
ALBERT VISSER 

FOUR VALUED SEMANTICS AND THE LIAR* 

1. INTRODUCTION 

The present paper interweaves various themes. Two main themes are four 
valued logic and the Liar Paradox. Each main theme divides into two 
interconnected subthemes: four valued logic into valuation schemes and 
structure theory; the Liar into iterations and access to structures on the 
one hand, and comparison of structures on the other hand. 

Four valued logic has values * (undefined), T, F and TF (overdefined). 
A valuation scheme is a method of evaluating formulas of an essentially 
classical language (say of propositional logic or first order predicate logic) 
in four valued models, in such a way that when the relevant inputs for 
evaluating a formula are classical, then its evaluation is classical. If the 
valuation scheme is truthfunctional one can simply say that it tells us how 
to extend the defmitions of the classical connectives to the four values. Of 
course one could also consider non-classical vocabularly or the possibility 
that some classical connectives turn out to be ambiguous when extended. 
Many of the results of the paper will work also for this more general case. 

A basic constraint on valuation schemes is monotonicity (see Section 2). 
This constraint follows more or less directly from the basic explanation of 
what the truth values are. 

I consider two valuation schemes: one truthfunctional; one non-truth- 
functional. The fast, extended Strong Kleene, is well known from the 
literature. The second, a generalization of Van Fraassen Supervaluations, 
is introduced in the paper. 

The schemes considered have certain important properties, like self- 
duality in the case of Strong Kleene and overlap preservation in the case of 
Van Fraassen Valuations (see Section 2). These properties are studied in 
Section 2 and extensively used in Section 3. It would be nice to have a 
further or alternative explanation of the semantics that would turn, e.g., 
selfduality into a constraint on schemes, but I know of no such explanation. 

One attractive feature of four valued logic for the study of the Liar 
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Paradox is the possibility of making certain intuitive distinctions within one 
single modeL Consider the Liar and the Samesayer, “This sentence is true”. 
Jn Section 3 I present various models in which the Liar is both true and false 
and the Samesayer neither true nor false. The intuitive idea here is that the 
Liar must be true, must be false; the Samesayer need not be true, need not 
be false. It is instructive to compare this way of viewing things to Kripke’s 
(dual) way of drawing these distinctions: for Kripke the Liar cannot be true, 
cannot be false; the Samesayer can be true, can be false. 

Another advantage of four valued logic is technical convenience. The 
structures naturally associated with the four values are certain complete 
lattices. To work with these is in many respects simpler than to work with, 
for example, the structures naturally associated with partial valued logic 
(i.e., ccpo’s, see Section 2). 

A further point is that there are methods of four valued access to partial 
valued fixed points, like Kripke’s maximal intrinsic fixed point (see Section 
3). Thus four valued logic may hold some attraction even for the staunch 
believer that the ultimate form of a ‘solution’ of the Liar is a Kripkean 
partial valued fixed point. 

1 do not offer any definite ‘solution’ of the Liar, rather my aim is first to 
show how to obtain ‘solutions’ by combining the possibilities of four valued 
semantics with recent ideas of Herzberger, Gupta, Belnap and more generally 
to study the problem of access to various salient structures. Secondly I wish 
to compare the various structures so obtained with each other, with some 
Kripkean partial valued fixed points and with certain structures associated 
with the Gupta/Belnap processes. 

2. POUR VALUI:D LOGIC AND ITS STRUCTURES 

The values of four valued logic are structured: 

TF V’, Fl 

T 0 F or alternatively U.1 0 PI 

* 8 

We will call the above complete lattice T = ({T, F, *, TF}, <). Part of what 
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it means to say that the values are structured is that we will only regard 
valuation schemes monotonic in B as acceptable. 

The value * stands for ‘underdefmed’, ‘underspecified’, TF for ‘over- 
defmed’, ‘overspecified’. The intuitive picture behind this nomenclature is 
that Reality + Semantics produce, impose, accumulate truth-values. This is 
in contrast to the picture where Reality + Semantics put constraints on 
admissible truthvalues. In the second picture TF for ‘underdefined’ or 
‘T and Fare both admitted’, * for ‘overdefined’ or ‘T and Fare both 
excluded’ are more apt. 

Four valued logic based on T is an extensive subject, where many basic 
questions are still unanswered. Pioneering studies are Dunn [5, 61 and 
Behrap [ 11. Here I just want to concentrate on two basic aspects: the 
description of the structures, relevant for the study of the paradoxes, that 
can be generated from T and the construction of two four valued valuation 
schemes corresponding to Strong Kleene and Van Fraassen Supervaluations 
in the partial (three valued) case. For reasons of presentation I treat first 
‘Strong Kleene’, then ‘Structures’, then ‘Van Fraassen’. 

2.1. The Strong Kleene Scheme 
The proper generalization of the Strong KIeene Scheme is well known from 
the literature - as is the corresponding notion of validity. One pleasant way 
of introducing it is in terms of truth values as subsets of {T, F) : 

TE [4~J/l iff TE [@] and TE [$I, 

FE [~AJ/] iff FE [@I or FE [J/l, 
TE[#v$] iff TE[$] or TE [$I, 
FE[GvJ/] iff FE [Q] and FE[J/], 

TE [14] iff FE[$], 

FE [lr#~] iff TE [$I, 

T E [Vx$(x)] iff for all m EM, T E [#(m)] , 

FE [Vx#(x)] iff for some m EM, FE [4(m)], 

TE [3x$(x)] iff for some m EM, TE [G(m)], 

FE [X@(x)] iff for all m EM, FE [$(m)]. 
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Here M is a given domain, and we assume for convenience that constants m 
for all rn in M are in the language. 

Note that above interpretation differs from the obvious alternative, 
where we take, e.g., [$J A $1 r := (A (7, 7’) I r E [r$] r, r-’ E [$I r). Here A is 
the usual classical truthfunction. The last interpretation is Weak Kleene 
with respect to $9, Strong Kleene with respect to {T, F}. 

As usual we will not treat truth simpliciter but truth at an assignment or 
truth relative to a model. Assignments map atomic $J into (T, F, *, TF}. 
We write ‘[$I f’ for the Strong Kleene Valuation of $ at J Let <be the 
pointwise induced ordering of Ton assignments. As is easily checked: if 

f<gthen [4lfG [J/k or: Strong Kleene is monotonic in <. 
-Define ( : ): (T, F, *, TF)+ (T, F, *, TF) as: ?:= T; p := F, j := TF, 
TF := *. Defme for wments f: f(4) := f@$ ($I atomic). By an easy 
induction: [$I{ = [$I$ In other words: Strong Kleene is self dual 

Note that . ] r is monotonic but not self dual. [ . ] r does satisfy: 
[$I r f^ < [J/l r 4 . (In Peter Woodruff’s terminology this means that [ . ] r 
preserves overlap.) 

2.2. Structures 

B contains the substructures Te and Ui: 

To: Tv ul: i;\ 
* T F 

To is the usual structure for partial valued logic, Tr the structure for over- 
defined valued logic. We will need a number of basic facts about structures 
generated from To, I,. Clearly Ur is To on its head (or (-) is a dual 
isomorphism between U. and Tr) so we may concentrate on To. 

The treatment of ‘partial structures’ is quite brief; I hope to publish a 
fuller treatment elsewhere. 

2.2.1. Complete Coherent Partial Orders 

2.2.1 .l. DEFINITION. Let D = (D, <) be a po (partial order). 



