + 

HUGH & LEIFSON 

H&L ALKALINE + 

GELATIN PLATE + - @ 

YOUR RESI~LTS NOT USED IN CALCULATION:" 

MACGONKEY + 9 9  MALDNATE 1 0 P ~ I T H I N E  - 9 5  
N I T R A T E  + 9 9  0NPG - 1 GLUCOSE PWS 1 
UREASE - I0 PPA - 1 GAS GLUCOSE - I 

KCN - I ARGININE I DNASE - 99@ 

GLUGONATE - | LYSINE - 1 

KINGS B - I GROWTH 142 - 70 STARCH HYD - I 

GROWTH 5 ~ - 25 

@=YOUR RESULT UNEXPECTED FOR THIS ORGANISM 

DETAILS OF CALCULATION: 

GROUP SCORE 

PSEUDOMONAS PUTREFACI  ENS • 99998 2 
PSEUDOMONAS MALTOPHILIA • 0 O O 0 18 

Fig. 5. A report printed by the identification program. This is the same strain as in Fig. 4. The strain 
is identified on the results of our "basic set" of tests for non-fermentative organisms, the sender's 
results are printed but not used in the calculation ("B" run). 

sender's results wou ld  not  be used, but rather a Hugh and ke i fson 0-F test is done  
and then the appropriate  basic set o f  tests. Fig. 6 shows  an example  o f  a strain 
which  was identif ied on the results o f  the basic set for fermentative organisms.  ] 'he 
sender's results were not used at all in the identif ication and "'T'" indicates a 
computer  run in which  the sender's results are neither printed nor used in the 
calculation.  
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FUR: 

DATE: 18/07/79 

YOUR REF: 

~MPUTER IDENTIFICATION BASED 0N OUR RESULTS~ 26 TESTS DONE: 

IDENTIFIED AS KLEBSIELLA AEROGENES & K.0XYTOCA 

OUR RESULTS USED IN CALGULATION: 

OUR REF:9984/79 RUN TI 
(M518 LA~- -0) 

MOTILITY RT 1 GELATIN PLATE I0 ARGININE l 
GROWTH RT + 99 KCN + 99 LYSINE + 95 
PIGMENT I GLUCONATE + 95 0RNITHINE I 
CATALASE + 99 MALONATE + 80 GLUCOSE PWS + 99 
0XIDASE ! 0NPG + 99 GAS GLUCOSE + 90 
UREASE + 95 PPA I 

ARABINOSE PWS + 99 INOSITOL PWS + 95 SORBITOL PWS + 9S 
DULCITOL PWS 40 LACTOSE PWS + 90 TREHALOSE PWS + 99 

MR RT 30 VP RT + 70 INDOLE + 25 

DETAILS OF CALCULATION: 

GROUP SCORE 

KLEBSIELLA AEROGENES & K.0XYTOCA .999998 
ENTEROBACTER AEROGENES • 16E-05 

Fig. 6. A report printed by the identification program. This organism is identified on the results of 
our "basic set" of tests for fermentative organisms, the senders results were not used in the 
identification ("T" run). 

In the last example (Fig. 7), the strain is identified as Proteus rettgeri but an 
unusual test result is reported. The strain gives a negative result in the test growth 
on MacConkey agar when at least 99~o of strains of P. rettgeri should give a 
positive result.If a strain is identified the program checks for such unusual results 
which are positive results where the probability figure for the taxon is 1 ~o and 
negative results where the figure is 9 9 ~ .  In assessing this printout the bacte- 
riologist must decide whether or not the computer identification is acceptable in 
view of the unusual test result. The example also shows that several cycles of testing 
and computer analysis may be necessary, the final run shown is R2 so the strain has 
already had W1 and R1 runs. The example further shows how the numerical 
method can identify a strain even if it gives very unusual results provided enough 
evidence is available from the other test results. In this case 51 tests were carried out 
to identify this aberrant strain. 

Finally, a computer printout may indicate that the strain cannot be identified 
and none of the remaining tests are of any value in contiquing the identification or 
all of the available tests have been carried out. The bacteriologist may be able to 
identify such a strain, usually to one of the likely taxa suggested by the printout and 
possibly by using tests not available to the computer program. Some strains 
(about 10 ~o) however remain which we are unable to identify by any of the means 
available to us. 
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FOR: 

DATE: 19/07/79 (M518 LAB. 

YOUR REF: 

COMPUTER IDENTIFICATION 
BASED ON OUR RESULTS COMBINED WITH YOURS, 51 TESTS DONE: 

I DENTIFI ED AS PROTEUS RETTGERI 
WITH UNUSUAL RESULTS: 
MACCONKEY 

RESULTS USED IN CALCULATION: 

OUR REF:9987/79 RUN R2 

-0 )  

ADONITOL PWS + 99< LACTOSE PWS 5< SORBITOL PWS 1" 
ARABINOSE PWS 5* MALTOSE PWS 1< ~SUCROSE PWS 50* 

CELLOBIOSE PWS - I< MANNITOL PWS + 99* TREHAL0SE PWS 1< 
DULCITOL PWS I< RAFFINDSE PWS 1< XYLOSE PWS 15< 

GLYCEROL PWS (-) 95< RHAMNOSE PWS + 50* STARCH PWS i< 
INOSITOL PWS + 99# SALICIN PWS + 50< 

MR 37 + 99< VP 37 I* INDDLE + 99* 
MR RT + 99< VP RT I< 

*=OUR RESULT AGREES WITH YOURS <:OUR RESULT ONLY 
#=OUR RESULT(CL) DIFFERS FROM YOURS(SL), OURS USED 

CL SL 
H2S PAPER (+) - 
INOSITOL PWS + - @ 

@=YOUR RESULT UNEXPECTED FOR THIS ORGANISM 

DETAILS OF CALCULATION: 

GROUP SCORE 
PROTEUS RETTGERI l-OOOOOO 
PROVIDENCIA ALCALIFACIENS .53E-07 

Fig. 7. A report printed by the identification program. This strain is identified on our test results 
combined with the sender's results ("R" run) but an unusual result is reported. 

MOTILITY 37 95* SIMMONS CITR 95* 0NPG S* 
MOTILITY RT + 99< CHRISTEN.CITR + 99< PPA + 99* 
GROWTH 37 + 99< UREASE + 99* ARGININE 5* 

GROWTH RT + 99< GELATIN STAB I< LYSINE ]* 
PIGMENT I< GELATIN PLATE l* 0RNITHINE I* 
MACGONKEY 99< KCN + 99< GLUCOSE PWS + 99* 
CATALASE + 99< H2S PAPER (+) 50# GAS GLUCOSE 15< 
0XIDASE I* H2S TSI l< SELENITE 0.4 (+) 99< 
H&L FERM + 99< GLUCONATE 1< DNASE O< 

NITRATE + 99< MALONATE 1< 
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PART B. N U M E R I C A L  IDENTIFICATION USING PROBABILITY 
MATRICES 

Ill. INTRODUCTION 

Numerical identification methods can be classified according to the different 
types of data and identification matrices they require (see Part D). The data matrix 
is the information necessary to construct the method and the identification matrix 
is the information actually used by the method. The majority of numerical 
methods in microbiology use a probability matrix. The entries in the matrix for 
each taxon are estimates of the probability of observing each character state for 
that taxon. The advantages of such a matrix are that it is readily compiled from a 
variety of sources of information and is easily adjusted to allow for new findings. 
Section I V describes a number of methods using probability matrices, compared 
with other models and in Section V some detailed problems which arise in applying 
such methods will be considered. 

IV. CALCULATION AND USE OF LIKELIHOODS 

a. Calculation of likelihoods 
All the methods using probability matrices (Dybowski and Franklin, 1968; 

Lapage et al., 1970; 1973; Friedman et al., 1973; Friedman and Maclowry, 1973; 
Robertson and MacLowry, 1974; Gyllenberg and Niemel~i, 1975a, b; API, 1977) 
start by calculating the likelihoods of the taxa on the character states observed for 
the unknown organism. The likelihood of a taxon on a set of character states is 
defined as the probability of the states for the taxon. To calculate the probability of 
a set of character states from a probability matrix it is, assumed that the individual 
states which make up the set are independent in each taxon. The probability of a 
number of independent states is the product of their individual probabilities so: 

Lj =- P(u/J) = FliP (xi/J) (1) 

where Lj is the likelihood of taxon J; P(u/J) is the probability of u, the set of 
character states of the unknown, for taxon J; and P(xjJ) is the probability of x i, 
the state of the unknown in character i, for taxon J. 

The distinction between likelihood and probability is not easy. Considering 
equation (1), when values are calculated for different sets of character states for a 
particular taxon, the values are regarded as the probabilities of the character states 
for the taxon. When the values for the different taxa for a particular set of 
character states are compared, they are regarded as the likelihoods of the taxa 
(Kendall and Stuart, 1963, p. 202). Some authors refer to the likelihoods of the 
character states for the taxa but the present terminology is preferable (Rao, 1952, 
p. 150). The phrase "likelihood of taxon J"  is a convenient shortening of the more 
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exact "likelihood that the unknown is a member of J"  and "probability of 
character states u for taxon J'" is a shortening of"probabil i ty  that a member of J 
will show states u". 

The probability matrix gives the probabilities of all individual character states 
for all taxa so the P(x]J) are obtained from the matrix and it is easy to calculate 
using (1) the likelihoods of all the taxa in the matrix for any set of character states. 
For two-state characters it is usual to express only the probabilities of the positive 
states in the matrix and the probability of a negative state is calculated as one 
minus the probability of the positive state. The advantages of this are discussed in 
Section V.d below. The simplicity of the calculation is shown in Table 3(b). The 
example also shows that the method is not affected if there are no results for some 
of the characters in the matrix, these characters are simply ignored. Although the 
calculation is very straightforward, in applying the method in practice a number of 
problems arise and these are considered in Section V. 

Equation (t)  assumes that the character states are independent in each taxon, 
i.e. the probability of a particular character state for a particular taxon, P(xjJ), is 
always the same, irrespective of the results of the other characters. This will not be 
true if the characters are correlated within a taxon and this does not seem to have 
been investigated in any detail (Sneath, 1974). The assumption of independent 
character states is a serious theoretical objection to the method. It is character 
correlation within taxa which matters, not the character correlation between taxa 
(itself a consequence of the existence of distinct taxa). Sneath and Sokal ( 1973, at 
pp. 103-106) consider other types of character correlation some of which follow 
from the definition of the characters or from known biochemical relationships 
between tests. To avoid correlated characters as far as possible, tests for as many 
different enzymes and biochemical pathways as possible should be chosen for the 
identification matrix (Lapage et al., 1973) and tests known to be closely related 
should be excluded. It is not difficult to allow for simple forms of correlation in the 
calculation (see Section V.c). Sneath (1974) considers that the effect of character 
correlations in bacteria is probably small enough to ignore in identification 
models. 

There are some methods of calculating likelihoods which do not rely on the 
above assumption. Identification methods which do take account of character 
correlation must start from a full data matrix, containing for each taxon the 
character states of a number of sample individuals of the taxon (see Part D). The 
most direct way of estimating likelihoods is from the frequency of occurrence in 
the sample data of character state patterns exactly the same as the unknown. This 
is seldom practicable because of the large number of possible patterns (e.g. 
about 106 for 20 two-state characters). Even if a particular pattern has been 
observed before, likelihoods estimated in this way are likely to be unreliable 
(Gilbert, 1968). 

Likelihoods can be obtained from the results of discriminant analysis (Sneath 
and Sokal, 1973, chapter 8; Darland, 1975) by making other assumptions about 
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Table 3. Example calculations of methods using likelihoods 

(a) Identification matrix 

Characters 

1 

Taxon A 0.99 
Taxon B 0.95 
Taxon C 0.01 

(b) Calculation of likelihoods 

2 3 4 

Prior probability 
(used only in 
Bayes' theorem) 

0.05 0.50 0.99 0.10 
0.90 0.99 0.01 0.80 
0.01 0.75 0.05 0.10 

1 2 3 4 

States of unknown + - -  + no result 

TaxonA 0.99 × (1-0.05) x 0.50 
Taxon B 0.95 x (1-0.90) x 0.99 
TaxonC 0.01 x (1 0.01) x 0.75 

Likelihood 

= 0.4703 
= 0.0941 
= 0.0074 

S u m =  0.5718 

(c) Calculation of maximum possible likelihoods 1, 2 

Maximum 
1 2 3 likelihood Limit 12 Limit 2 2 

Taxon A 
Taxon B 
Taxon C 

0.99 x (1-0.05) x 0.50 = 0.4703 
0.95 × 0.90 × 0.99 = 0.8465 
(1~).01) x (1-0.01) x 0.75 = 0.7351 

Limit 1 = max. likelihood x (0.8) 3, Limit 2 = max. likelihood x (0.7) 3 

0.2408 
0.4334 
0.3764 

0.1613 
0.2903 
0.2521 

(d) Methods of displaying relative likelihoods 

Percentage relative 
likelihood 1 

Identification score 2' 3 

Taxon A 0.4703/0.4703 = 100.00~ 0.4703/0.5718 = 0.8225 
Taxon B 0.0941/0.4703 = 20.01 ~o 0.0941/0.5718 = 0.1646 
Taxon C 0.0074/0.4703 = 1.57~o 0.0074/0.5718 = 0.0129 

(e) Methods of displaying absolute likelihoods 

Estimated 
frequency of 
occurrence 4 

Logarithmic 
probability 2 Modal likelihood fraction 1 

Taxon A 1/ 2 0.328 
Taxon B 1/ 11 1.026 
Taxon C 1/135 2.131 

0.4703/0.4703 = 1.0000 
0.0941/0.8465 = 0.1112 
0.0074/0.7351 = 0.0101 
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Table  3. Continued 

249 

(]) Bayes" theorem using prior probabilities as in (a) 

Like l ihood  × pr ior  p robab i l i ty  Pos ter ior  p robab i l i ty  

T a x o n  A 
T a x o n  B 
T a x o n  C 

0.4703 x 0.10 = 0.04703 
0.0941 x 0.80 = 0.07528 
0.0074 x 0.10 = 0.00074 

0.04703/0.12305 = 0.3822 
0.07528/0.12305 = 0.6118 
0.00074/0.12305 = 0.0060 

S u m =  0.12305 

(g) Friedman et al. (1973) method, calculation of probabilities excluding taxa 
Second matrix (for equal prior probabilities) 

1 2 3 

T a x o n  A (0.95 + 0.01)/2 = 0.48 0.455 0.87 0.03 
T a x o n  B (0.99 + 0.01)/2 = 0.50 0.03 0.625 0.52 
T a x o n  C (0.99 + 0.95)/2 = 0.97 0.475 0.745 0.50 

1 2 3 Probab i l i ty  

excluding t axon  
U n k n o w n  + - -  + 

T a x o n  A 0.48 x (1-0.455) × 0.87 = 0.2276 
T a x o n  B 0.50 × (1-0.03) x 0.625 = 0.3031 
T a x o n  C 0.97 × (1-0.475) × 0.745 = 0.3794 

(h) Friedman et al. (1973) method, without prior probabilities 

Relat ive  l ike l ihood  score 

T a x o n  A 0.4703/(0.4703 + 0.2276) = 0.6739 
Taxon  B 0.0941/(0.0941 + 0.3031) = 0.2369 

