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Abstract. The lexicographic maximin extension of an ordering is an important  and 
widely used tool in social choice theory. We provide an axiomatizat ion of it by 
means of five axioms. When the basic ordering is linear the following four (inde- 
pendent) axioms are sufficient: (1) Gfirdenfors principle; (2) Neutrality; (3) Strong 
Fishburn monotonicity;  and (4) Extension. Our  result may also have applications 
in the theory of individual choice under uncertainty. 

1. Introduction 

Let R be an ordering defined over a finite set X. Let a binary relation > over 
(X) - 2 x - {q~} be called an extension of R to ~ (X) if and only if for all x, y ~ X, x R y 

iff {x} ~ {y}. Are there extensions of R to ~ (X), satisfying certain reasonable axioms? 
This is the problem considered in a number  of recent papers (see [3, 5, 8, 9, 14, and 
15]; see also earlier contributions [2, 4, 6, 7, 10, 16, and 18] in this general area). The 
main purpose of this paper  is to provide necessary and sufficient conditions for an 
ordering __. over ~z (X) to be the "lexicographic maximin extension" (see Definition 3.1) 
of R. In Sect. 2 we first examine the intuitive significance of the general problem of 
inducing an extension of R to ~(X), and then comment  on the interest of the lexico- 
graphic maximin extension. In Sect. 3 we introduce some basic notat ion and the 
notion of the lexicographic maximin extension. In Sect. 4 we characterize the lexico- 
graphic maximin extension of R. In Sect. 5 we consider this characterization problem 
again for the special case where R is assumed to be a linear ordering. We conclude in 
Sect. 6 with a characterization of the lexicographic maximax extension which is, 
intuitively, the 'dual '  of the lexicographic maximin extension. 
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2. Intuitive Motivation 

One of the earliest motivations for extending an ordering R over X to n (X) is to be 
found in the literature on manipulability in social choice theory (see [2, 4, 6, 7, 10, and 
16]). In a voting game where the outcome function is represented by a social choice 
correspondence rather than a social choice function (so that given the individual 
voting strategies we have a set of possibly many outcomes rather than a single 
outcome), the game cannot be defined properly unless the honest preference ordering 
Ri (over the set X of possible outcomes) of each voter i is extended to derive an 
ordering >'i over alternative sets of outcomes. Of course, if the social choice corre- 
spondence is supplemented by a deterministic tie-breaking mechanism which is as- 
sumed to be known to the voters and which figures explicitly in the model, then the 
problem of inducing ~ i  from R~ becomes trivial. (A tie-breaking mechanism can be 
defined to be a function p which for every A e n (X) and for every x s A, specifies a 
non-negative real number p(x,A) such that ~ p(y,B)= 1 for all B s n(X); a tie- 

yEB 

breaking mechanism is deterministic iff for every A s n (X) and every x ~ A, p (x, A) = 0 
or p(x, A) = 1.) Therefore, one can distinguish at least three types of situations where 
the 'extension problem' will be non-trivial in voting theory. 

1) The first case arises when p is assumed to be known to the voters but is non- 
deterministic. Then the problem is one of extending R~ to derive ~ when the voters 
are facing risk. 

2) Even when the voter is assumed to know the tie-breaking mechanism which may 
or may not be deterministic, the model-builder may, for reasons of generality, like to 
consider a class of tie-breaking mechanisms rather than a single tie-breaking mecha- 
nism. In that case, the model-builder may specify a few properties common to all 
extensions of an ordering generated by the different tie-breaking mechanisms belong- 
ing to this class, and then analyse the game in terms of all possible extensions which 
satisfy these specified properties. 

3) Lastly, consider the case when the tie-breaking mechanism p is not known to the 
voter, and the voter does not have subjective probabilities for the elements belonging 
to different possible sets of outcomes. In this case the problem is one of extending R~ 
to arrive at >-i when a voter is facing a situation of uncertainty rather than risk (to 
use the terminology of Luce and Raiffa [12]). It may, however, be remarked that this 
case may be rare in so far as social choice correspondences are often explicitly 
supplemented by tie-breaking mechanisms. 