FOUR VALUED SEMANTICS 185 

(4 A subset X of D is consistent if for all x, y in X there is a z 
inDsuchthatx<z,yGz. 

@I D is a ccpo (complete, coherent partial order) if every 
consistent subset X of D has a supremum uX(0) (or if no 
confusion is possible : LJ X). 

2.2.1.2. FACT. Let D be a ccpo. The following are easily verified: 

(a> U. is a ccpo. 

(b) D has a bottom *. 

(cl Every non ernpfy subset X of D has an infmimum nX(D). 

(4 For every d in D there is a maximal d’ in D such that d < d’. 

2.2.1.3. DEFINITION. Let D = (D, <) be a po. 

(a) a subset X of D is closed under u if for every subset Y of X 
for which u Y exists, IJ YE X. 

(b) 

(cl 

(4 

Let Xbe a subset of D, we write: ‘CX, <Y for <X, < 1 X). 

Let f: D + D. Define: 
Fix (D, f) := (d ED I f(d) = d}, 
Fix (D, f) := (Fix (D, f), G). 
Let A be any set. Defme: 
ti := <oA, G) where f Q g if for all din D, f(d) Q g(d). 
In other words < is the pointwise induced ordering on p. 

2.2.1.4. FACT. Let D = (D, <<) be a ccpo. 

(a) Let X be a subset of D, closed under u then tX, <<) is a ccpo. 

(b) Let f be monotonic on D, then Fix(D, f) is a ccpo. 

(cl Let A be any set, then DA is a ccpo. 

2.2.1.5. DEFINITION. Let D = (D, G) be a ccpo. d in D is called intrinsic 
(inD)ifforalId’inD(d,d’} is consistent (or: u(d, d’} exists.) 

2.2.1.6. FACT. Let D = W, 0 be a ccpo, let Z be the set of intrinsic 
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points, M the set of maximal points. We have: there is a maximal intrinsic 
point iandi=ul=nM. 

Proof: Let d be intrinsic, m maximal. Then u{d, m} exists and 
LI {d, m> = m. Hence d < m. Conclude d <nM. On the other hand nM 
is intrinsic: let e be any element of D. For some maximal m, e < m, hence 
e<m, nM<m so {e, I-M} is consistent. Trivially: nM=ul. Cl 

2.2.1.7. REMARK. The notion of intrinsicness was introduced by Kripke 
[ 1 l] and independently in the context of Computer Science/Recursion 
Theory by Manna and Shamir; see, e.g., [ 121. 

After this excursion into partial valued structures we return to our four 
values. Just the ordering gives too little information, so we consider 
structures that are a bit richer. A consequence is that a new definition of 
T is necessary. 

2.2.2. DEFINITION 

(9 T := ({T, F, *, TF), ( *), G), where G is as usual and 
(F) := T, (p) := F, (i) := TF, (3) := *. 

@I E := (E, ( *), <) is a complete selfdual lattice or csl if 
(E, <) is a complete lattice and ( ^) is a selfdual isomorphism 
ofE,i.e.,forallx,yinE,x~y*~<~andforallxinE, 
f =x. 

(4 

(4 

LetE=(E,(*),<<)beacsl.Define: 
E-U := {x E E 1 x = x} (‘u’ for: Unique Valued), 
E-under:={xEElx<x), 
E-under := (E-under, <<), 
E-over :=(xEEli<x}, 
E-over := (E-over, 2). 
For x in E: 
x-under := (y E E-under 1 y < x), 
x-under : = (x-under, < >, 
x-over := {y EE-over 1 y ax}, 
x-over := (x-over, >). 

E = (E, ( ^ ), 4) is a rich csl or rcsl iff E is a csl and: 
dl : for every x in E-under there is a u in E-U with x G u. 
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ds: for every y in E, y = u y-under(E). 

(4 Let E = (E, ( ^), G) be a csl, A a set, then EA := MA, (^), 
G), where (f)(a) := f@, and < is the pointwise induced 
ordering. 

(0 Let E = (E, ( -), =Ge a csl, fmonotonic on E and selfdual 
on E (i.e., f(i) = f(x)), then Fix (E, f) := (x E E I f(x) = x} 
and Fix(E, f) := (Fix(E, f), ( -), G). 

2.2.3. FACT 

(4 

@I 

T is a rcsl. 

L.etE=(E,(~),<)beacsl,Aaset.ThenEAisacsl. 
If E is a rcsl then EA is a rcsl. 

(4 Let E = (E, ( ^ ), <) be a csl, f monotonic and selfdual on E. 
Then Fix (E, f) is a csl. 

Proof: The only problematic point is to show that Fix(E, f) is a com- 
plete lattice. One takes, e.g., for Xa set of fixed points off: uX(Fix(E, f)) 
:= (uX(E))~. Here ( )f is defined in Section 3.3.3. (uX(E))r will be the 
least fMed point above the elements of X Cl 

2.2.4. FACT. Let E = (E, (^), <) be a csl. Then 

(4 y E E-under and x < y =$x E E-under, 
y E E-over and x>y*xEE-over, 
u,vEE-U and u<v*u=v. 

@I E-under, E-over, are ccpo’s. 

(cl Let x E E, then x-under, x-over are ccpo’s. 

Proof: (a) is routine, (c) follows from (b). 
(b) Let X be consistent in E-under. We show uX(E) < us) = n&E), 

i.e., for every x in X, y in X, x < y. Consider x in X, y in X, then x, j E X. 
X is consistent in E-under, so there is a z in E-under such that x Gz, 3 Q z. 
Hence x Q z < i < y. As is easily seen: uX(E-under) = uX(E). 0 

2.2.5. DEFINITION. Peter Woodruff made the nice discovery that a 
natural generalization of consistency in a ccpo is overlap in a csl. 
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Let E = (E, (^), <) be a csl. 

(4 x overlapsy: ox oy 

: *x<j. 

We write x 0 Y for: for ally E Y, x 0 y. 
Note the existence of the dual notion: x underlaps y: * x < y. 

@I x is overlap Y-intrinsic: 0 x 0 Y. 

(cl xA :=xni. 
(OnT: TA=T,FA=F,*A=TFA=*.) 

2.2.6. FACT. Under the conditions of Section 2.2.5: 

(4 

@I 

cc> 

Cd) 

(e) 

(0 

xoy*yox, 

z~x,xoy*zoy, 

x o x * x in E-under, 

if x, y in E-under, then (x o y * {x, y> is consistent in 
E-under), 

x 0 Y *x 0 @Y(E)), 

x o (y-under) if x o y, in case E is rich we have: if and only 
if, 

(8) (x in y-under and x o (y-under)) *x is intrinsic in y-under, 

O-4 x o i and x is the maximal z such that x o z, 

(9 xA is the maximal intrinsic point in x-under. 

noof: (a), 61, Cc), (e), (h) are routine, (f) follows from (e), (g) from (d). 
(d) Suppose x, y are in E-under. First assume x o y, i.e., x < j. Clearly 

x<xuy,y<xuy.Moreoverx<x,xGj,y<j,y<x,hence 
x u y < X n 3. But i n y = a Conclude x LJ y is in E-under and {x, y} 
is consistent in E-under. Secondly if (x, y} is consistent in E-under, then for 
some z in E-under x < ze, hence x <z =G i < 3. 