T a x o n  C 0.0074/(0.0074 + 0.3794) = 0.0191 

(i) Friedman et al. (1973) method, using prior probabilities of 0.3333 

Rela t ive  l ike l ihood score 

T a x o n  A 

T a x o n  B 
T a x o n  C 

0.3333 × 0.4703/(0.3333 × 0.4703 + 0.6667 × 0.2276) = 0.5082 
0.3333 × 0.0941/(0.3333 × 0.0941 + 0.6667 × 0.3031) = 0.1344 
0.3333 x 0.0074/(0.3333 × 0.0074 + 0.6667 x 0.3794) = 0.0097 

(j) Identification decisions 

Lapage  et al. (1970) 0.8225 < 0.999 N o t  identif ied 

Gyl lenberg  and  Niemelfi  (1975a) 0.4703 > 0.2408 "~ In te rmedia te  
0.8225 < 0.99 J 

1 D y b o w s k i  and  F r a n k l i n  (1968). 3 Lapage ,  Bascomb,  Wi l lcox  and  Cur t i s  (1970). 
2 Gyl lenberg  and  Niemelfi  (1975a). 4 API  (1977). 
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the distribution of the character states in the taxa. The usual assumption is of 
multivariate normal distributions with equal covariance matrices. Other methods 
which have been developed for medical diagnosis are nearest-neighbour methods 
(Hills, 1967; Dickey, 1968), which estimate likelihoods by considering sample 
individuals not necessarily exactly identical but near the unknown ("near" in the 
sense of similarity or Euclidean distance) and interaction methods (Davies, 1972; 
Victor, Trampisch and Zentgraf, 1974), which seek to represent the interdepen- 
dence of the characters in a compact way. In comparison with the simple method 
which assumes independent character states, the methods allowing for character 
correlation need a full data matrix which cannot usually be constructed from the 
literature or incomplete records. They also require much more computation, 
either in the construction of the identification method, as for discriminant 
analysis, or in carrying out each identification. Victor et al. (1974) point out that 
the choice of method depends on the amount of sample data available; theoreti- 
cally more realistic methods require more parameters to be estimated from the 
sample data but may give less accurate results if there is insufficient data to give 
reliable estimates of these parameters. There do not seem to have been any 
comparative trials of different methods in identification but in medical diagnosis 
Croft (1972) made an extensive trial of several models applied to the diagnosis of 
437 cases of liver disease based on reference data of about 2000 cases. The simple 
method assuming independent symptoms gave better results than any of the more 
complex models. 

b. Different methods' based on likelihoods 
After calculating the likelihoods of the taxa on the character states of the 

unknown, a practical identification method needs next to compare these. The 
results of the likelihood calculation should be displayed in some way, particularly 
if the method is to be used in a computer-assisted identification procedure (see Part 
A) in which the results are assessed by a bacteriologist. The method should also 
incorporate an identification decision element (see Part D). If the identification 
decision is simply to take the taxon with the highest likelihood as the identity of the 
unknown then all methods will agree (provided the likelihoods are not modified by 
prior probabilities, see below). In practice, an identification decision should 
indicate a definite identification only if the likelihoods meet certain criteria. If they 
are not met, the likelihoods really indicate that a definite identification is not 
possible from the character states observed. 

The different ways which have been used to display likelihoods and make 
identification decisions are shown in Table 4 and example calculations by the 
different methods are given in Table 3 (c) to (j). Some of the methods are based on 
Bayes' theorem (Kendall and Stuart, 1963, p. 198): 

P(J) P(u/J) 
P(J/u) = (2) 

~. P(J) P(u/J) 
, I  
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where P(J/u) is the probability of taxon J on the character states u, known as the 
posterior probability of the taxon; and P(J) is the probability of J before 
considering the character states, known as the prior probability of the taxon. The 
prior probabilities are the frequencies of incidence of the different taxa in the 
material being identified. Bayes ~ theorem then allows the posterior probabilities 
of the taxa to be calculated from their likelihoods and prior probabilities. 
Theoretically, taking account of prior probabilities should give the highest rate of 
correct identifications. Requiring that the posterior probability of a taxon exceeds 
a threshold level before an identification is accepted sets a maximum theoretical 
error rate for the identification method. The difficulties of estimating the prior 
probabilites and whether or not their use is desirable in identification are 
considered in Section IV.c. An example calculation using Bayes' theorem is given 
in Table 3 (/) which shows how the listing of the taxa can be changed by taking 
account of prior probabilities. Friedman and MacLowry (1973) have used un- 
equal prior probabilities in the identification of bacteria, using a modified version 
of the Bayes' theorem calculation (see below). 

Table 4. Identification metlaods using likelihoods 

Method Values printed Identification decisions 

Dybowski and Percentage relative None 
Franklin (1968) likelihood 

= L s / L  1 as a percentage 
Modal likelihood fraction 

= L j / L 7  "~ 

Lapage et al. (1970) Identification score 
L* = L , / E L j  

Friedman et Relative likelihood score 
al. (1973) (does not  depend only on 

likelihoods) 

Gyllenberg and 
Niemel~ (1975a) 

API 0977) 

Normalized probability 
L~ = L~/ ZLj 

Logarithmic probability 
= - - l o g ( L f l  

Estimated frequency of  occur- 
rence 
Lj as a fraction 

L* > 0.999 Identified 
L* ~< 0.999 Not  identified 

None 

L 1 >1 ( l l ) ' L ' ~  ~ 
Identified 

L* ~> 0.99 ! 
La >1 ( l l ) "L '~  °-" } 
L* < 0.99 , Intermediate 

(12)"L7  ~ <~ L r < ( l l ) "L '~  ~ Neighbour 
L 1 < (12)"L"~ '~' Outlier 

Graded series of  decisions 
based on L1 and L 1 / L  2 

Lj likelihood of taxon J (J = I is taxon with highest likelihood, J = 2 is taxon with second 
highest likelihood), L~ ''~ max imum possible likelihood for taxon J for characters considered, 
m number  of  characters considered, l l  and 12 are parameters setting taxon limits, e.g. l l  = 
0.8, 12 = 0.7 (Gyllenberg and Niemel~i, 1975a). 
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If the prior probabilities are set equal for all taxa they cancel out in (2) which 
becomes 

P(u/J) 
P(J/u) - (3) 

P(u/J) 
J 

The posterior probabilities of the taxa now refer only to the hypothetical situation 
of equal prior probabilities and for this reason they have been called "identifi- 
cation scores" (Willcox et al., 1973). In terms of likelihoods (3) is written: 

L, (4) 
c * -  Y L, 

J 

where L*j is the identification, score of J. As the L *  for all taxa add up to one 
they have also been referred to as "normalised" values (Lapage et al., 1970; Gyl- 
lenberg and Niemel/i, 1975a, b). 

Friedman et al. (1973) and Friedman and MacLowry (1973) use the equation: 

P(J) II P(xjJ) 
i 

P"s = p(j)  1I P(xjJ) + ( 1 -  P(JO) 11 P(xi/J) (5) 
i i 

where P'j is known as the "relative probability" or "relative likelihood score" of J 
and P(xi/f ) is the probability ofxi for an organism not a member of J. The P(xjJ) 
are obtained from a second matrix formed from the identification matrix using 

PgxjJ) = ~ P(K) P(xjK) / ~,. P(K) (6) 
K C J  K g J  

Although this method is based on Bayes' theorem it does not give the same results 
as the direct use of the theorem as given in (2) nor, for equal prior probabilities, the 
same results as the identification scores calculation (compare Table 3, d and i). 
This would seem to be because equation (5) as well as assuming that the character 
states are independent in each taxon assumes, in multiplying together the P(xj]), 
that they are independent excluding each taxon. For equal prior probabilities, the 
terms in (5) involving prior probabilities do not cancel out unless they are set to 0.5, 
the value used by Friedman et al. (1973). The use of Bayes' theorem as in (2) 
requires that the taxa are exclusive and exhaustive and so the prior probabilities 
must add up to one. U sing prior probabilities of 1/q,where q is the number of taxa, 
in (5) gives results different from ignoring the prior probabilities (compare Table 
5, h and i). Compared with the other methods, the method of Friedman et al. (1973) 
requires a second matrix and involves some additional calculations; the method 
has no immediately obvious advantages though no comparative trials have yet 
been made. 
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The different methods, summarized in Table 4, show that both the relative and 
absolute values of the likelihoods may be displayed and used in the identification 
decision. Dybowski and Franklin (1968) print the relative likelihood of each taxon 
as a percentage of the highest likelihood obtained. Lapage et al. (1970) print the 
identification score based on Bayes" theorem as described above ("normalized 
probability" in Gyllenberg and Niemel/i, 1975a, b). Friedman et al. (1973) print 
their relative likelihood score which is difficult to relate to other indices because it 
is not simply a function of the likelihoods. Percentage relative likelihoods are not 
so useful as identification scores, for if several taxa are equally likely on a 
particular set of character states, they will all have percentage relative likelihoods 
of about 100 ~o, whereas their identification scores will be low. A high identifi- 
cation score is only obtained if the likelihood of one taxon is much greater than any 
other. 

In assessing the absolute likelihoods it is necessary to take account of the 
differences in variability of  the different taxa. The likelihood of a variable taxon 
will be quite low even for results completely typical of the taxon; for instance a 
taxon with five matrix entries of 0.5 for the characters considered will always have 
an absolute likelihood of less than 0.032. To allow for this Dybowski and Franklin 
(1968) print the likelihood of each taxon as a fraction of the maximum possible 
likelihood for that taxon. Gyllenberg and Niemel/i (1975a, b) display the absolute 
likelihoods without adjustment, the negative logarithms of the likelihoods (which 
can be interpreted as taxonomic distances) and then allow for the different 
variability of  the taxa in making the identification decision. The API (1977) 
program also prints the absolute likelihoods, without adjustment, as fractions, 
e.g. 1/10 for a likelihood of 0.1. 

Lapage et al. (1970, 1973) base the identification decision on only relative 
likelihoods, an identification is accepted if the highest identification score exceeds 
0.999. An advantage of using these scores based on Bayes' theorem is that 
although they are only valid as probabilities in the hypothetical situation of equal 
prior probabilities, regarding them as probabilities does give a guide for the a 
priori setting of the identification parameter. Taking a limit of 0.999 should give a 
maximum error rate of 1 in 1000 and this limit is valid for any number of characters 
and so can be used at all times in a sequential identification scheme in which the 
number of characters determined varies from specimen to specimen. The disad- 
vantage of using the relative likelihood criterion is that a strain may identify with a 
taxon if it resembles that taxon much more than any other, even though in absolute 
terms it is quite atypical of the taxon. A theoretical requirement for the use of 
Bayes' theorem is that the taxa should be exclusive and exhaustive, i.e. any 
organism considered must belong to one and only one of the taxa. In the 
identification of bacteria this requirement is not always met; there are some strains 
which cannot be ascribed to any of the taxa in the matrix. These organisms may 
belong to known taxa which are not included in the identification matrix, they may 
belong to as yet unrecognised taxa, or they may reflect the taxonomic situation 
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suggested by Sneath (1974) and Gyllenberg and Niemel~i (1975a) in which they are 
intermediate and aberrant strains between the denser clusters which are rec- 
ognised as taxa. Lapage et al. (1970, 1973) rely on the judgement of the bacte- 
riologist to reject these false identifications, aided by the reporting of results which 
are aberrant for the indicated taxon (see Part A). Gyllenberg and Niemel~ (1975a, 
b) automate this process by basing the identification decision on both relative and 
absolute likelihoods leading to categories "identified", "intermediate", "neigh- 
bour" and "outlier", as shown in Table 4. The API (1977) program also uses both 
relative and absolute likelihoods in the identification decision but the decision 
rules are not specified. 

A more rigorous formulation of decision rules for probabilistic identification 
will become possible through statistical decision theory (e.g. Sebestyen, 1962; 
Gower, 1975). For the present, some of the methods shown in Table 4 have given 
good results in trial applications (Bascomb et al., 1973; Gyllenberg and Niemel~i, 
1975a) and have been used routinely as identification aids (Part A and API, 1977). 

c. Estimating probabilities for  use in identification 
An advantage of probability matrices is that information can be compiled from 

a variety of sources. Data from the literature can be combined with records of 
sample strains and the final values entered in the matrix will be based on a 
subjective assessment of the available information. Although it may be useful to 
construct an identification matrix in this way for initial trials, Bascomb et al. 
(1973) found that a matrix based on the results obtained by testing with standard- 
ized methods a number of reference strains of each taxon was much more 
effective. Even if matrix figures are based on the results of sample strains, there is 
the possibility of adjusting them to take account of a priori bacteriological 
knowledge. For  instance, allowance could be made for biovars of a taxon which 
are known to occur though they have not been encountered in the sample (Lapage, 
1974). Estimating the values in the probability matrix thus involves some degree of 
subjective judgement. Darland (1975) states "extreme care must be taken that the 
definitions (of the taxa) are based on random samples from the appropriate 
populations". A more thorough consideration of the relationship of the identifi- 
cation problem to statistical theory is required to clarify the basis for estimating 
probabilities and the effect of these estimates on the performance of the identifi- 
cation methods. Here we make only some general points on the problems of 
estimating the probabilities. 

Estimating the prior probabilities of the taxa (frequencies of incidence in the 
material received for identification) is likely to be more difficult than estimating 
the probabilities in the identification matrix. The prior probabilities will vary from 
time to time and from place to place due to outbreaks of infection, local conditions 
and so on. The probabilities of the character states for the taxa are also likely to 
vary if outbreaks of aberrant strains are involved and geographical variations 
known to occur (Lapage, 1974) but even so these probabilities will be much more 
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stable than the prior probabilities. Yankelevitch and Negrete-Martinez (1969) 
suggest that an identification matrix is mainly a function of evolutionary and 
genetic effects and can be used in a wide variety of circumstances; the prior 
probabilities are a function of ecological effects and are only applicable to a 
particular situation. Ledley and Lusted (1959) present similar conclusions on the 
use of prior probabilities in medical diagnosis. 

If reliable estimates of the prior probabilities can be obtained, their use weights 
against the rarer taxa (see Table 3). Whether or not this is desirable depends on the 
type of work which is being carried out (Sneath and Sokal, 1973, at p. 387). In 
reference laboratories it might be best to base the identification only on the 
observed characters without considering prior probabilities; computer-assisted 
identification can recall rare taxa that may be otherwise overlooked (Morse, 
1975). In other work it might be more important to identify correctly the highest 
proportion of organisms overall and the occasional misidentification of a rarity 
would not be important. In a trial on medical diagnosis, Croft (1972) found, as 
expected, that using prior probabilities in Bayes" theorem gave the best overall rate 
of correct diagnosis, while ignoring the prior probabilities improved the diagnosis 
of the rarer diseases. 

If the probabilities in the identification matrix are estimated solely from the 
results of sample organisms, the most straightforward estimate for each pro- 
bability is simply the frequency of occurrence of that state in the sample organisms 
of that taxon. Upper and lower limits to the matrix entries must be set (Section V,a) 
so that probabilities of zero and one are avoided. Willcox et al. (1973) and Sneath 
(1974) suggest that Laplace's law of succession could be used to estimate the 
entries giving P = (m + 1)/(n+2) where m is the number of positive results 
observed in a character in a sample ofn organism of a taxon and P is the estimated 
probability of a positive result for the next organisms of the taxon. It is interesting 
that in practice (Bascomb et al., 1973) the conclusions of Laplace's law are not 
followed : if only five sample organisms of a taxon were available and all of them 
gave positive results a matrix entry of 0.99 would be used though Laplace's law 
indicates an entry of 0.86. There is an a priori expectation that taxa will be 
constant, or nearly so, in their results in a particular character and data presented 
by Sneath (1974) support this expectation. 