Apart from voting theory, the extension problem seems to be important in the 
wider context of choice under uncertainty. Consider an agent faced with the problem 
of choosing an action from a finite set of actions, Y = {Yl ... . .  Ym}, under uncertainty. 
The set of all possible outcomes is X and R is the agent's preference ordering over X. 
For each y~ ~ Y we have a non-empty set of possible outcomes F(y~) c X; however, 
the agent does not have any subjective or objective probability distribution over the 
outcomes in F(y~). For this agent the problem of ranking the actions under uncer- 
tainty can be interpreted as a problem of inducing an extension over {F(Yl) . . . .  , 
F (y,,)} given the ordering R over X. Since this way of posing the problem of an agent's 
choice under uncertainty is somewhat different from certain earlier formulations (see 
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for example, Milnor [13], Luce and Raiffa [12], and Arrow and Hurwicz [1]), it may be 
worthwhile spelling out the difference. 

In these earlier formulations, a finite set S = {s~ .. . . .  s,} of possible states of the 
world is explicitly introduced into the model. For all y~ s Y and all s~ s S, there is a 
specific outcome z~j belonging to X. Thus, we have an m x n matrix [ z j  of outcomes. 
The problem of ranking actions y~ under uncertainty is then identified as the problem 
of ranking the rows ri in the matrix [z~j] given the ordering R over the set X of distinct 
outcomes figuring in the matrix [zJ. This formulation of the problem of choice under 
uncertainty (for convenience, we call it Type I formulation) is not identical with our 
earlier formulation (we call it Type I I  formulation) in terms of >- defined over 
{F(yl) . . . . .  F (y,,)}, i.e. the class of sets of outcomes corresponding to different actions, 
though the two formulations are closely related. To illustrate the difference, consider 
the following example with Y = {y~, Y2, Y3}, S -- {$1, s2, $3} and the outcomes being 
represented by ordinal utility numbers. 

S 1 S 2 S 3 

Y1 0 0 2 

Y2 2 0 2 

Y3 3 1 2 

Under Type I formulation, y~, Y2 and Y3 will be ranked by ranking the rows (0, 0, 2), 
(2, 0, 2) and (3, 1, 2) while under Type I I  formulation, the ranking of y~, Y2, and Y3 is 
intuitively identified with the ranking of the sets {0, 2} and {3, 1, 2}. It is clear that 
Type I I  formulation involves some loss of information as compared to Type I. A 
striking example of such loss of information arises when the information about weak 
dominance between actions gets lost in the process of transforming the rows of 
outcomes into the corresponding sets of outcomes. For example, Y2 weakly dominates 
Yl (i.e. Y2 yields at least as good an outcome as Yl for every state of the world and a 
strictly better outcome than Yl under some state of the world). However, there is no 
way of retaining this information in Type I I  formulation where each of y~ and Y2 is 
seen to yield the same set {0, 2} of outcomes. To put the point slightly differently, in 
Type I formulation one views each action as a function from S to the set of outcomes 
and ranks these functions on the basis of their complete description and R. In Type I I  
formulation one ranks the functions solely on the basis of their ranges (given the 
ordering R); this inevitably leads to some loss of information in Type I I  formulation. 
(To some extent this loss of information, especially the loss of information regarding 
weak dominance, can be prevented by labelling the outcome for any Yl and sj as 0ij, 
and by treating the outcomes 0,~ as all different. However, this raises other conceptual 
problems regarding the interpretation of certain axioms used in this paper, and this 
needs further investigation.) 