(i) xnx<xux=xnx,soxnxisinE-under,hencexnxisin 
x-under.xnx<xsoxnioxandxnxo(x-under)byf. Byg: xniis 
intrinsic in x-under. Finally if y is intrinsic in x-under then by h, y < x, 
hencey<xni. cl 
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2.2.7. FACT. Let E = (E, (^), <) be a rcsl, then 

(4 

tb) 

For y in E: y = ny-over (E). 

Let x be in E-under, y in E-over, x < y. Then there is a u in 
E-Uwithx<u<y. 

(cl Define x-up: = {u E E-U I u > x}, x-down: = (u E E-U I 
u<x}. 
We have: 
x E E-under =$x = nx-up (E), 
x E E-over *x = ux-down (E). 

B-005 (a) y = 5 = (uy-under (E))^ = ny-over (E). 
(b) x<xuy<inydyandx~=iny,soxujEE-under, 

hencethereisauinE-UsuchthatxtJy<u,andu=ti<a=xny. 
Conclude x < u < y. 

(c) We treat, e.g., the x-up case: suppose x E E-under. x = nx-over (E) 
by (a). Clearly x-up C_ x-over. Moreover by (b): for every y in x-over there is 
a u in E-U with x < u < y. Hence x-up minorizes x-over. Conclude: 
n x-up (E) = n x-over (E). a 

2.2.8. U-REPRESENTATION THEOREM. Let E be a rcsl then: 

(4 

(b) 

(c) 

x E E-under iff x = nS(E) for some non empty S C_ E-U. 

x E E-over iffx = u S(E) for some non empty S E E-U. 

for any x in E: 

x=u{nS(E)ISLE-U,Sf@,nS(E)Gx}(E), 

=n{uS(E)ISCE-U,Sf$4,uS(E)>x}(E). 

Proof: (a) and (b) are directly from 2.2.7 (c), the fact that S is non 
empty follows from 2.2.2 (d,). (c) rephrases 2.2.2 (d2) and 2.2.7 (a) using 

6) and @I. a 

In the present paper I don’t take a stand on what a valuation scheme for 
four valued logic should be. Two interesting restrictions are selfduality, and 
overlap preyation. Remember that for f from a csl to a csl: f is selfdual 
iff f(i) = f(x) and that f preserves overlap iff for all x, y in E, x o y * 
f(x) of(y). One may show: f preserves overlap iff f(i) <fB 
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The following result partly describes the world in which the various 
possible schemes live. 

2.2.9. DEFINITION. Let El = (El, ( ^), G), E2 = (Ez, ( ^), <) be csl’s. 
We conveniently confuse ( *), < on El and ( ^), < on E2. Define: 
Mon(El, E2) := (fl f monotonic from El to E,} and Mon(EI, EJ := 
(Mon(E*, E,), ( -), G), where f(x) := f@and Q is the pointwise induced 
ordering. 

2.2.10. THEOREM. Let El = (El, ( -), G), E2 = (Ez, ( ^), <) be csl’s. 
We have 

(4 Mon(EI, E,) is a csl. 

(b) f is in Mon(Er , E&under * f is overlap preserving. 

(cl f = f * f is selfdual. 

(4 Suppose E2 is a rcsl, then Mon(Er , Es) is a rcsl. 

Proof (sketch). Only (d) is not immediate. 
Clearly (Mon(Er, E,), =G) is a complete lattice. We check 2.2.2 (d,, ds): 

(ds): Let e EE,, x E Es-under. Define g,, X: El + E2 as follows: 

g,Je’) := 
i 

x if e < e’, 

* otherwise. 

Clearly g,,, is monotonic and overlap preserving, i.e., g&g’) G gz), 
or: g,,, E Mon(Er, E&under. 

Consider any fin Mon(Ei, E,), we have, E2 being rich: 

f = uk,,,If(ed = e2, 

x E E+nder, x < e2} (Mon(Er , E,)). 

Hence: f = uf-under (Mon(Er, E2)). 

(dr): It would be sufficient to show that every g in Mon (El, E2)-under 
that is not selfdual can be extended to a g’ in Mon(Er, E,)-under with 
g < g’. I give a slightly more elaborate construction that is a bit more 
informative. 

Consider X := {A’ C El 1 for every x, y in X nor i < v}. Using Zorn’s 
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Lemma we can find a maximal X,-, in X. One may show: (Xe, X0, Er-U) is 
a partition of E,. 

Consider any fin Mon(EI, E2 )-under, define g: El + E2 by: 

f(e) 

L 

if f? Exe 

gie) := f3 ifeE& 

someuEE*-U,u>f(e) ifeEEr-U. 

If e E El-U, then f(e) = f(C) < f*, hence f(e) E E+nder; E2 is rich, 
so certainly there is a u E E2-CJ with u > f(e). 

Clearly g > f and by inspecting cases one shows: g is monotonic and 
selfdual, i.e., g E Mon(Er, Ez)-II. 0 

We have seen that csl is closed under EA for set A and Fix(E, f) for f 
monotonic and selfdual on E. The following result shows that conversely 
csl can be generated from T using these operations (up to isomorphism). 

2.2.11. FACT. Let E = (E, ( ^), <) be a csl, then there is an F, monotonic 
and selfdual on BE such that E is isomorphic to Fix(TE, F). 

Proof (sketch). Define G: E + (T, F, *, TF}E as follows: 

G(X)(Y) := 
T if y < x, 

F ify$k 

(If none of the conditions obtain the value is *, ifbotkbtain TF.) 
We have: (x1 < x2 * G(x,) < G(x,)) and G(i) = G(x). Hence G embeds 

E in TE. Define F1, F,: (T, F, *, TF}E + {T, F, *, TF}E as follows: 

F,(f) := G(u (x E E I G(x) G f > (EN, 

F*(f) := G(n(x E E I G(x) 2 f J(E)). 

F,, F2 are monotonic fromTE to BE and F1 < F2. F*(f) = Fa, so F, is 
in Mon(IrE, VE)-under. As is easily shown E is isomorphic to Fix(TE, F,), 
Fix(TE, Fz). If we extend F, carefully to a selfdual F we get the desired 
result. 

Let X0 be a subset of (T, F, *, TFIE as constructed in the proof of 
2.2.10. Define F by: 
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Fr(e) ifeEXe or (eE {T, F}E and F,(e)E {T,F}E), 
^ 

F(e) := F2(e) if e E X0 

some z, in (T, F}E, v >F,(e), v f e, if e E (T, F}E and 

F,(e) Q {T, FjE. 

We find: FE U-Mon(TE, TE) or F is selfdual and monotonic and: E is 
isomorphic to Fix(TE, F). c 

2.3. Van Fraassen Valuations 

For this section let E = (E, ( ^), <) be a fixed rcsl and let Zf = (H, ( ^), <) 
be a fixed csl. n, u without further comment will be n (E), IJ (E) or 
rl (H), u (H). ‘u’, ‘u “, ‘v’ will range over E-U, ‘S’, ‘S,‘, ‘S” will range over 
non empty subsets of E-U. 

Let g: E-U + H-U; g is our analogue of a classical valuation scheme. 
The Van Fraassen Problem is to extend g to g defined on all of E in a 

natural way. 
Some plausible constraints are: 

(4 E must be defined in terms of the structure of E, H. 

(b) g must be monotonic. 