The entries in the probability matrix should reflect the behaviour of the 
organisms received for identification. For example, in the non-fermenter matrix 
mentioned in Part A, the probability of green pigment production for Pseu- 
domonas aeruginosa is entered as 0.10. It is known that the majority of strains of P. 
aeruginosa isolated in medical laboratories produce green pigment but these 
strains are readily identified by the routine laboratories and are not sent to the 
reference laboratory. Few of the strains of this taxon received for computer 
identification produce green pigment. This shows the importance of basing the 
matrix entries on samples of the appropriate population of organisms as pointed 
out by Darland (1975). However, Lapage et al. (1973) and Lapage (1974) give 
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reasons against adjusting the matrix figures automatically for each strain iden- 
tified by a numerical method. 

d. Comparison with taxon-radius methods 
Taxon radius identification methods (Gyllenberg, 1965; Sneath and Sokal, 

1973, chapter 8; Sneath, 1974; Gyllenberg and Niemel/i, 1975a, b) are based on a 
geometrical model. Each taxon is defined by a central point, its centroid, and one 
or two radii and identification is made by finding the distances of the unknown 
from the taxon centroids and comparing these distances with the radii of the taxa. 
The model can be applied in the original attribute space or in a transformed space. 
Sneath (1969) and Gyllenberg and Niemelfi, (1975a, b) point out the close analogy 
between the taxon-radius method in original attribute space and the calculation of 
likelihoods assuming independent character states. (For the method in transfor- 
med space, the corresponding analogy is with discriminant analysis; Sneath and 
Sokal, 1973, chapter 8.) For two-state characters the identification matrix re- 
quired by the taxon-radius method, the centroid matrix, is identical with the 
probability matrix. 

The Euclidean distance between the unknown and the centroid of taxon J,A s is 
calculated by: 

AzJ =- 2 ( x i - x i j ) 2  (7) 
i 

where x i is the state of the unknown in characters i and ~u is the coordinate of the 
centroid of J for i, i.e. the average value of the character for the taxon. For two- 
state characters, giving the states values 1 and 0 equation (7) can be written: 

A2j = ~ ( 1 - P , j ) 2  + ~ ( p , s ) 2  (8) 
i* i** 

and compared with 

- - . l og (L j )  = ~ - log(Pis) + ~ - log(1  - ei j)  (9) 
i* i** 

where Pu is the proportion of 1 states in character i for taxon J, i* represents 
summation over characters for which the unknown had a 1 state, and i** 
summation over characters with a 0 state, and Lj is the likelihood of J calculated as 
in (1). The analogy then is between the weight against the taxon represented by the 
squared Euclidean distance and the negative logarithm of the likelihood. The 
contribution to this weight of a single positive state for different values of P• is 
shown in Fig. 8. Also plotted in Fig. 8 is the weight resulting from the model 
suggested by Sneath (1974) in which the contribution to the squared distance for 
each character is scaled by the variance of the character in the taxon. The functions 
are plotted in Fig. 8 so that Pu = 1 gives a zero weight and Pu = 0.5 gives a weight 
of one. Compared in this way the main difference between the models is seen as the 
differential weight resulting from a mismatch in a nearly constant character. For 
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Fig. 8. The weight against a taxon contributed by a single positive character state plotted against the 
proportion of positive states in the character for the taxon (Pu). (a) Euclidean distance model 
[(1 Pu)2]. (b) Likelihood model ~ log (Pu)]. (c) Scaled Euclidean distance (Sheath, 1974) 
[(l-Pu)/Pu]. Functions are plotted so that weight is zero at Pu = 1,0 and weight is one at Pu = 0.5. 
Curves b and c are indistinguishable on this graph below Pu = 0.5. 

the Euclidean distance model, this reaches a maximum of four whereas for the 
other models it increases indefinitely as Pu approaches zero. For this reason it is 
necessary to set limits on the entries in a probability matrix to prevent the 
likelihood identification method becoming monothetic (Section V.a). The lower 
limit used by most workers is Po = 0.01 giving a weight of about 6.6 for the 
likelihood model and 99 for Sneath's model. This comparison suggests that 
identification methods using likelihoods or Sneath's model are likely to be more 
powerful than Euclidean distance methods, in the sense of reaching an identifi- 
cation with fewer characters, but, unless the matrix limits are carefully chosen, 
they will be more susceptible to errors in testing and the definitions of the taxa. 
Gyllenberg and Niemel/i (1975b) report close agreement between likelihood and 
Euclidean distance methods in the identification of 223 isolates of bacteria. 

Sneath (1969) suggests that likelihood identification methods may be suscep- 
tible to vigor and pattern effects (Sneath and Sokal, 1973) and gives a way of 
correcting for the effects in the likelihood model. Gyllenberg and NiemelS, (1975a, 
b) give an identification method using correlation coefficients which should allow 
for these effects. As yet there is no evidence that vigor and pattern effects have 
caus~ed difficulty in numerical identification but they may do so as numerical 
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identification is applied to other groups of bacteria. 
The taxon-radius and likelihood models were compared above in terms of two- 

state qualitative characters. Multistate qualitative characters are readily handled 
by the likelihood model (Section V.d) but not by the taxon-radius model whereas 
for continuous quantitative characters the reverse is true (Gyllenberg and Nie- 
mel/i, 1975a, b). Continuous quantitative characters can be used in the likelihood 
model if a probability distribution can be postulated for each character. The 
parameters of the distribution for each taxon are held in the identification matrix 
and the probability density for the value of the unknown used in the likelihood 
calculation. In his trial Croft (1972) found that this procedure did not give as good 
results as converting each quantitative character to a two-state character by 
setting a dividing level. 

V. PROBLEMS IN CALCULATING LIKELIHOODS FROM A PROBABILITY MATRIX 

a. Limits on matrix entries 
Suppose none of the organisms of a particular taxon which have been examined 

showed a particular characte¢ state. If the matrix entry was given a value of zero 
then an organism of that taxon having a character state never before observed 
could never be identified as a member of that taxon, whatever states it showed in 
the other characters (in equation (1) if any P(xi/J ) = 0 then Lj = 0). This 
monothetic behaviour is undesirable since any previous sampling cannot have 
discovered all possible character states for a given taxon and, furthermore, the 
result in question might have been due to an error in testing. This problem can be 
avoided by setting a lower limit to matrix entries, Dybowski and Franklin (1968) 
use 0.05, Lapage et al. (1970), Friedman et al. (1973) and Gyllenberg and Niemel~i 
(1975a) use 0.01. Upper limits to matrix entries are similarly set, e.g. 0.99, to give a 
corresponding minimum probability for negative results, as one minus the pro- 
bability of a positive result. The values of these limits have been chosen arbitrarily, 
but they can be justified by considering errors in testing (Section V.b). Willcox et 
al. (1973) suggest that matrix entries could be estimated using Laplace's law of 
succession (Section 1V.c) as probabilities estimated in this way are never zero but 
this has not been used. 

b. Unknown matrix entries 
There may be no information available on the behaviour of some of the taxa in 

some of the characters so the matrix entries are unknown. This may occur ifa test is 
included in the matrix because it is useful in discriminating between some of the 
taxa but has not been tested on strains of the other taxa. The matrix should be 
preferably completed by testing sample strains, but methods which allow for 
unknown values in the matrix enable such tests to be used while further data is 
being collected. 
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Friedman et al. (1973) could not obtain sufficient data to establish 48 of the 
1,292 elements in their matrix of two-state characters and they set the unknown 
elements to 0.5. This is reasonable for such a small proportion of unknown 
elements but could give misleading results if there were many unknowns or if they 
were concentrated in a few taxa or tests. Willcox et al. (1973) use the following 
procedure in their identification score calculation. 

Unknown matrix elements are given a special value (zero) so that the program 
can recognise that they are unknown. I f  the probability of some character states 
for a taxon, P(xi/J ) of equation (1), are unknown they are assumed to be 0.99 (if 
this is the upper limit to matrix entries, see Section V.a). If one of the resulting 
identification scores exceeds the threshold level a tentative identification to that 
taxon is made. If  there were no unknown matrix entries in the calculation for the 
tentatively identified taxon then the identification is accepted because the values 
assumed for the unknown entries of the other taxa were those most favourable to 
these taxa and thus the least favourable to the identifying taxon. If, on the other 
hand, unknown matrix entries for the tentatively identified taxon had been 
encountered, the calculation must be repeated without assuming values favour- 
able to this taxon, a process termed "rescoring". The identification is accepted 
only if the score of the same taxon exceeds the threshold level after rescoring. Two 
strategies can be used for rescoring. In the "'lenient strategy" the character states 
for which the matrix entries for the tentatively identified taxon are unknown are 
simply ignored for all taxa. In the "stringent strategy" values are assumed for these 
entries which are the least favourable to the tentatively identified taxon. In either 
strategy, unknown entries for taxa other than the tentatively identified taxon are 
treated as before. The lenient strategy seems most suitable for most unknown 
matrix entries but the stringent strategy is required when dealing with linked 
characters (Section V.c). 

c. Linked characters 
The method assumes that the character states are independent in each taxon. 

For some bacteriological tests it is known that some results are governed by a 
simple logical relationship valid for all taxa. For  instance if a strain does not grow 
at 37 ~C the results for motility at 37 C and methyl red at 37 -~C must be negative. 
The procedure given here for taking account of linked characters is described in 
more detail in Willcox et al. (1973). 

Considering the likelihood calculation, equation (1), and supposing that the 
first three characters are not independent of each other but are independent of the 
other characters, then 

P(u/J)  = P(Xl, x 2, x3/J ) P ( x j J )  P(xs/J). . .  (10) 

so the usual method of multiplying the probabilities of the individual character 
states can be retained as long as the dependent states are taken separately and their 
joint probability found. Now, 
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P(x  I, x z, x3/J) = P(x l / J )  P(x2/x a, J) P(x3/x 1, x 2, J) (11) 

where, for example, P(x3/x 1,x2,J ) is the probabili ty of  state x 3 for taxon J and 
having 0 bserved states x a , and x 2. These joint  probabilities must  be calculated by a 
special procedure in the program.  For  two-state characters and writing + i for a 
positive result in character  i and - i  for a negative result, then for the term 
P(x2/x 1,J), to allow for all possibilities, P( + 2/+ 1,J) and P( + z / -  1, J) must be 
calculated; P( - 2/ + 1, J) can be found as 1 - P( + 2/ + a,J) and P(-2/ 1, J) as 
1 - P ( +  2/-a,J). For  the linkage 1 implies -2, a negative result in the first test 
implies a negative result in the second, 

P ( + J - 1 ,  J) = 0 (12) 

follows immediately f rom the linkage, to obtain the other value 

P (  ÷ 2/J) = e (  ÷ 1' ÷ 2/J) ÷ P (  -- 1, ÷ 2/J) 

= P ( ÷ I / J )  P ( ÷ 2 / ÷ l ,  J )  ÷ P(-a/J) P ( ÷ 2 / - - 1 ,  J)  

SO 

P( + 2/ + a, J) = P( + 2/J) / P(  + a/J) (13) 

The required probabilities are obtained as zero or by a simple calculation f rom the 
matrix entries for the two tests. The results - t, + 2, given a zero probabil i ty by (12) 
are impossible according to the character linkage, and should be rejected by an 
editing procedure before reaching the stage o f  calculating the likelihoods. 

For  three characters with the same linkage, - a implies - 2 and - 3, it is easy to 
show that  

P ( ÷ 3 /  1, 2, J)  ~- P ( W 3 / - a ,  Jr) --- 0 (14) 

a n d  P ( ÷ 3 / + 1 ,  ÷2,  J)  = P ( ÷ 3 / ÷ 1 ,  - 2 ,  J )  

= P ( ÷ 3 / ÷ l ,  J )  = P(+3/J)/P(÷I/J) (15)  

so the same procedure using (12) and (13) will deal with two, three or any number  
of  characters linked in the way - 1, implies - 2 and - 3 etc. 

An  exception to this s traightforward situation occurs if the first character  o f  a 
linked series of  3 or more  characters has not  been observed. I f  there is no result for 
the first character,  P( + 2/J) is obtained f rom the matrix as for an unlinked test, 
P ( + 3 / + 2', J) can be obtained f rom (15) as usual, since the first test must  have been 
positive, but a new equat ion is needed to obtain P( + 3 / -  2,J)" This can be easily 
derived but is more  complex and becomes increasingly so when four  and more  
linked tests are considered. 

The problem can be avoided by saying that if two or  more  of  a series of  linked 
characters have been determined but the first o f  the series has not,  then the result of  
the first character  can be assumed to be positive. It  then becomes unnecessary to 
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include a number  of  add i t iona l  equat ions  in the p r o g r a m  for s i tua t ions  which 
occur,  in pract ice,  very infrequently.  The p r o g r a m  also remains  comple te ly  
general  and  can handle  any number  of  characters  l inked in this way. This  form of  
l inkage is the only one cons idered  by Wil lcox et al. (1973) but  o ther  forms could  be 
analysed  in the same way. 

Cons ider  the ca lcula t ion  o f  the p robab i l i ty  of  the results + 1, - 2 for two l inked 
tests:  

P ( + , , - z / J )  = P ( + l / J )  P ( - z / + I , J )  = P( +l /J )[ l  P(+2/J )  / P(+, /J ) ] .  
If P( + l/J) = P(+ 2/J)then P( + 1, - 2/J) = 0which is  unaccep tab le  for  the reasons 
given in Section V.a. In  pract ice (Willcox et al., 1973) this s i tua t ion  usual ly  occurs 
when P( + l/J) = P( + 2/J) = 0.99 or  0.01. Reasonab le  results can be ob ta ined  by 
recognising that ,  because  of  the l imits on mat r ix  entries an entry  of  0.99 represents  
a p robab i l i t y  somewhere  between 1 and 0.99 and  an ent ry  of  0.01 a p robab i l i ty  
between 0 and  0.01. Then using the p rocedure  for unknow n  mat r ix  entries (Section 
V.a), the most  f avourab le  values are first assumed;  for P( + l/J) and P(+ z/J) 
entered as 0.99 assume P( + 1/ J ) = 1, P( + 2/ J ) = 0.99 giving P ( -2 /  + 1, J )  = 0.01 ; 
for P ( +  l/J) and  P(+z/J) entered as 0.01 assume P(+ 1/J) = 0.01, P(+2/J) = 0 
giving P( - 2/+ ~,J) = 1. Because values have been assumed for mat r ix  entries, 
rescor ing can be necessary but  only  when one or  more  results are  unexpected  for 
the tenta t ively  ident if ied taxon  (e.g. +1 where P(+ ~/J) = 0.01). The lenient 
s t rategy of  rescor ing is not  appl icab le  here because it would  mean  ignor ing  results 
k n o w n  to be unexpected.  The  str ingent  s t rategy is not  immedia te ly  appl icaple  
ei ther as the least favourable  assumpt ions  give P ( + I / J )  = P ( + z / J )  and 

Table 5. Example calculations for linked characters (negative result in character 1 implies negative 
results in 2 and 3) 

Characters 

1 2 3 

Matrix entries 0.99 0.99 0.99 
Results of unknown + - - 
Likelihood calculation 0.99 x ?1 x ?1 
Assumed probabilities 0.99 x 0.01 x 0.01 
Rescore probabilities 0.99 x 0.01 x 0.01 

1 2 3 

Matrix entries 0.01 0.01 
Results of unknown + ÷ 
Likelihood calculation 0.01 × 9~ x 
Assumed probabilities 0.01 × 1 × 
Rescoreprobabilities 0.01 x 0.01 x 

0.01 
+ 
.91 

1 
0.01 

i ?: usual procedure gives unacceptable value. 
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P( + 1, - 2/J) = 0. A simple procedure for rescoring can be derived by using the 
stringent strategy and taking account of test errors (Willcox et al., 1973). The 
calculation for the tentatively identified taxon is repeated, setting the probability 
of any results of linked characters which are unexpected to 0.01 irrespective of the 
value given by the linked characters equations. 