Despite what we have said above, there are many circumstances where one may 
like to have a Type 1I formulation (involving extension of R to ~ (X)) of the problem 
of choice under uncertainty. First, when the number of possible states of the world is 
large, an agent of bounded rationality may be incapable of undertaking (or unwilling 
to undertake) the complex calculations which consideration of the entire rows in the 
outcome matrix will involve. For example, consider a two-stage election process where 
in the first stage a relatively small committee, say C, chooses a panel of alternatives 
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out of a given set and in the second stage a larger electorate E chooses a single 
alternative out of this panel (the pre-Eurovision song contests in Israel seem to be of 
this type). Consider any i s C and assume that i has very imperfect information about 
the preferences of members of E. In this case, in principle, i can list all the different 
possible contingencies (i.e. different voting patterns) that can arise in the second stage 
and construct a matrix which will show the final outcomes corresponding to each 
panel of alternatives chosen in the first stage and each contingency (voting pattern) in 
the second. However, if E is even moderately large, then this may prove to be such a 
demanding task that i may very well decide to view the information in a compressed 
from by just considering the sets of possible outcomes corresponding to different 
panels of alternatives chosen in the first stage. Secondly, several writers (see Arrow and 
Hurwicz [1] and Luce and Raiffa [12]) have commented on the arbitrariness of parti- 
tioning all possible contingencies in a particular way so as to have a specific set of 
states of the world. For example, if the amount of rain in a particular season can vary 
from 5 to 40 inches, any partitioning of these infinite number of contingencies for a 
farmer into, say, adequate rain, excessive rain and inadequate rain, would seem 
somewhat arbitrary. In view of this arbitrariness it would seem desirable to construct 
a model of choice under uncertainty where the problem is posed not in terms of the 
outcomes of each action corresponding to different states of the world but in terms of 
the sets of outcomes associated with each action. Lastly, there are certain ethical 
frameworks such as that of RaMs [17] which involve the conceptual experiment of 
putting an individual under uncertainty (e.g. the Rawlsian 'veil of ignorance') where 
there does not seem to be any obvious non-trivial formulation of the notion of states 
of the world as distinguished from the possible outcomes corresponding to an action. 
In such situations, the agent's choice problem under uncertainty can again be formu- 
lated in our Type II  fashion. 

So far we have considered interpretations of the extension problem in terms of 
voting theory and choice under uncertainty. One can think of a third interpretation 
distinct from these. Here every A s ~(X) is interpreted not as a set of mutually 
exclusive outcomes only one of which will materialize finally, but as a set of objects 
which the agent can have simultaneously. This is, for example, the case with the 
problem of plausible reasoning considered by Rescher [18] and Packard [15] (see als0 
Heiner and Packard [81 for another interpretation along this line). In Rescher [18] and 
Packard [15], X is interpreted as a set of hypotheses; R is interpreted as a ranking of 
these hypotheses in terms of plausibility; and >- is an induced plausibility ranking of 
sets of consistent hypotheses (note that here ~ is not defined over all possible non- 
empty subsets of X since inconsistent sets of hypotheses are excluded; also the empty 
set is not excluded in Packard [15]. However, these are technical details which we have 
ignored in this discussion of intuitive interpretation.) 

It is clear that the problem of extending R over X to generate ~ over ~z (X) admits 
a wide range of applications. In this paper we have chosen to study one particular type 
of such extension, where ~ is a lexicographic maximin extension of R. We provide an 
axiomatic characterization of the lexicographic maximin extension. Such character- 
ization seems to be of interest in view of the fact that the maximin extension in various 
forms has figured extensively in the theory of justice (see RaMs [17]), voting theory (see 
Pattanaik [16]), the theory of games, and the theory of choice under uncertainty (see 
Milnor [13]). 
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3. The Lexicographic Maximin Extension of R 

As indicated earlier, R is a given ordering (i.e., it is complete and transitive) over a finite 
set X; and a binary relation _~ over ~z(X) -= 2 x - {~b} is called an extension of R to 
~(X) ifffor all x, y • X, [xRy iff {x} > {y}]. Let P and I respectively be the asymmetric 
and symmetric factors of R; and let >- and ~ respectively be the asymmetric and 
symmetric factors of >-. For  all A, B • re(X), [A R B iff x R y for all x • A and all y • B]; 
[APB iff x P y  for all x • A and all y • B]; and lastly, [AIB iff x l y  for all x • A and 
all y • B]. We write xRA,  A R x  etc. instead of {x}RA, AR{x} etc. 