Cc) g” must correspond to the obvious choice for a Van Fraassen 
Valuation on E-under, E-over, i.e.: 
for x in E-under: g”(x) = n {g(u) I u > x>, 
for x in E-over : g”(x) = u {g(u) I u G x}. 

Let us look at an obvious proposal. Consider any y in E. y = uy-under. 
Constraint (c) tells us what g” is going to be on elements of y-under. So why 
not take: g”(y) := ug((y-under)? 

Defme: S is closed iff S = {u ( u > nS>. Note that it follows that S is 
closed iff S = (U ) u Q US}. Note also that the U-Representation Theorem 
2.2.8 could be rewritten in terms of closed S. 

Now we are in a position to rewrite our definition of g”: 

g”(y) = u {ng(x-up) I x E y-under} 

=u{ngSISclosed,nS<y}. 

Can we drop the condition that S is closed? No. 
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E&QvjPm: TakeE:=TborP~),H:= T.E-Uwillbe{~,~]~Po*P1~. 
L&G:= [Poh~r] c, i.e., the classical valuation function such that for 
assignments fin {T, F]C Po*~I), [PI A ps] f is the truthvalue of (pr A ps) at 
f. If we took G(g) := u{ngS I nS < g}, we would have G(F) = TF; for 
n# g ;, ni;, “,I < F and ng{;} = T, ng{F, “,} = F. Note that the 
example is blocked for closed S. cl 

Clearly there is a dual to the definition of g”: 

g”(y) :=n(ugSISclosed, uS>y}. 

2.3.1. FACT 

(4 g, g” are monotonic. 

(b) x E E-under * g(x) = g”(x) = ng(x-up). 

(c) 

6-Q 

x E E-over *i(x) = g”(x) = u g(x-down). 

i?(u) = g”(u) = g(u). 

i?(x) G ax>. 

g(x) = gi). 

Let HI := ({S I S closed, nS < x), C_ ), then for every S, S’ 
minimal in Hr : S f S’ * S n S’ = 8. Moreover g”(x) = 
u{ngSISminimalinH1}. 

O-4 LetHs:=({SISclosed,uS>x},E),thenforeveryS,S’ 
minimalinHs:S#S’=*S~S’=@Moreover~(x)= 
n {u gS I S minimal in Hs} . 

Proof: (a) and (f) are easy, (c) is dual to (b), (d) follows from (b), (h) is 
dual to (g). 

(b) Suppose x E E-under. x-up is closed, nx-up = x. Moreover for every 
closed S with nS < x, clearly x-up E S. Hence ngS < ng(x-up). Conclude 
g(x) = ng(x-up). 

Consider u E x-up. {u> is closed, x < U(U). So g(x-up) _C @gS I S closed, 
x < US}. Moreover if S is closed and x < US then there is a u such that 
x Q u < u S. Hence u E x-up, and u ES (S being closed). It follows that 
g(u) < ugS. So g(x-up) minorizes (ugS 1 S closed, US > x}. Hence 
Z(x) = r-l g(x-up). 
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(e) It is sufficient to show that for S, S’ closed with nS < x < US’: 
ngS<ugS’.FromnSGuS’wehaveforsomeu:nS<u<uS’,hence 
by closedness: u ES n S’. Conclude ngS Q g(u) Q ugS’. 

(f) Consider the maximal elements m of x-under. Clearly m-up is a 
minimal element of Ht. Above every y in x-under there is a maximal m in 
x-under, hence below every closed S’ with nS’ < x there is a minimal 
closed S C_ S’ with n S < x. Clearly ngS > ngS’. Hence g”(x) = u(ngS I S 
minimal in HI}. 

Consider S, S’ minimal in Ht S # S’. If u were in S and in S’ then 
nS < u > t-6’. So nS, nS’ is consistent in E-under, and thus in x-under, 
hence u {nS, n S’} is in x-under. But nS, nS’ were maximal and distinct 
in x-under. Contradiction. 0 

2.3.2. EXAMPLE. We show that not generally g”= z. 
(a) TakeE=U@oVPI],R:= T,g := [po*pI]c. 

Calculation of g(&) 
The minimal closed S with nS < & are: 

so = t’,, ;,, Sl = c;, “,}. $0 = gs1 = iT, F). 

So ng& = ngSl = *. Hence i(&) = *. 

Calculation of g”(&) 
The minimal closed S such that US > (&) are: 

SA = {F, ,‘}, S; = {“,, s}. (Note that Si, S,! have at least 
one element in common as 
should be.) 

gS6 = gSi = (T, F), henceug$ = ugSi = TF. 

Conclude &&) = TF. 

Remarks 
(1) g := [PO *PI]’ and g := [PO ++ lpr]’ are the only examples in two 

propositional variables where g, g” differ. 
(2) The usual Strong Kleene paraphrases for ++ differ on & : 

[(lp,, vpd~(m vpo)](&) = T, 

[(PO A PI> v (TO A -v-41 (&) = F. 
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(b) Let E := ~~p~~P~pP2~, H := 8, 

g := [(PO *pr)hpJc. We have: 

This illustrates that g, 2 may differ even if one of them has a definite value. 

2.3.3. REMARI$ Combining 2.3-l (a, e, f) we see that i, g” are in 
Mon(E, If) and iv= g” and thus f < g or g E Mon(E, H)under. Example 
2.3.2 shows i # g and hence f is not selfdual. Suppose His rich, then by 
2.2.10 there is a selfdual g* with g” < g* < E. Note however that such g* 
need not be very ‘natural’. 

3. THE LIAR: PROPOSALS AND COMPARISONS 

First I want to give some examples of the kind of csl/rcsl and the kind of 
transition function I will be interested in. The examples are just a small 
sample of the possibilities one could think of, but for our purposes they 
seem to provide sufficiently rich and illustrative material. 

3.1. The First Example 

Let PJ be the standard model of the natural numbers with zero, successor, 
addition, multiplication and exponentiation. (More generally we could 
consider an acceptable structure in the sense of Moschovakis (see 
Moschovakis [ 161). Let L be the language of N with one predicate symbol 
‘True’ added. We may assume that the sentences of L are coded in some 
standard way in the natural numbers. The fact that in N we can represent a 
substitution function will allow us to explain quantification into contexts 
involving truth. We write, e.g., ‘Vx True@(x)) for ‘Vx True(subst(num(x), 
$(ne) ))‘. Here ‘num’ stands for the (representation of) the function taking 
a number to the numerical code of its numeral, and ‘@(voy stands for the 
numeral of the code of #(no). For details see, e.g., Smoryllski [17]. 

Let Q be in TN, where N is the set of natural numbers. N(Q) is the four 
valued model we get from N by adding Q as the interpretation of ‘True’. 
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Let us write ‘$ zQ $’ if the formulas 4, $ have the same truth value in 
N(Q) for all assignments, and ‘$ = $2 if 9 ho J/ for all Q in TN. Here and 
elsewhere I suppress the mention of the valuation scheme: the facts stated 
will hold for any of the schemes we have considered. One can prove for 
models N(Q) a fixed point theorem: for every I&(X, j) in L there is a I#J($) 
in L such that O(j) N r&$(j), j). For example, we can produce a sentence 
L such that L 2~ TTrue(L) and a formula B(x) such that B(x) 2: ((Vy < 
x True (B(y))) A (3 z 1 True (B(z)))). 