The example calculations in Table 5 show that this procedure gives reasonable 
results. In the second example, the linked characters were growth at 37 °C, motility 
at 37 ~C and methyl red at 37 °C; the matrix figures show that strains of this taxon 
able to grow at 37c~C were rarely encountered. If a strain was found to grow at 
37 °C, past experience does not indicate whether or not it would be positive in the 
other tests at this temperature. First it is assumed that all such strains would be 
positive, giving probabilities of one; then, for rescoring, it is assumed that few if 
any of these strains would be positive, giving probabilities of 0.01. 

d. Mult is tate characters 
In applications of this method most of the characters have been two-state. For  

such characters the probability of a negative result for a given taxon is not stored in 
the matrix but is calculated as one minus the probability of a positive result. In 
general terms, for an n-state character, either n - 1 probabilities can be stored and 
the probability of the nth calculated as required; or n probabilities can be stored 
and obtained directly. For two-state characters the first approach halves the 
amount of computer store required, for multistate (n > 2) characters the saving in 
store is proportionately less and more calculation is necessary to obtain the nth 
probability. For two-state characters the first approach is usually preferable, for 
multistate characters the second. The same calculating procedure can be used for 
both types of character if each multistate character is entered in the matrix as n 
component characters. Any result ofa  multistate character is shown as a positive 
result in the appropriate component character, the other components being 
scored "not  done" and hence ignored in the calculation. 

e. Taking account o f  test errors 
Results of bacteriological tests are not completely reproducible and therefore 

any test result has a certain probability of being incorrect (Sneath and Johnson, 
1972; Sneath and Collins, 1974). Sneath (1974) considers the effects of these errors 
on identification methods. The likelihood method can be adapted to allow for test 
errors and use the results obtained to justify the limits set on matrix entries (Section 
V.a). The reasoning followed is that character states which are unexpected for a 
particular taxon may be due to errors in testing and hence the minimum pro- 
bability for such states is the probability of an error. 

Ifpi is the probability of an error in character i, P (  + J J)  the " t rue" probability 
of a positive result in i for taxon Jand  P~ ( + i/J) the equivalent apparent probability 
allowing for test errors, then 
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W(+i /J )  = P(+i /J)  ( 1 - P i )  + ( 1 -  P(+JJ) )Pi  

for Pi = 0.01 
P~( + jJ)  = 0.98 P( + jJ)  + 0.01 

(16) 

and similarly for a negative result 

U ' ( -  jJ )  = 0.99 - 0.98 P( + J J) (17) 

If  equations (16) and (17) were used in the identification method and P( + i/J) 
obtained f rom the matrix there would be no need to set limits on matrix entries as 
P~( + j  J) = 0.01 for P( + jJ) = OandP~(-i/J)= 0.01 for P( + i/J ) = l .Themat r ix  
entries are estimates o f  the true probabilities, the results on which they are based 
are assumed to be free of  errors. In practice there are difficulties in using these 
equations directly but the effect of  them is very similar to that  of  the original 
method of  setting limits on matrix entries. Table 6 shows that the matrix entries 
and apparent  probabilities differ only slightly over most  o f  the range o f  probabili- 
ties and the greatest difference (a factor  of  about  two at a probabil i ty o f  0.01) can 
be considered negligible as estimates o f  such low probabilities are likely to be only 
approximate.  

Table 6 also shows that  the limits on matrix entries mean that  for entries o f  0.09 
and 0.01 the true probabil i ty is only known to lie within a range of  values. To allow 
for this the approach  used for unknown matrix entries (Section V.a) is followed. 
The most  favourable values are first assumed for all taxa, e.g. for a positive result 
and a matrix entry o f  0.99, assume P ( + j J) = 1 giving P~ ( + i/J) = 0.99, while for 
an entry o f  0.01, assume P ( + j J) = 0.01 giving P" ( + j J) = 0.0198. For  rescoring 
the lenient strategy is not  appropriate,  in this case since the probabilities are not 
completely unknown  but are known to lie within limits, instead the least favour-  
ablevaluesareassumedforthetentativelyidentifiedtaxonP"(+i/J)= 0.9802 for a 
matrix entry o f  0.99 and P° (+ j J) = 0.01 for an entry o f  0.01. The difference for an 

Table 6. The values entered in the identification matrix (applying upper and lower limits of 0.99 and 
0.01) and the apparent probabilities (allowing for an 0.01 probability of an error in testing) for 
various probabilities of a positive result in a given character for a given taxon 

True Matrix Apparent 
probability entry probability 

1 } 0.99 
0.99 0.99 0.9802 
0.5 0.5 0.5 
0.1 0.1 0.108 
0.05 0.05 0.059 
0.01 / 0.0198 
0 0.01 0.01 
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entry of 0.99 is clearly negligible and the difference for an entry of 0.01, a factor of 
about two, can also be ignored as there will usually be few such unexpected results 
for the tentatively identified taxon. Rescoring is therefore unnecessary. 

This approach can be applied in a similar way to linked characters. For such 
characters it is found that rescoringis sometimes required and the results obtained 
(Willcox et al., 1973) give the simple procedure for rescoring these characters 
which was described in Section V. c. 

The difficulty in applying this approach directly is in estimating the error rates 
and these were assumed above to be 0.01 for all tests. Data compiled by Sneath 
(1974) show a typical average error rate of 0.02 with significant differences 
between tests. If results obtained in different laboratories are used in numerical 
identification (see Part A), differences in media and methods between laboratories 
are a further source of variation and lead to an error rate of about 0.06 (Willcox et 
al., 1973). 

Finally, in carrying out an identification some tests may be repeated and the 
probability of an error in a confirmed result is obviously much reduced. A full 
application of this approach then should use different error rates for different 
tests, different rates for results obtained in different laboratories and allow for 
confirmed results. 
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PART C. NUMERICAL METHODS FOR CONSTRUCTING 
IDENTIFICATION KEYS AND SELECTING SETS OF CHARACTERS 

VI. INTRODUCTION 

Numerical methods can be used to select characters for use in identification 
whether or not the identification itself is carried out by a numerical method. 
Numerical character selection can be applied to choose characters to form an 
identification key or sets of characters for diagnostic tables. Alternatively, 
numerical selection can be combined with numerical identification to form a 
flexible, sequential identification scheme (see Part A). 

The methods for numerical character selection differ according to the different 
types of data matrices to which they can be applied (Part D). Most of the methods 
use non-probabilistic matrices where entries for each taxon are the expected 
character states. Methods for constructing keys from such data matrices are 
described in Section VII and methods for selecting sets of characters in Section 
VIII. Some methods which use probability data matrices and full data matrices are 
reviewed in Sections IX and X, respectively. 

VII. CONSTRUCTING KEYS FROM NoN-PROBABILISTIC DATA MATRICES 

a. General aims and constraints 
Computer programs for constructing identification keys from non- 

probabilistic data matrices have been described by Pankhurst (1970), Gower and 
Barnett (1971), Morse (1971), Watson and Milne (1972), Dallwitz (1974), Hall 
(1975) and Payne (1975). They differ in the numerical functions used for 
evaluating characters (reviewed by Hill, 1974) and in practical refinements 
(reviewed by Pankhurst, 1974). 

Some of the features of key constructing programs are illustrated by the two 
example keys derived from the data matrix of Fig. 9 (a) and represented schemati- 
cally in Fig. 9 (b) and (c). The usual aim in constructing a key is to minimize the 
average length of the key, i.e. the number of characters necessary to identify a 
specimen averaged over all the taxa. Key (b) has an average length of 16/6 and key 
(e) a length of 17/6, so on this criterion (b) is preferable. In taking these averages 
each taxon was given equal weight but if the prior probabilities of the taxa are 
known to be different, this should be taken into account in assessing the keys. For 
instance, if taxon 3 was known to be particularly abundant, key (c) would be 
preferred. 

Some programs allow prior probabilities to be specified and use them in the 
numerical evaluation of the characters. If the prior probabilities are unknown, a 
sensible objective would be to minimize the longest path through the key. Key (b) is 
the best by this criterion and key (e) would be particularly unsuitable if it turned 
out that taxon 6 was very abundant in the material examined. The different 
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Fig. 9. T w o  keys  a n d  t w o  d i agnos t i c  tables  c o n s t r u c t e d  f r o m  the same h y p o t h e t i c a l  d a t a .  (a) D a t a  
mat r ix ,  (b) a n d  (c) keys,  (d) a n d  (e) d i agnos t i c  tables.  
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characters can also be given different weights in assessing the keys. Thus if 
character a was inconvenient (e.g. time consuming, difficult to observe or unreli- 
able) key (c) would be preferred as it only uses this character in distinguishing two 
taxa while key (b) uses it for all taxa. 

Characters can be allotted numerical "costs" to account for these practical 
considerations and the program aims to find a key with the minimum average cost 
per identification. The costs can be used directly in some character evaluating 
functions; alternatively the costs can be used to divide the characters into blocks, 
the program evaluates the characters in the least costly block first and only 
considers the characters in the next block if the key cannot be completed without 
them. In microbiology, the characters are not usually determined sequentially 
because of the time required to determine them. Instead, a set of tests is carried out 
and a key which contains the fewest characters overall is advantageous. Key (c) 
contains all the characters but character c could be replaced by character a to 
reduce the number of characters. Some programs seek to minimize the overall 
number of characters by giving preference to characters already used in other 
branches. 

b. General procedure 
The general procedure for constructing a key is shown in the example of Fig. 10. 

The first character is chosen according to a numerical evaluation of the characters 
applied over all taxa; this character divides the taxa into two subsets. The next 
character for each subset is found by a similar evaluation of the characters applied 
to the taxa present in that subset and this is continued until the key is complete. 
Different functions used to evaluate the characters are discussed in Section VIII.c. 
(the example uses that of Rypka et al., 1967). The data matrix used in Fig. 9 (a) 
contains some "d"  entries for variable where different strains in a taxon give 
different responses in a character. The formula used in the example is not 
applicable when variable entries occur so only the characters with no such entries 
for the taxa remaining at a particular stage are evaluated. This is only satisfactory 
if variable entries occur infrequently in the matrix, otherwise it will be impossible 
even to start constructing the key. Some programs use evaluating functions which 
allow for variable entries. 

If a character with variable entries is used in a key, some taxa will be present in 
both subsets of the key and hence will appear at more than one end-point of the 
key. Matrix entries may be specified as "unknown" or as "inapplicable". Un- 
known entries can be treated as variable entries but characters with some inappli- 
cable entries should not be selected as their presence in the key might confuse the 
user. 

The example data matrix has only two-state characters and the resulting key is 
dichotomous. Some programs use functions which evaluate multistate characters 
creating polychotomous keys with more than two subsets at some stages. Polycho- 
tomous divisions often give shorter keys yet dichotomous keys are usually 
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Taxa  1, 2, 3, 4, 5, 6 

Character evaluation: 
a 22 + 42 = 20 

b 22 + 4 ~ = 20 

c N A  
d 12 + 52 = 26 

e N A  
Character a selected 

+ I - 
f J 

T a x a  1, 6 Taxa  2, 3, 4, 5 
Character evaluation: Character evaluation: 

b l  z + 12 = 2  b l  2 + 32 = 10 

c N A  c 22 + 22 = 8 
d02  + 22 = 4 d 12 + 32 = 10 
e N A  e 12 + 32 = 10 

Character b selected Character c selected 
+ 1 -  + I -  

I I I I 
Taxon 1 Taxon 6 T a x a  2, 5 Taxa  3, 4 

Character evaluation: Character evaluation : 
b l  z + 12 = 2  b02  + 22 = 4  
d 12 + 12 = 2 dO 2 + 2 2 = 4 
eO 2 + 2 2 = 4 e 12 + 12 = 2 

Character b selected Character e selected 

Taxon 5 Taxon 2 Taxon 3 Taxon 4 

Fig. 10. Example showing the construction of a key by a numerical method. The data matrix is as in 
Fig. 9 (a) and the key constructed is as in Fig. 9 (b). The character evaluating formula is (n+) 2 + 
( n ) 2 ,  where  n+ is the number of positive entries for the character and n is the number of negative 
entries; the character with the lowest value is selected. The formula is not applicable (NA) when 
variable (d) entries occur. 

preferred on practical grounds (Pankhurst, 1970; Dallwitz, 1974), probably 
because dichotomous keys are easier to use in printed from and in some cases two- 
state characters are easier to observe and more reliable than multistate. For these 
reasons, some functions which evaluate multistate characters have a deliberate 
bias to favour two-state characters. Combinations of  characters can also be 
evaluated by considering all possible combinations of  a set number of  characters 
and evaluating each choice as a single multistate character. Some programs can 
also use quantitative characters by selecting the best point in the range of  values to 
make a dichotomous division. 

At some stages in the example of  Fig. 10 two characters are equally good choices 
according to the numerical evaluation; in these instances the first character was 
arbitrarily taken. By using a different rule to decide between equal values the same 
method can produce a number of  different keys; the key of  Fig. 9 (c) is produced by 
reversing the order in which the characters are considered. This shows that 
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numerical methods which construct keys sequentially, selecting the best character 
at each stage, do not necessarily produce the best possible key. Key (b) has a 
shorter average length than key (c), yet with the reversed character order the 
automatic method produces only key (c). 

To ensure the best key is found necessitates investigation of all possible 
arrangements of characters, but this is computationally impracticable. Selecting 
characters sequentially one at a time is the simplest strategy for searching for the 
best characters. The search could be increased in "breadth" by considering in turn 
all the characters which are equally good choices at any stage. Exactly equal values 
may not occur very frequently in problems of practical interest but characters with 
values within a specified interval from the best value could be considered. The 
search could also be increased in "depth" by evaluating each character not only on 
the division it creates but also on the further divisions one or more stages further 
down the key. 

Programs so far developed use the simple strategy but a number of alternative 
keys can often be produced from the same data by changing, for example, the 
character costs which may indicate the best key for a particular purpose. 

Some key-constructing programs allow particular characters to be used in 
particular positions in the key so that the key will reflect important taxonomic 
relationships; it is also another way of generating alternative keys. Other features 
allow keys to be constructed for special purposes by specifying that certain taxa 
need not be distinguished or certain characters must not be used. Keys can then be 
produced forpart icular  ecological situations or seasons of the year and so on. 