Let IX[ = n. Let Re and Re + respectively indicate the set of real numbers and the 
set of positive real numbers. Let u: X ~ R e  + satisfying u(x)> u(y) iff xRy.  If 
A = {al ,a  2 . . . . .  as} such that u(aO <_ u(a2) -< ... ~ u(as), then we denote 

n - - s  

v,(A) = (u(al) .... , U(as), 0 ..... 0). 

Definition 3.1: A binary relation _~ over ~(X) is called the lexicographic maximin 
extension of R to ~ (X) iff for all A, B • ~ (X) 

(3.1) if A I B ,  then A ~ B; and 
(3.2) if not AIB,  then [A _> B iff v,(A)_>LV,(B)] where ->L is the lexicographic 

ordering on Re (">. 
The lexicographic maximin extension of R to ~(X) will be indicated by > . .  

Remark 3.1. If R is a linear (i.e., antisymmetric) ordering then for all A,B • ~(X), 
A ~ , B  iff v,(A) >_LV,(B). 

Remark 3.2. It can be easily checked that ~ ,  is an ordering. 

4. Characterization of the Lexicographic Maximin Extension 

In this section we provide a characterization of ~ , .  
For  all A,B E ~(X), let A ~ B = ~b iff for all x • A and all y + B, not xly .  

Definition 4.1. Let ~ be a binary relation over ~ (X). > satisfies 
(4.1.1) Gardenfors Principle (GP) iff for all A e ~z(X) and for all x • X, 

(i) x I A  implies {x} w A ~ A; 
(ii) (x Og A and x R A  and not ARx)  implies {x} u A > A; and 

(iii) (x ¢ A and A R x  and not xRA)  implies A >- {x} w A; 

(4.1.2) Extension (E) ifffor all A, B • ~r (X), and for all x • X - (A ~ B), [(A w B) R x  
and A ~ B] implies {x} w A ~- {x} w B; 

(4.1.3) Strong Fishburn Monotonicity (SFM) iff for all A , B • ~ ( X )  such that 
A ~ B = ~b, and for all x e X - (A u B), [{x} w A >- {x} w B iff A > B]; 

(4.1.4) Neutrality (N) iff for all A, B • ~ (X), all one-to-one f :  A --+ X, and all one- 
to-one 9: B ~ X ,  if [for all x • A  and all y • B ,  (xPy i f f f ( x ) P  9(Y)) and (xIy  iff 
f ( x ) I  9(Y))] then [A ~ B i f f f (A) ~ 0(B)]; and 

(4.1.5) Union (U) iff for all a • X ,  and all B, C • ~(X), [{a} >-B and {a} >-C] 
implies {a} > B u C. 
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GP in a somewhat different form originated in Gardenfors [6]; the present defini- 
tion is a slightly modified version of the definition given in Kannai and Peleg [9]. GP 
requires three things. First, if everything in A is indifferent to everything in B, A must 
be indifferent to B. Secondly, if x, not belonging to A, is at least as good as everything 
in A and is strictly preferred to something in A, then {x} ~ A must be better than A. 
Lastly, if everything in A is at least as good as x (not belonging to A) and something 
in A is strictly better than x, then A is better than A ~ {x}. E requires that if A is better 
than B, then adding to A and also to B, an element which is outside both A and B and 
which is not better than any element in A or in B, does not change the ranking of the 
sets. A weaker version of SFM is to be found in Fishburn [5]. SFM requires that if 
nothing in A is indifferent to anything in B, and if x is outside both A and B, then the 
ranking of {x} w A and {x} w B will be exactly analogous to the ranking of A and B. 
N is reminiscent of the corresponding condition in social choice theory. U requires 
that if {a} is better than B and also better than C, then {a} is better than B ~ C. 