The transition functions will correspond to the chosen valuation schemes. 
Some examples are: 

(a) FN: TN + TN with: 

I the Strong Kleene Valuation of 4 in N(Q) in 

FN(Q)W = 
case n is the code of sentence 4. 

F if n is not the code of a sentence. 

As is easily seen FN is monotonic from TN to TN. Moreover FN is selfdual, 
i.e., F&O) = F,(Q)- 

(b) & and GN from TN to TN induced by GN: {T, F}N + {T, F}N, 
where for Q E {T, F}N: 

the Classical Valuation of 4 in N(Q) in case 

GN@)(~) = 
n is the code of a sentence 9. 

F if n is not the code of a sentence. 

&r, & are monotonic, g;v is Overlap preserving, EN is underlap preserving. 

3.2. The Second Example 

It would be nice to have examples that are purely in propositional logic. 
But how could that be: truth is essential in the construction of the Liar 
and truth is a predicate. That may be, but the effect of the Liar can be 
achieved in several ways. One of them is to employ the idea of stipulative 
definitions 

Those familiar with recursion theory would not balk at the following 
definition of + : 

x+y = z:~(y=OhX=Z)V3uV(y=u’AZ= 

v’ A x + u = v). 
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I want to exploit the extreme of this form of definition and consider foor 
example : 

I:‘& a: a, b: Iv b. 

Here, e.g., ‘i’ is stipulated to have - in some sense - the same meaning as 
‘1 I’. Note that in the stipulation ‘I’ is introduced as an atomic sentence, 
not as a name of a sentence. A series of interconnected stipulations as 
above I will call a stipulation list. 

We could work out the idea for a language also involving the usual 
propositional atoms, but it is simpler and for our purposes sufficient not 
to do this. 

Let us implement the idea, Let A be a set and let L(A) be the minimal 
class such that A C_ L(A), 1 E L(A) and if I$, $ are in L(A) then (# A JI), 
($ v JI) and (3) are in L(A). (Sometimes I write, e.g., ‘($ + $)‘; this will 
just stand for ‘(14 v J/)‘.) A stipulation list S is a function from A to L(A). 
To represent the idea of stipulation we must specify the appropriate tran- 
sition functions: 

(3 FS : TA + UA is given by 

Fdf)(a) = PWI f 
= the Strong Kleene Valuation of S(a) at 5 

(b) 

Fs is monotonic and selfdual. 

gs, & are the Van Fraassen transition functions induced 
by Gs: 

(T, F}A + (T, F}A with 

G(f)(a) = LWcf 
= the Classical Valuation of s(a) at fi 

We write ‘q5 =uf $’ if 4, J/ have the same truthvalue at f; ‘q3 * J/’ if for all 
fin TA 4 zf J/. If f is a fixed point of Fs, & or 6~ (depending on the 
chosen scheme) then we have a *f S(a) for any a EA. 

It is more or less routine to check that examples in terms of stipulations 
can always be translated into examples in terms of truth + selfreference. 
E.g., examples given for finite A can be translated to examples involving 
MQ). 
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3.2.1. SUBEXAMPLE 

TF Let S be: a: (a v (b A 1 b)) A b, 

AL 
b: (b A (a v -a)) v a. 

Then Fix(?& bj, Fs) is as shown, a non distributive 
T F F lattice. 

T\pF 
* 

3.2.2. SUBEXAMPLE 

TF Let S be a: la, b: lb, c: ((a cf b) * c). 
TF Then Fix(Tbh*cj, &) is as shown; a lattice, 
TF but not a csl. 

TF 
TF 

a’*\$ 
TF * 

* 
0 

The next ingredient we need is some insight in iterations of the transition 
functions. 

3.3. The Basics of Iterations 

L&E= (E,(-),<)beacsl. 

3.3.1. DEFINITION. Let (c,),<~ be an ordinal sequence of elements of 
E, X a limit ordinal. 
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3.3.2. DEFINITION. Let f be monotonic on E, x E E. Define the upper 
fundamental sequence from x based on f as follows: 

(x)0 := x, 

(x)* +l : = f((x)&), 

(x)” := limmtp (x)“. 

Define the lower fundamental sequence from x based on f as follows: 

(x)0 := x, 

wa+1 := f((x)(Y), 

(x)x := hmi;f (x),. 

If we consider different fundamental sequences based on, say, g and h, we 
write, e.g., War(g), W&). 

3.3.3. THEOREM. Under the conditions of 3.3.2 

(4 Let K be (max(card(E), He))+. For some ‘y < K, f((x)r) = 
(x),, similarly for some S < K, f((x)6) = (x)~. We write (x)r 
or (x)- for (x)~ and (x)~ or (x)” for (x)s. (Actually one may 
show that if E = HA, H a csl, then we can take: K = 

(max(card@!), card(A), Ho))+. This last point is essentially 
due to Vann McGee). 

(b) 
cc> 

c& G (x)” . 
Suppose that E-under is closed under f, i.e. that if y E E- 
under then f(y) E E-under. Then (x)~ is in E-under if 
x E E-under. Similarly in case E-over is closed under f and x 
is in E-over, then (x)” is in E-over. 

Proof: (a) (x), considered as a function from K to E cannot be injective, 
henceforsome~,n+~with~#O,n<K,n-l-e<K,WehaVe(X),= 
wq+e- One easily shows that (x),+e, = n,<,G,+e (x)~. Let Y := 77 + 00. 
Clearly v < K, K being an infinite successor cardinal. Consider a with 77 < 
a G rl + 8, we have (x)~ G (x)~, hence (XL+r = fl(x),) <f(h),) = (x)~+~. 
By transfinite induction one shows: for OL with n < (Y < 9 -t 8 we have 
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(x)v+, Q (x)~. Hence (~)~+r < (x)“. Again by transfmite induction one 
shows that the sequence will be descending from v on. Finally by a 
cardinality argument as above it is proved that for some 7 with v < 7 < K, 

f((x)r) = (x)y 
The argument for (xx)* is dual. 
(b) By transfinite induction. 
(c) Using the fact that E-under is a ccpo one shows that E-under is 

closed under liminfs of sequences in E-under. The rest of the argument is 
by transfinite induction. 

The argument for E-over is dual. 0 

3.3.4. FACT. Under the conditions of 3.3.2: 

(4 x < y and f < g * (x)f G (y)s and (x)~ < (y)‘. 

(b) ((x)f)f = ((xMf = (x)f and ((#If = Wf>f = Hf. 

3.3.5. FACT. Under the conditions of 3.3.2, let ( ) be as in 2.2.9. 

(4 (XMZ) = WYfK, WV> = &MfX. 

(b) Of=( )i,(-)f=( 9. 

(4 If f is overlap preserving then ( )f is overlap preserving. 

ProojI (a) By transfinite induction, using that liminf is dual to lhsup. 

(b) From (a). 
(4 ( If G ( Ii< ( ji = ( “1s. 0 

3.4. The Liar: Introductory Remarks 

3.3 provides us with a powerful method of access to fixed points, but of 
course not all fmed points are equally interesting in connection with the 
Liar. Certainly fmed points that can be reached from interesting starting 
points are interesting. 