Some programs search for confirmatory characters for each division (in Fig. 9 
(b) character dconfirms character b in distinguishing taxa 2 and 5) and some print 
with each taxon name the appropriate states of the characters not used in keying 
out the taxon. These refinements aim to overcome the monothetic nature of keys 
where a mistake in observing a character early in the key can lead to a gross 
misidentification. 

Finally, some programs print the key in a form suitable for immediate use or 
even publication with control over the style of printing. 

c. Character evaluating funct ions 
A character to be evaluated at a particular stage in the key divides the taxa into 

subsets corresponding to the alternative states of the character. The average cost 
of completing, an identification from that stage if that character is used is: 

C = c + ~ p b l h C h  (18) 
b 

where c is the cost of the character,pb is the probability of state b of the character at 
that stage, I b is the average number of  additional characters required to complete 
an identification following state b of the character, and c b is the average cost of 
these characters. To minimize the average cost of an identification, the best 
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character is the one giving the lowest C. If there are no "d"  entries in the data 
matrix, Pb is the sum of the frequencies of incidence of the state b taxa present 
divided by the sum of the frequencies of all the taxa. As l b and c b cannot be found 
without actually completing the key, they must be estimated and Dallwitz (1974) 
sets c b to cmi . (which is the smallest cost for any of the characters being considered) 
and estimates l b by L(qb), where qb is the number of taxa with state b and L(q) is a 
function which gives the expected average number of characters to identify a 
specimen in a key for q taxa. Then (18) becomes: 

C = C "-~ Cmi n 2 ab L ( q b ) / 2  ab (19) 
b b 

where a b are the frequencies of the taxa (or "abundances",  Dallwitz, 1974) 
a that stage which give state b. To obtain L ( q )  consider a key made up of  
two-state characters which successively divide the taxa into equal subsets; this is 
the most efficient arrangement of two-state characters and m characters will 
distinguish 2" taxa. Even when the number of taxa is not an exact power of 2 the 
average number of characters per taxon in a key for q taxa is very close t o  log  2 (q)  

and using this function in (19) gives: 

C1 = c + c,,i, ~ a b l o g z ( q b ) / 2  a b (20) 
b b 

which is the function used by Dallwitz (1974). Dallwitz points out that for equal 
character costs and taxon frequencies (20) reduces, apart from constants, to 

C1 = ~ qb log2(qb) (21) 
b 

which is equivalent to the function proposed by Maccacaro (1958). 
The logarithmic function was the only one used by Dallwitz (1974) but other 

functions for L(q) might be considered. The least efficient use of two-state 
characters in a key is to successively divide offa single taxon at a time and for such a 
key for q taxa the average number of characters per taxon is ( q -  1) (q + 2) / 2q 
which is closely approximated by q/2. Using this function in (t9) gives: 

x (22) C2 = c + 7c,,i, ~ a b qb/ 2 ab 
b b 

which for equal character costs and taxon frequencies reduces, apart from 
constants, to 

C2' = ~ (qb) 2 (23) 
b 

a function suggested by Sneath (1974) and equivalent to the function used by 
Rypka et al. (1967). The general equation (19) thus produces alternative evaluat- 
ing functions according to the choice of L(q) and this choice depends on the 
number of characters available compared with the number of taxa. The more 
characters available the more likely that keys approaching the ideal assumed by 
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the logarithmic function will be produced. 
If only two-state characters with no "d"  entries are evaluated and character 

costs and taxon frequencies are equal, all the functions which have been proposed 
agree in selecting the character which has the most nearly equal numbers of 
positive and negative states for the taxa considered. With these conditions 
function (19) is not necessarily a minimum at the equal division point for all L(q) 
which are reasonable (i.e. monotonic increasing functions of q). 

If there are "d"  entries, thepb of(18) cannot be found because the probabilities 
of some states for some taxa are not known. To use (18) values could be assumed 
for the probabilities of the different states for taxa with "d"  entries, e.g. for two- 
state characters assuming probabilities of ½ for positive and negative states gives: 

1 1 C = c + c,,~, [(a+ + ~aa) L(q+ + qd) if- (Ct_ -}- 7aa) L(q_  + qd)] 

/[(a+ + ½ad) + (a + ~ad) ] (24) 

where q + is the number oftaxa with positive states, a + the sum of the frequencies of 
these taxa, and similarly q_ and a_ for taxa with negative states, and qd and a n for 
taxa with "d"  entries. The taxa with "d"  entries occur in both subsets so the 
numbers of taxa left to discriminate are q+ + qd and q_ + qd respectively. For 
equal character costs and taxon frequencies and using q/2 for lXq) (24) reduces to 

C3' = (q+ + ½%) (q+ + qd) + (q-  + ½%) (q-  + qd) (25) 

which is equivalent to the function used by Morse (1971). 
The frequencies of the taxa appear in (24) but ifa character with "d"  entries has 

been used early in the key, some taxa will not be present at a later stage with their 
full frequencies because some of the members of these taxa will be following a 
different branch or subset of the key. This effect can be allowed for by again 
assuming probabilities for the "d"  entries and reducing the frequencies of the taxa 
with these entries at later stages of the key. 

DaUwitz (1974) did not use assumed probabilities but instead used (20) directly 
taking qb as the number of taxa in the subset indicated by state b and a b as the sum 
of the frequencies of these taxa. Retaining the notation of (24) this gives for two- 
state characters: 

C = c + c,,i,[(a+ + %) L(q+ + qd) + (a_ + ad) L(q_  + qd)] 

/[(a+ + %) + (a + a d) ] (26) 

which for equal character costs and taxon frequencies and using log2(q) for L(q) is 
nearly, though not exactly, equivalent to the information criterion of Gower and 
Barnett (1971). Using (20) in this way is equivalent to entering each possible 
variant of a taxon with "d"  entries and giving each variant a frequency equal to 
that of the entire taxon but not requiring the key to separate each variant. This 
procedure enables those programs whose character evaluation functions cannot 
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accept "d"  entries to analyse matrices with such entries. This procedure will give 
good results unless some of the taxa have a particularly high proportion of "d"  
entries. 

Evaluation of multistate characters with "d"  responses requires the exact 
specification of such responses. For example, if the states are say, red, green and 
blue then a taxon with red, green, but no blue members will appear in the subsets 
indicated by red and green states but not in the blue subset (see Section VIII). 

Finally, the problem of constructing a key to minimize the maximum cost of an 
identification is a sensible objective if the prior probabilities of the taxa are 
completely unknown. The appropriate character evaluation function is now: 

C* = c + c,,i, m a x  [L(qb)] (27) 

where m a x  means the maximum value over all b. As thePb do not appear in this 
function it can be used with "d"  entries without qualification provided qb is the 
number of taxa in the subset indicated by state b i.e. including taxa with "d"  
entries. For  equal character costs (27) reduces to max[L(qb) ] which is equivalent to 
max[qb] as L (q) is always a monotonic increasing function so for this case a single 
function is obtained independent of the choice of L(q). 

As well as the character evaluating function a program for constructing keys 
must contain an inference element which decides which taxa are present at a 
particular stage of the key. The method of inference followed in identifying a 
specimen with a key is set by the method used in constructing the key (Part D). The 
inference in the example (Fig. 10) is a simple monothetic method in which a taxon 
is eliminated as soon as a character state is observed which is not as expected for 
that taxon. This seems to be the only inference method used in programs so far 
though other methods could be used and Hill and Silvestri (1962) and M611er 
(1962) describe the construction of a key with a check on the final inference by 
probability calculation (see Section IX). 

Gower and Payne (1975) develop a number of criteria to be met by functions for 
selecting characters for keys (and a new generalised function), but their approach 
is not entirely compatible with the generalised form of Dallwitz (1974; see also 
Brown, 1977). 

VIII. SELECTING SETS OF CHARACTERS FROM NoN-PROBABILISTIC 

DATA MATRICES 

To choose a set of characters to be observed simultaneously for use in a 
diagnostic table, or other identification methods which require a set of characters, 
combinations of characters have to be evaluated. When combinations of charac- 
ters are used in keys (Section VII) only small numbers of characters can be 
involved as examination of all possible combinations of larger numbers of 
characters is impracticable. With large sets, characters are selected one by one. 



NUMERICAL METHODS IN BACTERIAL IDENTIFICATION 273 

Selection of characters according to separation values 

Initialvalues(n+ × n_) a8, b8, c6, d5, e4 
Character a selected 

Completes separation of: 1, 2 (reduce value of  b, c, d); 1, 3 (ditto b); 
1, 4 (ditto b); 1, 5 (ditto c) ; 2, 6 (ditto d); 3, 6 (ditto e); 4, 6; 
5, 6 (ditto b) 

New separation values a 0, b 8 - 4 = 4 ,  c 6 - 2 = 4 ,  d 5 - 2 = 3 ,  e 4 - 1 =3  
Character b selected 

Completes separation of: 1, 6; 2, 5 (reduce value of d); 3, 5 (ditto c, e); 4, 5 (ditto c) 
New separation values a 0, b 0, c 4 - 2 = 2 ,  d 3 - 1 =2,  e 3 - 1 =2  

Character c selected 
Completes separation of: 2, 3 (reduce value of d, e); 2, 4 (ditto d) 
New separation values a 0, b 0, c 0, d 2 - 2 = 0, e 2 - 1 = 1 

Character e selected 
Completes separation of: 3, 4 
New separation values a 0, b 0, c 0, d 0, e 0 

Set of characters complete 

Separation matrix 

Initial After character After character 
a selected b selected 

Taxa 
2 3 4 5  

1 1 1 1 1  
2 1 1 1  

Taxa 3 1 1 
4 1 
5 

6 2 3 4 5 6  2 3 4 5 6  

1 1 0 0 0 0 1  1 0 0 0 0 0  
1 2 1 1 1 0  2 1 1 0 0  
1 3 1 1 0  3 1 0 0  
1 4 1 0  4 0 0  
1 5 0 5 0 

After character After character 
c selected e selected 

2 3 4 5 6  2 3 4 5 6  

0 0 0 0 0  1 0 0 0 0 0  
0 0 0 0  2 0 0 0 0  

1 0 0  3 0 0 0  
0 0  4 0 0  

0 5 0 

Fig. 11. Example showing the selection of a set of  characters by a numerical method. The data 
matrix is as in Fig. 9 (a) and the set of  characters selected is as used in the diagnostic table of  Fig. 9 (d). 
Characters are selected according to their separation values i.e. the number of  pairs of taxa they 
separate. After each character is selected the values of the other characters are reduced according to 
the pairs of  taxa now completely separated. The separation matrix records the number of  characters 
still required to separate each pair of  taxa. Initially this is set to the specified minimum number of 
characters, one in this example. 
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The method described here is based on that of  Gyllenberg (1963) as used by 
Willcox et al. (1973). Taxa are separated by the characters if they show different 
character states but not if they have the same state or ifa taxon has a "d"  entry. The 
method consists of the following steps (see example in Fig. 11). 

(1) Set the elements of  a taxon by taxon "separation matr ix"  to the minimum 
number of characters required to separate each pair of taxa. 

(2) For  each character count the number of  positive and negative entries in the 
data matrix and calculate the value of  the character as the product of  these 
numbers. (This is the "separation figure" of  Gyllenberg, 1963.) 

(3) Find the character with the highest value; i fmore  than one character has this 
value take the first encountered. I f  the highest value is zero character selection 
is complete, otherwise the character with the highest value, character x say, is 
added to the set of selected characters. The value of xis set to zero so it will not 
be selected again. 

(4) For  all pairs of taxa not already completely separated (i.e. with non-zero 
entries in the separation matrix) determine whether x separates the pair. I f  so 
subtract one from the separation matrix entry for that pair and if the entry is 
now zero inspect each character not already selected and if the character also 
separates the pair reduce its value by one. 

(5) Return to step (3). 

This procedure is designed for two-state characters but can be adapted to allow 
for multistate characters. Each multistate character is represented by a number of 
two-state "component  characters", one for each state. The appropriate entries, 
+ ,  - or "d" ,  are determined as shown in the example (Fig. 12); once a + entry is 
made for a particular taxon the following entries are all "d".  The resulting entries 
are such that not more than one of the component  characters separates a given pair 
of  taxa. The entries also represent the behaviour o fa  multistate character for taxa 

Taxon States of Component 
multistate characters 
character a b c 

1 a + d d d 
2 b - + d d 
3 c + d 
4 d + 
5 a o r b  d d 
6 b, c o r d  - d d d 
7 a,b,  c o r d  d d d d 

Fig. 12. Example showing the representation of a four-state character in a non-probabilistic matrix 
by four two-state component characters. Once a positive state is entered for a particular taxon the 
following entries are all "d". 
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which vary in their response, e.g. a taxon which can show state a or b is separated 
from one which shows state c only (see Section VII). At step (3) above the values of 
the component characters are added together to give the value of the multistate 
character itself and if the multistate character is selected step (4) is repeated with 
each component character in turn as x. 

Rypka et al. (1967) used a similar method for selecting sets of characters but 
found the character values at each stage by an algebraic formula rather than the 
procedure described above. The formula of Rypka et al. (1967) is a generalization 
of Gyllenberg's (1963) separation figure but is only applicable when there are no 
"d"  entries and when the minimum number of characters to separate each taxon 
pair is one. Niemel~i, Hopkins and Quadling (1968) use a different formula which 
has the same restrictions. Advantages of the present method are that it is not 
affected by "d"  entries and it allows the identification performance of the resulting 
diagnostic table (Part D) to be increased by increasing the minimum number of 
characters required to separate each pair of taxa. 

This sequential character selection method does not necessarily find the set with 
the fewest possible characters, as shown in the example of Fig. 11 by changing the 
data matrix entry for taxon 2, character b to "d" ;  the method then fails to find the 
minimum set of a, b, dand  e. A method which always finds the set with the fewest 
characters is described by Willcox and Lapage (1972). 

A program implementing this character selection procedure can incorporate a 
number of practical refinements. It can indicate if any pairs of taxa cannot be 
completely separated by the available characters or it can allow the user to specify 
that certain pairs of taxa need not be separated. I he user can specify that some 
characters should not be usedunless it is impossible to complete the set without 
them or, conversely that some characters must appear in the set (the program 
would then start with these characters). Certain characters may always be re- 
quired in the set as the only ones to separate particular pairs of taxa and the 
program can discover these necessary characters first and then complete the set in 
the usual way. The program can produce alternative sets of characters either by the 
user changing some of the above options or automatically by taking in turn the 
characters which are equally good choices at a given stage (or within a specified 
interval from the best value). 