Theorem 4.1. Assume that there exist 2, 33,~, ~ e X such that 2 P 33 P ~ Pv~, and let ~_ be 
an ordering over n(X). Then ~ = ~ , i ff  ~ satisfies GP, E, SFM, N and U. 

Proof: The necessity part of the theorem is straightforward. So we prove only the 
sufficiency part which says that if ~ satisfies GP, E, SFM, N, and U, then ~ = ~ , .  

Let ~ satisfy GP, E, SFM, N and U. Let ~-, and ~ ,  respectively be the asymmet- 
ric factor and the symmetric factor of ~-,.  For all A ~ n(X),  let rain(A) be the set of 
R-least elements in A and let max(A) be the set of R-greatest elements in A. We first 
prove 

(4.1) For all A, B ~ n(X) and for all f: A ~ B, i f f  is one-to-one onto B such that 
for all x ~ A, x I f  (x), then A ,-~ B. Consider A, B e ~ (X) and f: A -~ B where f is 
one-to-one and onto B and x I f  (x) for all x ~ A. Since ~ is complete, without loss of 
generality assume A ~ B. By N, f (A) _ f -  1 (B), i.e., B >- A. Hence A ~ B which 
proves (4.1). 

Now consider any A , B  ~ re(X) such that A ~ , B .  Given A ~ , B ,  there are two 
possibilities: (i) A I B or (ii) there exists f: A ~ B such that f is one-to-one onto B and 
for all x e A, x l f ( x ) .  If(i) holds, then by GP, A ~ B. If (ii) holds, then by (4.1), A ,-~ B. 
Therefore 

(4.2) For all A, B s ~ (X), if A ~ ,  B, then A ~ B. 
Next we show 
(4.3) For all x , y , z  e X ,  if x P y P z ,  then {y} ~- {x,z}. By assumption there exist 

)~,13,~, ~ ~ X such that 2 P33P~Pff.  By GP, {~} ~,- {~,~} and {~,~} >- {if}. Hence by 
transitivity of >-, {~} ~ {if}. Then by SFM, {2, ~} > {2, if}. Now by GP, {2} ~ {2, 33}. 
Hence by E, {2, ~} >- {2, 33, ~}. Given {2, ~} >- {2, if}, it follows that {2, ~} >- {2, 33, ~}. 
Hence by SFM, {~} >- {33,ff}. Noting 3)P~Pff, (4.3) now follows by N. 

We now prove 
(4.4) For all A, B src(X), if min(A)P min(B), then A > - B .  Suppose min(A)P 

min(B). Let :~ e min(A) and 37emin(B). Then 2P37. If B = {37}, then by GP, 
{2} ~- {2, 37} and {2, 37} > {37} = B. By repeated application of GP and transitivity of 
~ ,  A ~ {~} and hence it follows (by transitivity of ;>-) that A ~- B in the case where 
B = {37}. Now suppose B ~: {37}. Then let ff ~ B - {37}. There are three subcases here: 
(i) ~ P~ or (ii) 2 I~ or (iii) ~ P~. If~ P~, then by GP {2} ~ {2, ~}, {2, ~} > {2, ~, 37}, and 
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{2,ff,)7} ~ {i,)7}; and hence {2} >- {~,y} by transitivity of ~ .  If 2 I i ,  then by (4.1), 
{2,)7} ~ {i, ~}. Since {2} > {Y, )7} by GP, it follows that {Y} > {~, )7} in the case where 
2 Iff. Finally, if ~ PY, then {Y} > {if, )7} by (4.3). Thus in all cases {Y} ~- {if, )7} for all 

~ B - {)~}. Hence by U, {2} >- B. Since A ~ {2} (by repeated application of GP and 
transitivity of ~) ,  it follows that A ~ B. This completes the proof of (4.4). 