Two eminently salient starting points are bottom and top. From bottom 
we go up to Kripke’s minimal fmed point, from top we go down to its dual, 
the maximal fixed point (both for the Strong Kleene and for the two Van 
Fraassen valuations). The maximal fixed point may be interesting from the 
philosophical point of view. Technically speaking it has nothing new to 
offer over the minimal one. A further idea is to ‘load’ the starting point 
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with certain properties that are desirable in the fmed point and are preserved 
in the process. Such is Dowden’s plan (see Dowden [4]). He takes ‘every- 
thing undefined, except the Liar. The Liar both true and false’ as starting 
point. This procedure seems to me rather ad hoc: intuitive distinctions are 
supposed to roll out of the process, not to be preprogrammed. Moreover 
there are many ‘alphabetic’ variants of the Liar and many paradoxical 
sentences of different design (in fact the set of sentences paradoxical in 
Kripke’s sense over the natural numbers as in 3.1 is complete II: - in con- 
trast to the set of ungrounded sentences which is complete Z:). 

Question. What happens if we start from ‘Kripke Paradoxical both true 
and false, rest undefined’? 

The idea I will consider in this paper is access of fmed points from 
starting points that are themselves the end product of certain variants of 
Gupta/Belnap processes. (I take it that a Herzberger process most naturally 
starts with ‘all false’; I wili not consider such processes here.) In outline the 
idea is this: we start iterating ‘simultaneously’ on all unique valued points. 
We iterate over limit ordinals by taking some preferred kind of limit. In the 
‘end’ we take the intersection of the limits of the sequences thus obtained. 
This gives us an object that summarizes certain stable features common to 
all these sequences. Then we use this object as starting point for a final 
iteration to a fixed point. 

I will not be exclusively interested in fmed points. After all it could very 
well be the iterative process itself that best reflects our semantic under- 
standing. Even if this process leads to a fmed point it could be that this 
fmed point only summarizes certain aspects of the ‘solution’ proper. More 
over, suppose forceful philosophical arguments back up some iterative 
process that does not lead to a fixed point. Is the fixed point intuition 
strong enough to be the sole reason to reject this process? It seems to me 
that this is not the case, especially when the process would elucidate how 
the fixed point intuition could arise. 

Let me briefly review the basic features of the variants of Gupta/Belnap 
processes we will be considering. 

3.4.1. Starting Points 

The basic intention in Semantics is to get Unique Valued or Classical Inter- 
pretations. We start our process by having things as they ought to be at least 
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in this respect. We solve the problem of arbitrariness by ‘quantifying out’, 
i.e., by considering all Unique Valued starting points. 

3.4.2. Stages and Transition Functions 

Our stages will be generally four valued. So we will need four valued 
transition functions. We may opt for, e.g., the Strong Kleene or one of the 
Van Fraassen transition functions. We may choose to accumulate truth- 
values in the transition: with every transition function fan accumulating 
one viz. f u id is naturally associated. 

3.43. Limits 

What is stable is our process should be preserved. In technical language, the 
limits we choose should be between the liminf and the limsup. 

Gupta chooses to adapt the unstable to the starting point, Belnap solves 
the problem by again quantifying out. Both succeed in having all the stages 
classical. I want to consider the minimal choice liminf and the maximal one 
hmsup. ‘Liminf’ corresponds to the idea that at the limit we simply don’t 
get the necessary information to give the unstable sentences a value, hence 
we leave them undefined. ‘Limsup’ follows the intuition that - on the 
contrary - the alternating character of the unstable elements tells us that 
these are both true and false (as far as T, F alternations are concerned). 

3.44. Endevaluation 

As endevaluation we take some appropriate limit of the processes correspon- 
ding to the different starting points and then take the intersection of all 
these limits. (This last step corresponds to the idea that something is stably 
true if it is stably true for all starting points). 

3.4.5. Intuitive Distinctions 

Intuitive distinctions can be made in terms of the processes or in terms of 
the endevaluations. The four valued endevaluations do rather well: they 
yield distinctions but do not proliferate them to where we have no intuitions 
anyway. For example we can get the Liar both true and false (‘paradoxical’) 
and the Samesayer (‘This sentence is true’) undefined (‘need not be true, 
need not be false’). 
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3 S. Three Possibilities 

LetE=(E,(*),<)bearcsl. 

3.5.1. Liminf 

Let f be a monotonic transition function such that E-under is closed under f. 
We consider the processes ((u),-JolEoN for u in E-U. 

Clearly E-under is closed under the (u)&, hence the fured points (u), are 
in E-under. Define: 

j. = n{(u), 1 u E E-U}, j := (j&. 

We have: je < (u),, hence j = (j& G ((u)~)~) = (u), 
Conclude j < je. (In fact j = n{(u), I u E E- V} (Fix@+-under, f))). 

j,-, - and hence j - is consistent with every fured point a off in E-under: 
pick any fHed point a in E-under; for some u in E-U, u > a, so (u), > 
(a).. = a. Also (u), > jo. H ence j0 is consistent with every underdefined 
fured point a. It follows that j is an intrinsic fMed point, i.e., intrinsic in 
Fix@-under, f). 

3.5.1.1. EXAMPLE. LetSbe(u:a),(b:av~a),(c:~c~~d),(d:~cv 
14, (e: e v le). E :=+b~b*C*d~e~, f := Fs. 

We have: [b]jO = T, [b] j = *. Hence j< je. [c] j = [d] j = *, but 
[c] i = F, [d] i = T. (H ence i is the maximal intrinsic fured point, i.e., the 
maximal intrinsic point in Fix(E-under, f).) Here j Q i. (One can give 
similar examples for the Van Fraassen case.) Finally e is * at the minimal 
fured point, but [e] j = T. Hence j is not minimal. 

In case our stipulation list is finite we can often simplify the description 
of salient points or give faster procedures to calculate these. For example: 

3.5.1.2. LITTLE THEOREM. Let E be finite. Suppose E-U is closed 
under f. A finite cycle C is a set of elements co, . . . , ck -, in E-U such that 
ci +i = f(q) and co = f(ck -i). An element of E- U is finitely cycfic if it is on 
some finite cycle. 

Call the set of finitely cyclic elements FC. We have: j = (n FC),. 
Proof: Consider c on cycle C. We have: (c)- = (n C), < n C < c, hence 

j. G n FC and j < (n FC),. On the other hand for any u in E-U: (u).. = 
(c), for some c in FC. 
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Hence: (nFC), G (c), = (u),. 
Conclude (nFC), < je and (nFC), = ((nFC),), <‘(j& = j. 

3.52. Limsup 

Let f be monotonic, such that for x in E-under U E-over f(i) = fG>. It 
follows that E-under and E-oEr are closed under f, e.g., if x E E-under then 
x < i hence f(x) < f(i) = f(x), so f(x) is in E-under. 

We consider the processes ((~)~)~~o~ for u E E-U. Clearly E-over is 
closed under the (u)&, hence the fxed points (u)” are in E-over. 

wo := n{(u)” 1 u EE-U}, w := (wo)-. 

Let us first remark that from w. G(u)“, we have f(wo) < f’((u)“) = (u)“. 
Hence f(wo) < wo. It follows that (w~)~ is descending. By transfinite 
induction and the fact that on descending sequences liminf and limsup 
coincide: (wO)- = (wo)OD G wc. 

Consider a in Fix(E-over, f). Surely for some u in E-U, u < a, hence 
(u)” < (a)” = a. Conclude that ((u)” 1 u E E- U} is a subset of 
Fix(E-over, f) and minorizes this set. Hence w. = nFix(E-over, f). 