IX. METHODS USING PROBABILITY MATRICES 

The first approach to selecting characters from a probability matrix is to 
convert the matrix to a non-probabilistic form and use the methods described in 
Sections VII and VIII. Hill and Silvestri (1962) with M611er (1962) produced a key 
in this way and Willcox et al. (1973) used it to select sets of characters in a flexible, 
sequential identification scheme (Par~ A). For two-state characters probabilities 
of positive states >~ 85~o were converted to + ,  probabilities ~< 1 5 ~  to - ,  and 
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remaining probabilities to "d",  these limits having been chosen subjectively. 
Upper and lower probability limits can be set for each data matrix according to the 
frequency distribution of the probabilities (M6Uer, 1962). The nearer the limits are 
to 100~ and zero the more reliable will be the resulting identification method, 
though more characters will be required, and if the limits are set too wide 
potentially useful characters may be ignored. In practice the distribution of the 
probabilities of positive results is strongly U-shaped in anost data matrices 
(Sneath, 1974) so the values of the limits will probably not be critical. Tho/agh the 
probability matrix was reduced for character selection, probability calculations 
were used by M611er (1962) to check the reliability of the key produced, and by 
Willcox et al. (1973) as the inference element of their sequential identification 
scheme. To use this method of character selection in sequential identification, the 
identification scores (Part B) of the taxa are first calculated on the initial character 
states. If the highest score does not exceed the identification level (0.999) a set of 
likely taxa is formed by taking taxa in order of their scores until the sum of the 
scores is greater than the identification level. The characters available for selection 
are determined by excluding those characters already observed and characters 
whose outcome c~ n be oredicted from results already known (e.g. motility at 37 °C 
would be excluded if growth at 37 °C was known to be negative). A set of characters 
is selected from the available characters to discriminate between the likely taxa by 
forming a subsidiary, non-probabilistic, data matrix for these characters and taxa 
and using the method described in Section VIII. Willcox et al. (1973) find that each 
pair of taxa must be separated by at least two characters to give a reasonable 
chance of identification by the probability calculation when the results of the 
selected characters are combined with the initial results. 

Sneath (1962) suggests that the ability of a two-state character to discriminate 
between two taxa can be measured by the algebraic difference (G) in the pro- 
babilities of positive states for the taxa. The method of Section VIII based on 
separation of pairs of taxa could employ G; a character would be considered to 
separate a taxon pair if the absolute value of G exceeded a threshold level. The 
consequences of doing this rather than using thresholds to convert probabilities to 
+ ,  - and "d"  have not been investigated. 

These same procedures are applicable to multistate characters if these are 
entered in the matrix as a number of component two-state characters (Part B and 
Section VIII). 

A second approach to selecting characters from a probability matrix is to 
calculate the probabilities of the taxa on particular sets of character states 
assuming the states are independent within taxa and using Bayes' theorem (Part 
B). The current situation at any stage of an identification can be represented by the 
probabilities of the taxa on the character states known up to that stage. Observing 
an additional character will change the probabilities of the taxa. If the value of a 
given situation can be measured, the expected utility of the additional character 
can be obtained as the average value of the new situations. For  a two-state 
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character 

g = P(+/So) V(S+) + P(- /So)  V(S_) (28) 

where U is the expected utility of the character, P ( +/So) is the probability of a 
positive state of the character given the current situation S o, V(S+) is the value 
of the situation S+ resulting when a positive state of the character is added to the 
character-states already known, and similarly P( - /So )  and V ( S )  for a 

negative state. P(+/So) can be found as y, Po (J) P (+/J) where Po(J) is the 
J 

probability of taxon J on the states already known and P(+/J) is the 
probability of a positive state of the character for taxon J, i.e. the appropriate 
matrix entry. Good (1970) suggests a number of possible measures for V(S), for 
example the negative entropy 

V(S) = ~ P(J) log P(J) (29) 
J 

where P(J) is the probability of taxon J in situation S. 
The above procedure can be extended to multistate characters and, in theory, to 
sets of characters. To evaluate a set of characters each possible pattern of character 
states must be considered and the probability of the pattern and the value of the 
resulting situation found. For m characters there will be 2 m patterns and the 
amount of computation can become too great for routine use (Willcox et al., 1973). 

X. METHODS USING FULL DATA MATRICES 

Very little experience has been reported with methods of character selection for 
full data matrices, containing the character states of sample individuals of each 
taxon. 

For two-state characters, Gyllenberg (1963) calculates the value of chi-square 
for each character in each taxon, comparing the observed numbers of individuals 
giving each state with an equal distribution of states. Only character states with a 
frequency significantly different from ½ are entered in the non-probabilistic 
matrix used in character selection (Section VIII). Ross (1975) also uses a chi- 
square calculation, for multistate as well as two-state characters, comparing the 
observed frequency of each state of a character in a taxon with the frequency over 
all the taxa. For quantitative characters, Ross (1975) calculates the t-statistic in a 
similar way but he points out that it is not statistically valid to use chi-square and t 
values in tests of  significance if the taxa have been formed by a numerical classifi- 
cation based on the same data matrix. However the values are useful guides to the 
characteristic features of each taxon. 

Some discriminant analysis techniques can be used to select a subset of charac- 
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ters. The analysis is carried out in steps, selecting at each step the character which 
adds most to the discrimination between the taxa measured as the ratio of 
between-taxon variance to within-taxon variance. Spicer, Jones and Jones (1973) 
applied this method to medical diagnosis. Hills (1967) gives a step-by-step 
character selection procedure used with the nearest-neighbour identification 
method (Part B). 

If the taxa are based on a numerical classification, the classification method 
itself may indicate discriminatory characters (Sneath and Sokal, 1973, p. 385). Hill 
and Silvestri (1962) give a method for assessing the contribution of each character 
to the formation of taxa in a numerical classification (the "taxonomic signific- 
ance" of the character). Hill and Silvestri (1962) applied this method and inde- 
pendently constructed an identification key from the same bacterial data and so 
compared the taxonomic significance of the characters with their use in identifi- 
cation. The same group of characters (i.e. physiological-biochemical rather than 
morphological) were more important in both instances, but there was no close 
correspondence for individual characters. 
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PART D. THE APPLICATION OF NUMERICAL METHODS TO 
IDENTIFICATION: PROSPECTS AND LIMITATIONS 

X I .  INTRODUCTION 

In comparison with classification, much less work has been done on developing 
numerical methods for identification. Numerical methods have been applied to 
different identification problems in different fields of biology but little has been 
done to compare methods theoretically and still less to compare results given by 
different methods applied to the same problem, reviewed by Sneath and Sokal, 
1973 (chapter 8); Hill, 1974; Pankhurst, 1974; Morse, 1975. 

Some characteristic features of different schemes for identifying specimens are 
considered in Section XII. The problems of evaluating and predicting the perfor- 
mance of an identification scheme are discussed in Section XIII together with the 
related problem of assessing the performance required by the users of a scheme. 
Some of the practical considerations which seem to limit the application of 
numerical methods to identification are discussed in Section XIV. Section XV 
describes the use of numerical codes in particular identification schemes. 

XII. IDENTIFICATION METHODS 

a. Types of  identification method 
Identification methods can be divided into types according to how the identifi- 

cation is carried out (Table 7). The first distinction is between intuitive (or 
subjective) and automatic methods. Intuitive methods rely on the judgement of 
the scientist. Sometimes a specimen is immediately recognized by an expert 
without any conscious mental process. The expert may compare the specimen with 
named specimens, illustrations or printed descriptions. Determination by an 
expert is still regarded as the most reliable of all identification methods. In 
bacteriology, diagnostic tables giving the test results expected for various taxa are 
often printed without any definite rules for matching the results of the unknown 
strain against the table. The use of such tables is to some extent subjective since 

Table 7. Types of identification method 

Intuitive 

Automatic 

Printed schemes 

Mechanical 

Computer/numerical 

immediate recognition, comparison, expert determination 

keys, diagnostic tables (with matching or elimination rules), numerical 
indices 

v~ious devices to aid matching or elimination, punched card schemes 

require use of computer for each identification 
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often the results of the unknown do not match exactly just one of the taxa so the 
"best taxon" must be assessed by the bacteriologist. A similar situation can arise in 
keys with more than one character at each stage (Sneath and Sokal 1973, at p. 391). 
Intuitive methods are not necessarily completely reproducible, as different scien- 
tists may reach different conclusions on the same evidence or even the same 
scientist at different times. However, expert determination is usually taken as the 
final opinion and is the standard against which other methods are assessed. 

Automatic methods will always give the same identification when considering 
the same evidence. (An alternative name for such methods is algorithmic; a 
defined procedure or algorithm is followed.) Automatic methods can be divided 
into three types according to how they are implemented. Printed schemes include 
keys, diagnostic tables (if a definite procedure is adopted for matching the results 
of the unknown with the entries in the table) and numerical codes which are 
becoming quite widely used in bacteriology in conjunction with commercially- 
produced testing kits (see Section XV). 

A second category of automatic identification methods comprises the use of 
mechanical devices. Cowan (1974) gives examples of several devices designed 
either to assist in matching the character states of the unknown organism against 
the entries in a diagnostic table or to reach an identification by successively 
eliminating taxa if their expected character states disagree with those observed. 
None of these devices have been widely adopted. Another mechanical approach is 
the use of punched cards. These can be edge-punched card systems which use one 
card for each taxon; the cards are sorted, usually with the aid of a needle, to 
extract the taxon cards whose expected character states are compatible with the 
states observed. Feature card ("peek-a-boo") systems similarly use one card for 
each character state with holes punched corresponding to the taxa which can show 
this state. As the characteristics of the unknown are observed, the appropriate 
cards are layered on top of each other and the positions of any holes which remain 
unobscured indicate the taxa which remain as possible identifications, Morse 
(1971) and Cowan (1974) refer to several such systems and they are usually 
implementations of the multiple-entry key method of identification, i.e. the 
identification is carried out sequentially as in a key but the sequence of characters 
used is determined by the user. 

Another category of automatic methods comprises those which use a computer. 
These are the methods normally implied by the term "numerical identification". 
Of course, simple numerical methods can be applied without the use of a computer 
and some printed schemes involve simple calculations, but numerical identifi- 
cation methods usually means those which are impracticable to use without a 
computer. 

Although automatic methods in following a defined procedure will always 
produce the same result when considering the same evidence, in actual use the 
scientist will often exercise a degree of judgement. In the computer-assisted 
identification service (Part A) the automatic procedure is controlled and the 
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results are assessed by the bacteriologists responsible for the identifications. It is 
desirable that an automatic identification method should encourage this expert 
contribution. 

Computers have been used to construct identification keys and to choose sets of 
characters for diagnostic tables (Part C), and to generate tables for numerical code 
identification schemes (Robertson and MacLowry, 1975). Programs have been 
described which produce sets of punched cards forming multiple-entry keys 
(Pankhurst and Aitchison, 1975a). In these applications a computer is used to 
construct the identification method but is not required for each specimen iden- 
tified. Computers can also be used to construct schemes which are themselves 
computerised. Gyllenberg and Niemel~i (1975a, b) described the use of a computer 
to form and evaluate the groups to be used in a numerical identification method 
and Darland (1975) described the use of computer-calculated discriminant fun- 
ctions in numerical identification. 

b. Strategies of ident~'cation 
The diagram in Fig. 13 represents the general process of identification divided 

into a series of steps. Different identification methods can be characterized in 
terms of this diagram according to the overall strategy of how they carry out the 
individual steps of the process. 

To identify a specimen some of its properties must be observed and the first step 
is to decide which characters should be determined at the outset. The next step is to 
observe the states of these characters shown by the specimen.The character states 
are next analysed to give some expression of the current situation (a step called 
"inference" in the terminology of Gorry, 1968). The current situation might be 
expressed in simple terms, such as taxa 1,2 and 3 are possible identifications, other 
taxa have been eliminated, or in a more complex numerical representation. An 
identification decision is then made, is it possible to identify the specimen on the 
characters observed so far? (Gyllenberg and Niemel~i, 1975a, include in their 
identification decision the choice between categories such as "intermediate", 
"neighbour" and "outlier" for specimens which cannot be unequivocably iden- 
tified.) If not, the identification may be continued by observing further characters 
and the next step is then to select these. The final step is to review the results of the 
character selection to decide whether to continue. The character selection may 
indicate that none of the remaining characters will advance the identification or 
are so difficult to observe that it is not worthwhile continuing. If this is so, the 
identification is ended with such conclusions as can be drawn from the current 
situation. Alternatively the decision would be to observe the states of the selected 
characters and start another cycle of the identification process. 

Sneath (1969) distinguishes two basic strategies for identification: sequential 
and simultaneous. In sequential methods, exemplified by keys, si~ngle characters 
are considered in a sequence. I n simultaneous methods, such as diagnostic tables, 
a number of characters are observed and their results evaluated simultaneously. In 
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Select initial characters 

Ob h [ serve c aracter states 

1 
Infer current situation 

1 
Is identification complete ? 

l n° 
Select further characters 

1 
<" Should identification continue? ) yes 

Fig. 13. A representation of the process of identification. Defined procedures for carrying out the 
boxed elements form an identification scheme; together with a method of observing the character 
states they form an identification system. 

the representation of Fig. 13 each cycle of the process can be called a stage and 
sequential then means an identification which is carried out in a number of cycles 
of the loop. The term simultaneous refers to the simultaneous observation and 
analysis of a number of characters at a particular stage. The two strategies are 
often used t~gether of course, for a key may contain more than one character at 
each stage and diagnostic tables may be arranged in several stages. Only in a key 
using just one character at each stage is the strategy purely sequential and only in a 
single-stage method using a fixed set of tests is the strategy purely simultaneous. 

Identification methods can be compared in terms of the number of stages used 
and the number of characters used at each stage. The more stages the fewer 
characters needed altogether, because at each stage the best characters can be 
selected to continue the identification. On the other hand, if the observation of the 
characters involves a time delay, the number of stages must be restricted if the total 
time to identify a specimen is not to become too long. Although the sequential and 
simultaneous strategies are often used together, most identification schemes tend 
to one extreme or the other. Keys use many stages with one or two characters at 
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each stage whilst diagnostic tables use few stages with many tests at 
each stage. This is obviously conditioned by the different requirements for 
botanical and zoological work, where keys are widely used, and for microbiology 
where diagnostic tables have been more successful. In microbiology the time delay 
involved in carrying out most tests limits the number of stages. In botany and 
zoology, immediately observable morphological characters are more usual so 
there is no objection to a large number of stages. 

Computer identification methods show the same division between methods 
using many stages for botanical applications (e.g. Morse, 1971 ; Pankhurst and 
Aitchison, 1975b) and those using one or a few stages for microbiology (e.g. 
Gyllenberg and Niemel~i, 1975a; Part A). Some numerical methods of inference 
are not suitable for sequential operation which may require a numerical test 
selection method. Finally, computer methods using many stages require "on- 
line" access to the computer but for methods using a few stages with a time delay 
between stages computer access is required only periodically. 

c. Elements of ident~'cation methods 
Identification methods can also be compared according to how they carry out 

the separate steps shown in Fig. 13. A defined way of carrying out each step can be 
called an element of an identification scheme. Three elements can be considered; 
character selection, inference, and decision. 