Next, we prove 
(4.5) For  all A,B e ~z(X), A ~ , B  implies A >- B. 
(4.5) is proved by first proving 
(4.6) For  all A,B e ~(X), if IA] = 1 and A ;~ ,B  then A >-B, and then proving 
(4.7) Foral lk ( l  <_ k <lXD, if forallA',B'e~(X),[([A'l  <_ k a n d A '  ~-, B') lmpl' ies 

(A' ~ B')], then for all A, B s re(X), [(I A I < k + 1 and A > ,  B) implies (A > B)]. 
Consider (4.6). If ]AI = 1, then given A ;~, B, it is clear that rain(A)P min(B) and 

hence by (4.4), A >- B. This proves (4.6). Now consider (4.7). Suppose the hypothesis 
of (4.7) holds. Consider A such that ]AI = k + 1. Let A > ,  B. If min (A)P rain(B), then 
A ;~ B follows by (4.4). Suppose min(A)I  min(B). Since A ~-,B, it is clear that 
A -  ra in (A)¢  ~b. There are two possibilities: (I) min(A)c~min(B)4= ~b or (II) 
min(A)c~min(B) = ~b. Suppose (I) holds so that min(A)~min(B)  4: ~b. Let 
a E min(A)c~ min(B). If B - {a} = ~b, then given A - min(A) ¢ ~b, repeated applica- 
tion of GP and transitivity of ~ gives us A >- B. If B - {a} + ~b, then indicating 
A - {a} by A' and B - {a} by B', we have two possibilities: either [A' > ,  B'] or [A' I B' 
and IA'[ > [B'I]. If A'>-,B', then by the hypothesis of (4.7), A')~ B', and hence by 
E, A >- B. Suppose [A'IB' and IA'I > IB'I]. Let A" c A' be such that [A"I = IB'[. Then 
by (4.1), (A" w {a}) ~ (B' t~ {a}) = B. Hence by G P  A' u {a} ;~ B, i.e., A > B. Thus if 
(I) holds, A > B. Suppose (II) holds so that rain(A) c~ min(B) = ~b. Let a*e  min(A) 
and b*~ rain(B). If B - {b*} = ~b, then given A - rain(A) ¢ ~b, GP and transitivity of 

ensure A >- B. If B - {b*} 4= ~b, then indicating A - {a*} by A* and B - {b*} 
by B*, we have two possibilities: either [A*>-,B*] or [A*IB* and ]A*I > IB*]]. 
Suppose A*>-,B*. Then by the hypothesis of (4.7), A*>~B*. Then by E, 
A ~- B* w {a*}. By (4.1) (B* u {a*}) ~ B. Hence by transitivity of ~ ,  A ~ B. If [A* IB* 
and I A*I > I B* I], then the proof consists of a slight modification of the proof of the 
corresponding subcase considered earlier when we assumed min(A)~  r a in (B)¢  ~b, 
a ~ min(A) c~ rain(B) and B - {a} ¢ ~b. Thus in all cases, when (II) holds, A >- B. This 
completes the proof of (4.7). 

Since ~ ,  is complete, (4.2) and (4.5) together imply that ___ = ~ , .  

Remark 4.1. Under the assumption of Theorem 4.1, the four axioms GP, E, SFM, 
and N, are independent in the sense that any one of them can be violated while the 
other three and U are satisfied. This is shown by the following example. The indepen- 
dence of U is still an unresolved problem. 

Example 4.1: (i) Let X = {x,y,z,w} and x P y P z P w .  Let the ordering ~ ,  be such 
that for all A, B e ~(X), A ~ B. Then >- violates GP but trivially satisfies E, SFM, N 
and U. 

(ii) The lexicographic maximax extension (see Definition 6.1 below) violates E but 
satisfies GP, SFM, N and U. 

(iii) Let X = {x,y,z, w} and x P y P z P w .  Let the ordering > be as follows: {x} ~- 
{x,y} > {x,z} > {x,w} >-{x,y,z} >-{x,y,w} >-{y} >-{y,z} >-{x,z,w} >-{x,y,z,w} >- 
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{y,w} ~ {y,z,w} >- {z} )~ (z,w} ;~ {w}. ~ violates SFM since (y,w} >- {z} and 
{x, z} ~ {x, y, w}. However, it can be checked that >- satisfies GP, E, N and U. 