It follows that w. is the maximal overlap Fix(E-under, f)intrinsic point, 
by 2.2.5(f, h) and the fact that (Fix(E-under, f))^ = Fix(E-over, f) 
(f being selfdual on (E-under U E-over)). As is easily seen w is the maximal 
fixed point < wo. In other words w is the maximal overlap Fix@under, f) 
intrinsic fixed point. 

Consider any of the examples 3.1, 3.2 with any of the treated Strong 
KIeene/Van Fraassen transition functions. We have for @ either in N or in A : 

we($) = TF iff a(@) = TF for all overdefined fixed points a, 
iff b(4) = * for all underdefined fixed points b, 
iff r$ is (code of a) Kripke paradoxical (sentence) 

for the given valuation scheme. 

wo(d4 = * iff 0 is Tin some Kripke (i.e., underdefined) 
fixed point, Fin some other. 

WOW = T iff @ is Tin some Kripke fmed point, Fin no 
other 

wo(@l = F iff $J is Fin some Kripke fixed point, Tin no 
other. 
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Warning w. is not generally a fmed point, so we must keep in mind that 
the declared truths ofwo not the truths at N(wo) reflect Kripke’s distinc- 
tions (in case we are considering 3.1). Similarly in case of stipulations, the 
atoms whose meaning is stipulated not the stipulated meanings reflect 
these distinctions. 

3.5.2.1. EXAMPLE. Let S be 1: 11, s: s, a: I A (s v 7 s), and define 
f:=Fs,E :=T~r*s*~~.Then [a]wo= TF, [a]w=[lv(sv~s)]wo=F. 
So w does not reflect Kripke paradoxality but rather carries its own notion 
of paradoxahty. 

3.5.3. Accumulate at Every Step 

Let f be monotonic and suppose E-over is closed under fi We consider the 
processes ((u)“( f u id)),EON for u in E-U. As is easily seen (u)‘y( f u id) 
is ascending, hence each (u)Q( f u id) is in E-over. Moreover (u)a( f u id) = 
(u)& f u id), because on ascending sequences limsup and liminf coincide. 
Clearly f u id is monotonic. Define: 

to := n((~)‘~~~ I uEE-U}. 

We have: 

(4 Let a be in Fix(E-over, f). For some u in E-U, u < a. 
(f u id)(a) = f(a) u a = a, so (u)~ ’ id < (a)f LJ id = a. 
Hence ((u)~ ’ id I u E E- 17) minorizes Fix(E-over, f). 

@I Let b = (up id. We have b = (f u id)(b) = f(b)u b, so 
f(b) < b, hence (b)f < 6. Moreover (b)f in E-over. 
Conclude: Fix@-over, f) minorizes {(u)~ u id I u E E-U). 

(cl Combining a, b: to = nFix(E-over, f). 

For further considerations we may clearly return to 2.5.2 (under its 
conditions). Note however that the processes of 2.5.3 reflect another 
semantic ‘plan’ than those of 2.5.2. So if we adhere to the idea that not 
just the endresult has explanatory value we should not consider 2.5.2 and 
2.5.3 as just variants. 
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3.6. Accessability and Comparison, a Small Bestiary of Fixed Points and 
Assorted Structures 

3.6.1. Projecting w. and w Down 

Different reasons can be given for considering (wo)’ and (w)~ (where wo, 
w are as in 35.2). First it is plausible to treat overdefined and underdefined 
to be on a par as far as judgement is concerned. ( )A obliterates the distinc- 
tion between over- and underdefined. Secondly we may be interested in 
methods of access to Kripkean fixed points, as we will see (w~)~, (w)~ are 
interesting starting points. Thirdly we may want to compare wo, w with 
various Kripkean structures. This can be done in several ways; one of these 
is downwards projection. Here Kripkean structures play as it were a 
homegame and wo, w play on the road. 

1 
Assume f is monotonic, overlap preserving and selfdual 
when restricted to (E-under U E-over). 

(1) As we have seen w. > w (3.5.2). 
(2) (w~)~ G we. As we noted in 3.2.5 w. is maximal such that 

w. o Fix(E-under, f). For i, the maximal intrinsic fixed point, we have: 
i o Fix&-under, f), hence i G wo. Also trivially Go = uFix(E-under, f) > i. 
Conclude (w~)~ > i. Moreover (w~)~ < we, hence (we)’ is consistent with 
all underdefined fured points. 

(3) w = (wo)- < wo, hence ws&(E-under, f). Moreover w = (wo)- > 
(i)- = i. Further $0 > i, SO ri, = (~0)~ > (Go),, > (i)- = i. (‘& first > is 

because f is overlap preserving, in slightly different notation: (6~~)~ < 
(Go); = G)’ by 3.3.5 (b).) Conclude (w)~ 2 i. Also (w)~ < w. hence 
(w)~ is consistent with all underdefined fixed points. 

(4, 5) Suppose z is underdefined and consistent with every underdefined 
fured point. Then (z), is intrinsic in Fix@-under, f), for if a is an under- 
defined fixed point, and a < x, z < x for x underdefined, then a = (a), < 
(x), and (z), < (x)- and (x)., is an underdefined fixed point. Conclude: 

wo)A) W and ((w)~), are intrinsic in Fix(E-under, f). Moreover as (w~)~ 
and (w)~ are 2 i, ((~0)~)~ and t(w)“), are > i, hence ((wo)“&, = 

((w)~), = i. 
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3.6.1.1. EXAMPLE. LetSbel: 11, s: s, II: IA(sv~s), b: svls. 
f :=FS,E :=afrJ*apb). Then: 

TF TF * * * 
* * 

w” = TF’ w = F ’ 
(wo)*= :, (w)* =i, i= :. 

T * T * * 

So in this example we see that w. > w; (wo)* and (w)* are incomparable 
($ and 2) and both are > i. 

3.6.1.2. REMARK. The fact that ((w~)*)~ = i gives us in a sense iterative 
access to i. First we iterate from the u in E-U to the (u)“, then we take the 
intersection (a ‘monotonic’ step), then project down and iterate to i. Our 
process contains one ‘non-monotonic’ step: ( )*. 

I want to point out that there is no iterative process that gives access to i, 
such that: 

(1) the starting points are valuation independent, 
(2) all steps are monotonic, 
(3) all stages are underdefmed. 
If there were such a process then surely for a given S the Van Fraassen i 

(say iv=) would extend the Strong Kleene i (say iSK) for es(x) > Fs(x) if x 
underdefined. Consider the following S: 

1: ~l,a:lv~l, b:(Ivll)rrb, 

then: * * 

ivF = T and iSK = *, 
* F 

so ivF and iSK are incomparable. One can show that they must be 
consistent. 

3.6.2. Structures froin Processes in E- U 

To save our bestiary from overpopulation I will not go into the comparison 
of Gupta-structures with Belnapstructures, nor will I provide Van Fraassen 
examples. All this I leave to the reader’s diligence. 

Consider f monotonic, overlap preserving and selfdual on (E-over U 
E-under). As is easily seen: E-U is closed under f. 
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(blakON is an acceptable E-U process if 

6) [ul @+I = ml=), 
@I [u] A > liminf [u]~ and [u] A E E-U. (Note that 

(Y-h 
automatically [u]” < lps;p [u]“, so the constraints of 

i 
3.4.3 are satisfied.) 

A class P of acceptable E-U processes is furl if for each u in E-U there 
is a process starting on u in P. 