Most printed schemes such as keys and diagnostic tables have a fixed character 
selection element. The characters to be used at each stage are printed in the key or 
table and must be determined to continue the identification. This fixed character 
selection can be a disadvantage if one of the characters concerned is unobservable 
because the specimen is damaged or in a particular state of development. Methods 
have been used which are similar in operation to keys but which allow the user a 
completely free choice of the sequence of  characters. These are multiple-entry keys 
and they have been produced in printed form and also as punched card systems. 
Computer methods which operate sequentially also allow a free choice of charac- 
ters and some assist the user in this choice by recommending characters chosen 
numerically (see Part C). Other computer methods require a fixed set of tests to be 
applied to each specimen which, especially in bacteriology, is advantageous if the 
tests are well chosen. Testing procedures in the laboratory can be adapted to these 
tests and the use of test "kits" or automated testing may be possible, lf the method 
is completely rigid in this requirement, however, identification may be delayed if 
one test result is missing on a particular specimen because of a technical failure. 
Thus at least three types of character selection can be distinguished: fixed 
character selection (a given sequence of characters or set of tests), free character 
selection (free choice of characters permitted or minor deviations from a given set 
of characters tolerated), and computer-assisted character selection (results of a 
numerical evaluation of the characters are available to guide the selection). Morse 
(1971, 1975) uses the term "polyclave" for any method which does not have fixed 
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character selection but other authors apply polyclave only to multiple-entry keys. 
The inference element of identification is the evaluation of the observed charac- 

ters to obtain some statement of the current position in the identification. The 
terms sequential and simultaneous can also be used to distinguish different types 
of inference. In sequential inference, some taxa are eliminated completely at some 
stages in the identification. The term simultaneous inference describes the simul- 
taneous comparison of a number of character states with the definitions of a 
number of taxa. Again, the two types of inference are often used together. An 
identification key uses sequential inference, for in moving to a subset of the key  
those taxa not in the subset are eliminated. Diagnostic tables involve simultaneous 
inference, as the results of a number of tests on the specimen are rhatched against 
the entries in the table. If such tables are arranged in stages then sequential 
inference is used as well. Of computer identification methods, some use sequential 
inference (Morse, 1975, calls these elimination methods) whereas others consider 
all the taxa throughout the identification. In most methods, especially keys and 
multi-stage tables, the sequence of inference follows the sequence of the overall 
identification process. Some computer methods, however, operate sequentially 
without using sequential inference (e.g. Part A, where the results of the first 
characters observed may favour one taxon but as further results are considered 
another taxon may finally be given as the identity). 

Another distinction in methods of inference is between monothetic and poly- 
thetic inference (Sneath and Sokal, 1973, Chapter 8; Morse, 1975). In mono- 
thetic inference a single character state can be sufficient to exclude an organism 
from a particular taxon whatever the outcome of other characters. In polythetic 
methods, if the unknown resembles a particular taxon over many characters one 
or two discrepant character states may be accepted. This does not mean that the 
characters are not given different weights but no single character is given an 
overwhelming weight. Many identification keys are monothetic, a single aberrant 
character or error will lead to mis-identification. Diagnostic tables can be poly- 
thetic, as aberrant specimens can often be identified by finding the best match. In 
many tables however some pairs of taxa only differ in a single character and for 
these taxa the table is monothetic. In computer identification, inference is usually 
polythetic but in probability methods special precautions may be needed to avoid 
monothetic inference (Part B). Different types of numerical inference are de- 
scribed in Section XII.d). 

The inference used in identifying a specimen with a key is set by the inference 
method used in constructing the key. The keyitselfmerely determines the outcome 
of this inference method for a particular specimen. Sequential monothetic in- 
ference has almost invariably been used in constructing keys but other methods 
could be used (Part C). 

The decision element in keys and diagnostic tables is made automatically on 
reaching a terminal or final match. The scientist may not necessarily accept the 
automatic decision, if he thinks it is suspect. Alternatively, before reaching a termi- 
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Table 8. Types of data and identification matrices 

285 

Full matrix 

Centroid matrix 

Probability matrix 

Non-probabilistic matrix - 

character states for individuals of each taxon 

co-ordinates of centroid of each taxon 

probabilities of character states for each taxon 

character states for each taxon 

nal or final match an identification to genus level, say, may be sufficiently precise 
for the particular specimen. The characters necessary to complete the identifica- 
tion may be inconvenient and, again, the user may decide not to continue. Com- 
puter methods usually indicate when sufficient evidence has accumulated to iden- 
tify the specimen. I f  these methodsuse numerical character selection they will also 
indicate when none of the additional characters are likely to further the identifi- 
cation. Again, the scientist may choose to override the automatic decisions (e.g. 
Part A). 

How the automatic identification decision is made depends on the type of 
inference used. I f  it is by elimination, an identification is indicated when only one 
taxon remains. Numerical methods of inference require more complex decision 
rules and different methods using the same inference element may differ in their 
decision elements (Part B). 

d. Types of data and identification matrices 
The term identification matrix has been applied to both the information 

available for constructing a method and the information actually used by the 
method (Sneath and Sokal, 1973, chapter 8; Gyllenberg and Niemel~i, 1975a). It is 
clearer to distinguish between these two kinds of  matrix: the information available 
for constructing a method is the data matrix and the information used by the 
method is the identification matrix. The data matrix must be assembled before 
constructing a scheme and, for computer methods, the identification matrix is 
stored in the computer  and used by the identification program. 

Several types of  data and identification matrices can be distinguished as shown 
in Table 8. A full matrix contains for each taxon the character states of  a number of  
individual members of  the taxon. A centroid matrix gives the co-ordinates of  the 
centroid of each taxon in either the original, or transformed, space. Unless 
otherwise specified, a centroid matrix refers to original space and each co-ordinate 
is then the average value for members of the taxon in that character. A probability 
matrix contains for each taxon and character state an estimate of  the probability 
that a member  of  the taxon will show that character state. For  two-state characters 
the probability of only one of the states need be entered. A nonprobabilistic matrix 
gives for each taxon and character the expected character state for the taxon which 
are those shown by all or most of the members of a taxon, other characters are 
recorded as "variable" or "d".  
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Table 9. Types of data and identification matrices required by different identification methods 

Method Minimum Identification 
data mat.rix matrix 

Numerical classification (Oliver and Colwell, 1974) Full 
Similarity with individuals (Ross, 1975) Full 
Exact match with individuals - numerical indices (Section FulP 
XV) 
Discriminant analysis (Sneath and Sokal, 1973; Darland, Full 
1975) 
Taxon-radius in transformed space (Gyllenberg, 1965) Full 

Taxon-radius (Sneath, 1974; Gyllenberg and Niemel~i, 
1975a, b) 
Likelihoods assuming independent characters (Part B) 
Similarity with taxa (Campbell, 1975; Pankhurst, 1975a) 
Taxon elimination (Morse, 1975) 
Keys (Part C) 

Multiple-entry keys - punched cards (Pankhurst and Ait- 
chison, 1975a) 

Diagnostic tables (Part C) 

Centroid 

Probability 
Non-probabilistic 
Non-probabilistic 
Non-probabilistic 
(printed scheme) 
Non-probabilistic 

Non-probabilistic 

Full 
Full 
Full (printed) 

Discriminant func- 
tion coefficients 
Centroid in trans- 
formed space 
Centrold 

Probability 
Non-probabilistic 
Non-probabilistic 
Not applicable 

Not applicable 
(punched card 
scheme) 
Non-probabilistic 
(printed) 

1 Can be produced by simulation from other types of data matrix. 

Only in a full matrix are the character states of  sample individuals available, 
other matrices contain summaries of  the properties of  the taxa. For  two-state 
characters, the centroid and probability matrices are identical (Gyllenberg and 
Niemelii, 1975a). However, continuous quantitative characters are readily repre- 
sented in a centroid matrix but not in a probability matrix, whereas for multistate 
qualitative characters the reverse is tru~ (Part B). 

Identification methods can be characterised by the type of data matrix required 
to construct the method and by the type of identification matrix used by the 
method (Table 9). The range of methods available for a particular problem 
depends on the type of identification matrix available. All the methods are 
available with a full identification matrix because it can always be reduced to one 
of the other types. However, if it is not possible to obtain a full data matrix, one of 
the other forms of data matrix must then be used. As these require only a summary 
of the properties of  each taxon it can be assembled from the literature or 
incomplete records. I f  the information available is sufficient the properties can be 
expressed numerically in a centroid or probability matrix, otherwise only qualita- 
tively in a non-probabilistic matrix. Practical considerations also restrict the 
choices. A full identification matrix will usually be larger than other types of 
matrix thus demanding more computer store and processing time. For  methods 
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such as discriminant analysis or the taxon-radius method in transformed space 
(both constructed from a full data matrix though they do not use a full identifi- 
cation matrix), it may be difficult to adjust the method to allow for new findings. 
Whenever a property needs to be changed, or a new taxon added, the identification 
matrix must be computed again from the data matrix. Finally, in data matrices the 
correlation of characters within taxa is lost so any methods based on data matrices 
cannot take account of these correlations. 

The different methods in Table 9 will only be outlined briefly here. The first 
method is to carry out a numerical classification of reference and unknown 
specimens and identify the unknowns according to the reference specimens with 
which they are clustered; the many methods of numerical classification are then 
available for identification. This approach is obviously more suited to research 
studies (Oliver and Colwell, 1974) but for routine use the amount of computation 
required makes it impracticable. Somewhat similar is to calculate the similarities 
between each unknown and all the reference specimens but not forming a full 
similarity matrix nor carrying out cluster analysis. Ross (1975) describes a 
computer program which incorporates this identification method. 

Another method using a full identification matrix is to seek an exact match 
between the character states of the unknown and those of one of the reference 
specimens. Provided a fixed set of characters, not exceeding 20 or so, is applied to 
all specimens this can be done without a computer by using a numerical code 
identification scheme (see also Section XV). The index of code numbers is a full 
identification matrix as each number represents the particular pattern of a 
reference specimen. It is not always clear from the description of such schemes 
whether the entries in the index refer to actually observed patterns or to patterns 
theoretically derived from some other form of data matrix. Patterns can be easily 
generated from non-probabilistic matrices by allowing for all possible com- 
binations of states for the "variable" entries and it can be done for probability 
matrices too (Young, 1975). For this particular identification method, a full 
identification matrix of simulated specimens can be generated from another form 
of data matrix. Rypka (1975) describes the use of the exact matching identification 
method in a computer program and considers the selection of characters and 
collection of data for this method. 

In discriminant analysis methods computation is carried out once on the full 
data matrix to obtain for each taxon the coefficients of the discriminant functions. 
These coefficients form the identification matrix. Sneath and Sokal (1973) refer to 
a number of applications of this powerful method but point out that application 
to qualitative characters can cause computational difficulties. It has been used in 
microbiology in identifying bacteria on their antibiotic susceptibility, expressed 
quantitatively by measuring the zones of inhibition (Darland, 1975) or by light- 
scattering measurements (Sielaff, Johnson and Matsen, 1976). 

The taxon-radius methods use a geometrical model where each taxon is defined 
by a central point (centroid) and a radius. If the distance between the unknown and 
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the centroid of a taxon is less than the radius of  the taxon the unknown is assigned 
to that taxon. Gyllenberg (1965) describes this method in a transformed space 
obtained by principal component analysis of the full data matrix. Gyllenberg and 
Niemel~i (! 975a, b) apply the model in original space; they set two radii for each 
taxon, the outer radius defines unknowns as "neighbours" of the taxon, and 
permits the recognition of "intermediates" belonging to two or more taxa. Sheath 
(1974) examines some properties of these methods and in particular the effect of 
reducing the number of available characters and the effect of test errors. When the 
taxon-radius model is applied in the original space only a centroid data matrix is 
required. The method then assumes that there is no correlation between the 
characters within taxa, as it treats the taxa as hyperspheres, and it is comparable 
with the calculation of likelihoods assuming independent characters (Part B). 
Sneath and Sokal (1973, Chapter 8) point out the analogy between the taxon- 
radius model in transformed space and discriminant analysis; discriminant 
analysis effectively produces a transformed space in which the taxa are as nearly 
hyperspherical as possible. 

Widely used in the identification of bacteria is to calculate the likelihoods of the 
taxa, assuming the characters are independent within taxa. The likelihood of a 
taxon on a set of character states is defined as the probability of  the character 
~tates for the taxon and is easily calculated from a probability matrix. Methods 
hsing this approach differ in the way they treat the likelihoods in making an 
identification decision (see Part B). 

The entries in a non-probabilistic matrix are the character states of the taxa and 
the similarity of the unknown with each taxon can be measured by similarity 
coefficients. Any "variable" entries in the matrix are treated as "no comparison". 
This has been used by Campbell (1975) and Pankhurst (1975a) in bacteriology and 
botany respectively. Another method applied to non-probabilistic matrices by 
Morse (1971) is to eliminate a taxon if the states of the unknown differ in more than 
a set number of characters. This approach is suitable for sequentialidentification. 

Most work on computer construction of keys and diagnostic tables, (see Part C) 
has involved non-probabilistic data matrices. Pankhurst and Aitchison (1975a) 
describe a computer method for producing punched card multiple-entry keys 
from such matrices. Keys, including most multiple-entry keys, are usually based 
on a monothetic taxon elimination method of inference. Diagnostic tables often 
have no definite rules for their use; if rules are required either the similarity with 
taxa or taxon elimination approach can be used. 

XIII. IDENTIFICATION PERFORMANCE 

a. Evaluating the performance of  identification methods 
Identification is essentially a practical exercise, the aims of which can be simply 

stated. "The objects of any identification scheme are ease and certainty of 
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identification. All other considerations are secondary" (Sneath and Sokal, 1973, 
p. 383). Identification schemes should be evaluated in those terms, especially if 
different methods are to be compared. Commercial identification systems for 
bacteria are now available, each system comprising a testing "ki t"  and its own 
identification scheme. The growing literature on kit evaluation and comparison 
(e.g. Nord, Lindberg and Dahlb~ick, 1974) has brought out some of the general 
problems of evaluating identification methods. 

The obvious way to evaluate performance is to carry out a trial with a number of 
organisms which should be different from the reference organisms used to 
construct the scheme, but separately identified by an independent method, and 
should be representative of the organisms for which the scheme has been designed. 
It is often difficult to meet all these requirements. Because of the general problem 
of assembling sufficient data to construct a scheme, it may be difficult to set aside a 
proportion of the data for use in trials. Establishing the 'true' identity of the trial 
organisms may also be difficult. In bacteriology it is sometimes possible to confirm 
an identification based on biochemical tests by, say serology, but often the only 
independent identification is an assessment by an expert of much the same 
information as used by the identification method under trial. Reference strains 
can be used as their identity will be well-established but they may not be repre- 
sentative of isolates encountered in clinical laboratories either in the proportions 
of strains of the various taxa or in their reactions. 

With a trial completed, an established "true" identity of the organisms and the 
identification obtained by the method under trial, the results must be assessed. 
Some organisms may be identified to the incorrect taxon, obviously a failure, but 
some misidentifications may be more serious than others, in terms of the degree of 
misidentification. Sneath (1974) suggests two possible bases for measuring this; 
firstly the phenetic discrepancy involved in the misidentification (the taxonomic 
significance of the error) and, secondly, the cost to the user. In bacteriology the 
different costs of misidentifications can be easily appreciated but it may be 
difficult to assign numerical values to them. The identification of a strain of 
Salmonella to the wrong subgenus might not be considered important if the 
identification is checked by serology, but misidentification of a Salmonella typhi 
strain as Citrobacterfreundii would be very serious. 

The situation is more complicated if the method returns a "not  identified" 
decision. It is less serious to fail to identify an organism than to identify it 
incorrectly but a measurement of the cost difference would complete the eva- 
luation. Methods which allow several grades of identification are yet more 
complex. Finally there may be organisms in a trial which should be recorded as 
unidentifiable, namely those of taxa not included in the scheme. 

The difficulties in evaluating the performance of a particular method obviously 
affect the comparison of different methods. One method might identify a higher 
proportion of organisms but make more incorrect identifications; different 
methods may identify to different taxonomic levels so while one method identifies 
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a high proportion of organisms but only to genus level, another identifies a lower 
proportion but to species level. Performance can also be altered by changing the 
values of the parameters of the method. To compare different numerical methods 
it may be necessary to distinguish the different elements of the methods shown in 
Fig. 13. One method may give a better performance because of a superior method 
of inference, or a better set of characters, or a more realistic identification matrix. 
To compare different methods of numerical inference, as such, the other elements 
would have to be removed. 

The results of a trial thus present a complex picture (Lapage, 1974). Where 
different methods are available (e.g. commercial kit systems for Enterobacte- 
riaceae), the development of a single "index of performance" following the lines 
suggested by. Sneath (1974), would be very useful. 

b. Predicting the performance of an identification method 
How performance can be predicted, and adjusted, can be illustrated by the 

construction of a diagnostic table, using numerical character selection as reviewed 
in Part C. A parameter of the selection procedure is the minimum number of 
characters required to discriminate between each pair of the taxa. If.this number is 
set to one, then some pairs of taxa will differ in only one character: an aberrant 
result would lead to mis-identification. Setting the number to two prevents an 
organism aberrant in one character being misidentified, but the organism could 
match two taxa equally well. If at least three character differences are required, an 
organism aberrant in only one character can always be identified by its best match. 
The performance of the table, expressed in this rather inexact way, can thus be 
increased by changing that one parameter. 

In the method of Lapage et al. (1973), the identification decision depends on a 
single parameter, the "identification level". A trial on 1028 strains of bacteria 
showed the expected effect that as the identification level was increased fewer 
incorrect identifications were made but more strains were unidentified (Fig. 14). 
In routine use, an identification level of 0.999 was adopted to obtain a low rate of 
misidentifications. In other circumstances a lower level may be preferable to 
identify a higher proportion of strains at the expense of more mistakes. The trial of 
this method also showed that the proportion of strains identified varied from 
taxon to taxon. Much of this variation could be accounted for by considering how 
well the probability matrix discriminated between the taxa (Bascomb et al. 1973; 
Willcox and Lapage, 1975). It is possible to predict for any matrix which par ticular 
taxa are not sufficiently distinguished from the other taxa to ensure a high 
identification rate. 

Another aspect of predicting performance is the estimation of the effect of 
errors. Sneath (1974) distinguishes two types of errors, (a) errors in the reference 
descriptions of taxa and (b) errors in the character states of the unknown 
organisms. Sneath considers the effects of different types and rates of error and in 
particular gives a numerical evaluation of the effect of type (b) errors on taxon- 
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Fig. 14. Effect of changing the value of the identification decision parameter (identification level) on 
the computer identification of 1028 reference strains (Lapage et al., 1973). 

radius identification methods. 
These examples show how performance can be predicted approximately and 

how the expected performance of some methods can be changed according to user- 
requirements. A more exact approach may be possible through statistical discri- 
mination theory (Gower, 1975). Given numerical estimates of the prior pro- 
babilities of the taxa and the costs of misidentifications, the theory provides rules 
of identification which minimize the expected cost of mis-identifications. 

c. Assessing the performance required of an identification method 
Evaluation of performance and the design of identification methods to have a 

particular performance both depend on a statement of the costs of misidentifi- 
cations to the user. Evaluation and prediction of identification performance can 
only be useful if the performance is related to the needs of the user. 

Costs can be visualised in a general way but difficult to quantify. Ifa method is to 
be used in a well-defined situation, statements about the performance required can 
be quite specific. For  example, in phage-typing Pseudomonas aeruginosa a 
biochemical screening procedure may be needed to exclude other species of 
Pseudomonas. It could be specified that very few strains of other species are 
identified as P. aeruginosa (say a maximum 1 in 1000). Strains oftaxa other than P. 
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aeruginosa need not be identified to species, but only excluded, and a proportion of 
P. aeruginosa strains falsely rejected (say 1 in 50) could be tolerated. Given such 
specifications and prior probabilities an identification method could be designed 
to have the required performance yet use as few biochemical tests as possible. In 
contrast, the laboratory providing a reference identification service may have little 
knowledge of the ultimate use of the identifications and it will be difficult to specify 
the performance required. 

To use the costs, of misidentification, estimates of the prior probabilities are 
required. The prior probabilities can be incorporated into present methods of 
numerical identification and effectively weight against the rarer taxa (see Part B). 
Whether this is desirable depends on the type of work being carried out. In some 
situations it might not be desirable because the rarer taxa are precisely those 
it is hoped to detect. In other work it may be more important to identify 
correctly the highest overall proportion of organisms and the occasional misiden- 
tification of a rare taxon is unimportant. In terms of different costs of mis- 
identification, in the first case a high cost is placed on failing to identify a 
member of a rare taxon, but in the second all misidentifications are given about 
the same cost and the method aims at identifying the most frequently occurring 
organisms. The majority of applications of numerical identification have been 
in reference situations, where prior probabilities and the costs of misidentifica- 
tion are difficult to estimate. If numerical methods are applied to more routine 
situations prior probabilities and costs should be taken into account. 

The problems of measuring performance and assessing the performance re- 
quired are unresolved and limitations on the use of numerical methods make it 
difficult to compare different methods. 

X I V .  PRACTICAL LIMITATIONS 

Experience with numerical identification methods (e.g. Lapage et al., 1973; 
Pankhurst, 1975a) shows that an accurate and complete data matrix'is required 
before the methods become useful. A data matrix can be compiled from a number 
of sources (e.g. the literature, laboratory records). Alternatively, specimen or- 
ganisms can be obtained and examined afresh and the results used to form the 
matrix. Pankhurst (1975b) describes the difficulties of both these approaches, in a 
botanical context. In using the literature, descriptive terms were not used con- 
sistently so it was difficult to define consistent character states. There were 
discrepancies in the character states ascribed to a particular taxon even within the 
same publication and about 30 ~ of the data matrix remained uncompleted. By 
examining herbarium specimens afresh the data matrix could be completed and 
some reduction of the inconsistencies achieved but there was a difficulty in 
obtaining sufficient suitable specimens. A major practical limitation in botany 
seems to be the difficulty of constructing a data matrix. This problem indicates a 
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need for further theoretical work in determining just how much data is required 
and how many specimens of each taxon need be examined to obtain a reliable data 
matrix. 

In microbiology there is less difficulty in accumulating data by the second 
approach, Reasonably large numbers of strains can be obtained for most species 
from culture collections, reference laboratories or field isolates and can be fully 
tested in one laboratory, with standard methods, to obtain the results for the data 
matrix. Lapage et al. (1973) found that a data matrix constructed in this way was 
more effective than construction from the literature. The practical limitations on 
numerical methods in microbiology lie in carrying out the identifications. Routine 
laboratories cannot carry out a sufficient number of tests to make numerical 
methods worthwhile except for a few isolates. Furthermore, differences in media 
composition and methods between laboratories means that results obtained in 
routine laboratories are not always suitable for centralised analysis. Commercial 
testing kits (e.g. Nord et al., 1974) and the development of automated testing 
methods (e.g. Hed6n, 1975) should allow more extensive testing of strains with 
methods standardised between laboratories. More use of numerical methods 
would then be possible. The methods of Darland (1975) and Sielaffet al. (1976) for 
the presumptive identification of bacteria on their antibiotic susceptibility illus- 
trate another approach to increasing the contribution of numerical methods to 
routine medical microbiology. 

A second practical aspect is access to a computer, different numerical methods 
have different computer requirements. The computer may be used once only to 
construct, say, a key (often the case in botany and zoology), but other methods 
require 'on-line' computer use for each identification. The third type of method, 
met with in microbiology, requires only periodic use to analyse the results of a set 
of tests read simultaneously. This sort of computer access is becoming quite 
feasible for many laboratories using simple terminals linked to a central computer 
through the public telephone network. Another development is the increasing 
power of 'micro-computers' which could mean that these may become capable of 
numerical identification work. 

The results of numerical identification can be made widely available without 
access to a computer through numerical coding schemes (Section XV). If a fixed 
set of not more than 20 or so characters is observed on all organisms, the results can 
be converted to a numerical code which is looked up in an index. The entries in the 
index give the results of a numerical identification method applied to the pattern of 
character states represented by each code number. The results of numerical 
identification for several hundred of the most commonly expected character 
patterns are then available in printed form (see, for example API, 1977). 

Turning to the prospective role of numerical identification methods, irrespec- 
tive of their theoretical and practical limitations, Morse (1975) concludes that most 
biologists have little need of numerical identification in day-to-day work with 
organisms which are their special interest. The main contribution in botany and 



294 W. R. WILLCOX, S. P. LAPAGE AND B. HOLMES 

zoology is likely to be the production of keys and similar identificatio.n aids. 
Pankhurst (1975b) has constructed about 50 keys by computer, but considers 
(Pankhurst, 1974) that computer constructed keys are not yet as effective as the 
best keys produced by taxonomists. However, computer methods have made a 
valuable contribution in rapidly producing reliable keys either for groups for 
which no key was previously available, or for specialised keys for particular 
ecological situations, seasons of the year, and so on. Morse (1975) also suggests 
that numerical methods might be useful for identifying types of specimen which 
are often regarded as unidentifiable, e.g. incomplete, sterile or immature 
specimens. 

In routine diagnostic microbiology probably most isolates will continue to be 
identified by highly specialised procedures using very small sets of biochemical 
tests, selective media, serology and similar techniques. The reliability of these 
procedures, often relying on presumptive identification based on the source and 
clinical information, has not been systematically investigated. Some isolates will 
occur which cannot be identified by these procedures and to identify these reliably 
without a disproportionate amount of labour is likely to require the use of testing 
kits or automated testing and computer analysis. The potential clinical value of 
identifying such strains has been demonstrated (e.g. Holmes, Lapage and Mal- 
nick, 1975). 

X V .  NUMERICAL CODE IDENTIFICATION SCHEMES 

In numerical code identification schemes a fixed set of characters is observed on 
each unknown organism and the results are converted to a numerical code. The 
code number is looked up in an index which gives the appropriate identification or 
additional characters to complete the identification. If a particular code is not in 
the index the scheme cannot identify that organism. These schemes all relate the 
code numbers to conventional taxonomic names in contrast to proposals for 
replacing taxonomic nomenclature with numerical coding systems, reviewed by 
Sneath and Sokal (1973, p. 412). 

Fey (1959) used seven, two-state, biochemical tests to identify gram-negative 
bacteria. Each test is allotted a score, 5, 10, 20 and so on and the code number for a 
pattern of test results is obtained by adding the scores of the positive tests, as shown 
in Table 10. Baer and Washington (1972) developed Fey's scheme using the same 
coding method while Dito et al. (1972) used a similar coding method in a 10-test 
scheme for identifying Enterobacteriaceae with test scores of 1, 2, 4, 8 etc. The 

Table 10. The numerical coding scheme of Fey (1959) 

Test results + - + -I- -I- - + 
Test scores 320 160 80 40 20 10 5 
Numerical code 320 + 80 + 40 + 20 + 5 = 465 
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Table 11. Codes used by Cowan (1965) for blocks of three tests 

295 

Test results Number Test results Number 
0 + + - 4 

+ 1 + - + 5 
- + - 2 - + + 6 

+ 3 + + + 7 

Table 12. The API numerical coding scheme (API, 1977) 

Test results + - +  + +  - - - +  + + +  - +  - + - - 
Test scores 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 
Numericalcode 5 3 0 4 7 2 l i.e. 

5304721 

iden t i f i ca t ion  scheme p rov ided  wi th  the E n t e r o t u b e  kit  o f  11 tests ( E N C I S E ,  1973) 
uses this  same  cod ing  me t h o d .  

C o w a n  (1965) d iv ided  tests in to  b locks  o f  three  a n d  each b lock  of  resul ts  is 
r epresen ted  by  one  digi t  in  the  f ina l  code n u m b e r .  C o w a n  a l lo t ted  digits  0 to 7 to 
the  eight  poss ib le  c o m b i n a t i o n s  of  results ,  as in  Tab l e  11. F a r m e r  (1970) used a 
s imi lar  m e t h o d  in  a scheme for  r ep resen t ing  bac te r ioc in  a n d  bac t e r iophage  
r eac t ion  pa t t e rn s  b u t  a d i f ferent  way  of  n u m b e r i n g  the eight  pa t te rns .  

The  c o d i n g  sys tem used in  c o n j u n c t i o n  wi th  the A P 1 2 0 E  test kit  (API ,  1977) also 
divides  the  tests in to  b locks  o f  three  b u t  the digit  r ep re sen t ing  each b lock  of  results  
is o b t a i n e d  by a d d i n g  the  scores of  the posi t ive resul ts  in  the  b lock ,  as s h o w n  in  
Tab l e  12. 

M o s t  of  these c o d i n g  schemes have been  descr ibed  w i thou t  a n y  theore t ica l  
basis. A p a t t e r n  of  resul ts  o f  two-s ta te  tests becomes  a b i n a r y  n u m b e r  if one  (for 
plus)  a n d  zero (for m i n u s )  are wri t ten .  D i t o  et al. (1972) give this as the  basis  o f  their  
m e t h o d  which  conve r t s  this b i n a r y  n u m b e r  to a dec imal  n u m b e r .  The  test  scores 

they use are  the  dec ima l  va lues  of  successive b i n a r y  digits,  see Tab l e  13. As the 
n u m b e r  o f  b i n a r y  digi ts  increases,  the conve r s ion  f rom b i n a r y  to dec imal  becomes  

Table 13. Converting test results to decimal and octal numbers 

Test results + - + + + - + 
Binary number 1 0 1 1 1 0 1 
Decimal value of binary digits 64 32 16 8 4 2 1 
Decimal number 64 +16 + 8 + 4 + 1 =93 

Binary number 1 0 1 1 1 0 1 
Octal value of binary digits 1 4 2 1 4 2 1 
Octal number 1 2 + 1 = 3 4+1 = 5 i.e.135 
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ra the r  l a b o r i o u s  a n d  a c o m m o n  t e c h n i q u e  in c o m p u t e r  p r o g r a m m i n g  is to  c o n v e r t  

to an  oc ta l  (base  8) n u m b e r .  Success ive  b locks  o f  th ree  b i n a r y  digi ts  c o n v e r t  to  one  

oc ta l  digi t ,  us ing  the  va lues  s h o w n  in T a b l e  13. A r e a s o n a b l e  t heo re t i ca l  basis  for  

n u m e r i c a l  c o d i n g  schemes  is t hen  the  c o n v e r s i o n  o f  u n w i e l d y  b i n a r y  n u m b e r s  to 

m o r e  c o n v e n i e n t  dec ima l  o r  oc ta l  number s .  P r o v i d e d  the  n u m b e r  o f  tests does  n o t  

exceed  10 o r  so c o n v e r s i o n  to dec ima l  is n o t  d i f f icul t  bu t  c o n v e r s i o n  to  oc ta l  is 

a lways  easier .  T h e  A P I  m e t h o d  (API ,  1977) is s imi lar  to  the  oc ta l  n u m b e r  m e t h o d ,  

excep t  the  test  scores  in each  b lock  are  r eve r sed  which  shou ld  n o t  af fec t  the ease  o f  

us ing  the  scheme.  S o m e  aspec ts  o f  the  p r o d u c t i o n  o f  t he  indices  fo r  n u m e r i c a l  c o d e  

iden t i f i ca t ion  schemes  a re  d iscussed  in Sec t ions  X I I  a n d  X I V  above .  
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