The Belnap class B is just the set of all acceptable E-U processes. The 
Gupta class G consists of all processes satisfying the following constraint: 
let x: = liminf [u]“, then [u]* > x LI (in U) and [u]’ E E-U. 

x is clearly in E-under, hence x < i. Moreover x 4 x u U, i n u < i, 
inu~u~xxusoxu(~nu)~~n(xuu)=(xu(~nu))^,hence 
x u (i n u) E E-under. E is rich, so certainly some v in E-U with v > 
x u (2 n U) can be found. Conclude: G is full. In case E is modular we have: 
xu(~nu)=~fl(xuu),soxu(~nu)EE-U,inotherwordstheGupta 
rule determines a unique limit. The examples we consider are in fact 
modular: the TA are even distributive. 

Consider any full P. Define: 

jOp := l-1 {llminf n I n E P}, 

I .p := (j&. 

For P = G/B in the case of Example 3.1 we have C$ is decked true at j{ 
iff $ is stably true in all ?r E P. 

We have for R E P: f(liminf n) < liminf n. The proof is by noting that 
there is a K such that all [ul” for (Y > K occur cofinally in 71. Moreover 
liminf n= n {[u]& 1 LII > K}. It follows that f(liminf n) < f([u]") = [u]@+' 
for (Y 2 K. By transfinite induction one shows that for all (Y > K [u]” 2 

f(liminf n). [u] K is itself cofinal, hence for all a! > K [ulQ > f(liminf n). 
Conclude liminf n 2 f(liminf n). 

It follows that f(& < j[ and hence jp < il. 
One definition we didn’t consider is: 

jr := n {(liminf rr)= 1 II EP}, but as is easily seen (j$, = jp. 

By an easy induction (u), < [u]” for any rr = ( [u]*)&E~~ in P, hence 
j,,<j[and j< jp. 
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3.6.2.1. Little Theorem, If E is finite and P = G/B then jp = j = (n FC),. 
Proof: First consider any finite cycle C = {co, . . . , ca-r}. We claim 

[cola :=camdk is a G - and hence B - process. Clearly it is sufficient to 
show that [co]* = co is an admissible limit in G. Assuming this for all j3 < X 
we have hmimicf [cola = n C and n C u (u C n co) = co, so co is the unique 

correct choice. Conclude n {liminf n 1 a E P) < n { n C I C a finite cycle} = 
n FC. Hence jp < (n FC),. Secondly in 3.5.1.2 we have seen j = (n FC),. 
Moreover j < jp. It follows j = jp. 0 

Isj’ ever not equal toj? Let E := TN andf:= FN as in 3.1. Both Anil 
Gupta and Vann McGee produced sentences $J in L paradoxical for Gupta 
processes but stably true for some Belnap process. Consider: x G True(X) A 
9. x will be eventually false in all Gupta processes and hence will be false in 
jf. On the other hand x may be true in a Belnap process where $ is stably 
true and x may also be false. Hence x is undefined in jf and hence in jB. 
As is easily seen jc > jB > j, so jG f j. 

Open problem. Is jB always j? 
Consider any full P. Define: 

~:=n{limsupnlninP), 

d := (w$)“, 

i! := ((WC)*&,, 

i,P := ((w’)*), . 

One other possibility reduces immediately to what we did before: 
n ((limsup n)” I T E P} = w,, as is easily shown. 

d summarizes some G/B distinctions: for P = G/B we have (in case of 
Example 3.1): 

9 is declared Tat u$ iff 9 is stably true in some II in P, stably 
false in no 71 in P. 

9 is declared TF at d iff I#I is G/B paradoxical. 

$J is declared * at WC iff @ is stably true in some R in P, stably 
false in some other n’ in P. 

Consider any overdefmed fmed point a. For some u in E-U, u < a. 
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Hence for II = ([u]~) a~~~ in P: [ula < a (by transtinite induction) and 
hence limsup [u]& < a. It follows that 4 < w. and hence d < w < wo. 

a-+- 
w. overlaps all underdefined fixed points, hence so do d, d, (d)A, 
(w’)~, i!, ic. As in the case of ((wop>o. we may conclude that i! and ic 
are intrinsic in Fix@-under, f). 

Moreover: 

ip = ((w$~)- = (4 n ti)- < (d), n ($), < 

(wg)mn(~)“=w51~=(d)A. 

(($& < ($$- because f is overlap preserving). Conclude i! < ((w’)~L = 
.P 
I+. 

Finally, as is easily seen, jp < i!. 

3.6.2.2. EXAMPLES 
(a) Let S be a: lb, b: la, c: c A (a * b). 
E .= Jf{dJ.C) , f:=Fs. P :E {G, B). 
Then 

* 

and 

w. = w=(w,)” =(w)‘=i= *, 
F 

~=Wp=(~)A=(Wp)A=i:=i_P=~. 
* 

So w. f d etecetera. 
(b) Let S be: a: la v lb, b: -a A lb. 
E:=Tiasbj, f :=Fs, P:E{G,B}, then: 

jp = * 
*’ 

f = i.So jPfi_P. 

(c) Let S be: I: 11, s: S, a: (S v 1s) A -II, b: (I v 3)  A b. 

E z=T{‘*‘*“~), f := Fs, P :E {G, B}, then: 

TF TF * * 

* F * F 

Hence w$, wp are incomparable (this is in contrast to wo, w) and if # ip. 
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3.6.2.3. REMARK. We have: j Q jp < i! < i: < i. Each of these fmed 
points represents a different notion of intrinsicity and the sentences separ- 
ating them illustrate genuinely different selfreferential phenomena, In a 
sense a with a: a v -a is the ‘most intrinsic’ of all examples considered; 
c of Example 3.6.2.2 (a) the least. 

I finish with one of the Little Theorems. 

3.6.2.4. LITTLE THEOREM. Let P be G or B. Suppose E is finite. Then 
r$=n(uCICafinitecycle). 

Proof: Consider a finite cycle C = (co, . . . , ck-,}, [cOIQ := c,,~ k is 
in G/B and limsup c Bm&k=uC.Hence{uCICisaftitecycle)isa 

a-+- 
subset of {hmsup II I n E P}. On the other hand consider any I h,P. There 
are only finitely many finite cycles, so some finite cycle C’ must occur 
cofinally in n. Hence LI C’ < limsup n. Conclude that (u C I C is a finite- 
cycle} minorizes (limsup n I II E P}. It follows that n(limsup 1 I I E P} = 
17 {u C I C is a finite cycle}. Cl 

NOTE 

* The present paper was written during a one year visit to Stanford. I wish to thank 
the Stanford Philosophy Department for providing me the opportunity to work in 
their nice atmosphere. I am grateful to Nuel B&tap, Solomon Feferman and Peter 
Woodruff for stimulating discussions. 

This paper is a successor of an earlier unpublished draft “Sketchy Notes on Four 
Valued Logic and a ‘Solution’ of the Liar”. Shortly after writing Sketchy Notes I 
received Peter Woodruff’s “Paradox, Truth and Logic Part I: Paradox and Truth”. 
In the process of transmutation of “Sketchy Notes” into the present paper I have not 
hesitated to use certain ideas of Peter Woodruff - especially his notion of overlap - to 
improve both contents and presentation. 

Section 3.3 on Iterations is an adaptation of Herzberger’s earlier work on iterations 
Most of the ideas of that section have to be credited to him. 
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