(iv) Let X = {x,y,z,w} and x P y P z P w .  Let the ordering ~ be as follows: {x} 
(x,y} > {y} > {x,z} > (x,y,z} > {x,w} ~ {x,w,y) > (y,z} > {z} > {y,w} >- {x,z,w} 
>- {x,y,z,w} > {y,z,w} >- {z,w} >- {w}. >- violates N since {y}> {x,z} and 
{z} -< {x, w}. However, >- satisfies GP, E, SFM and U. 

5. Characterization of the Lexicographic Maximin Extension 
when R is a Linear Ordering 

In the special case where R is a linear ordering, the characterization of ~ .  becomes 
simpler and intuitively more transparent. In this section we discuss this special case. 

First, we note that when R is a linear ordering, GP, E and SFM take somewhat 
simpler forms. 

Proposition 5.1. If R is a linear ordering, then a reflexive binary relation ~ over ~(X) 
satisfies 

(5.1.1) GP iff for all A e ~ (X) and all x s X, Ix P A implies A u {x} ~ A] and [AP x 
implies A >- A u {x}]; 

(5.1.2) E iff for all A, BETr(X) and for all x e X  such that ( A u B ) P x ,  A ~ B  
implies (A u {x} >- B ~ {x}); 

(5.1.3) SFM iff for all A , B ~ ( X )  and all x e X  such that xO~AwB and 
A n B  = ~, [{x} u A > -  {x} ~ B  iff A >- B]. 

The proof of Proposition 5.1 is obvious and we omit it. 

Proposition 5.2. If IXl _> 4, R is a linear ordering and ~ is an ordering over ~(X), then 
GP, E, SFM and N together imply U. 

Proof'. Let >- satisfy GP, E, SFM and N. First, we claim 
(5.1) for all x,y ,z  ~ X, if x PyPz ,  then {y} > {x,z}. The proof of (5.1) is exactly 

similar to the proof of (4.3) and is therefore omitted. (Note that the proof of (4.3) 
involved only GP, E, SFM, and N and did not involve U.) 

Next, we show that 
(5.2) For all A ~ ( X ) ,  if IAI>3,  then (min (A)umax(A) )~A .  Let A =  

{a 1 . . . . .  as} where aiPai-1, i = 2  .. . .  ,s. By GP, {a~}>-{as, as_l}&{a~,as_l}>- 
{as, as_l,a~_2}&...&{a . . . . . .  a3} >- {%.. . ,a2}.  Hence by transitivity of ~ ,  
{as} >- {a . . . . . .  a2}. Hence by E, {al, as} ~ A. This proves (5.2). 

Now consider x e X, and B, C ~ ~(X) such that {x} >-B and {x} >-C. By GP, 
and transitivity of ~ ,  it is clear that {x}Pmin(B) and {x}Pmin(C). Hence 
{x} P min(B u C). Let max(B u C) = {y} and min(B w C) = {z}. Then x Pz. If x Ry 
then by GP, it is clear that {x} >-B u C. Suppose y Px. Then y PxPz .  Then by 
(5.1) {x}>{y , z } ,  and noting (5.2), { y , z } ~ B w C .  Hence by transitivity of ~ ,  
{x} )~ B u C. This completes the proof of the proposition. 

Theorem 5.1. Let I XL >_ 4 and let R be a linear ordering. Let ~ be an ordering over ~ (X). 
Then ?~ = ?~, iff ~ satisfies GP, E, SFM and N. 

Proof: Theorem 5.1 follows immediately from Theorem 4.1 and Proposition 5.2. 
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Remark 5.1. It is possible to generalize Theorem 5.1 somewhat, by requiring ~ to be 
only reflexive and transitive (but not necessarily connected) over n(X) instead of 
requiring ~ to be an ordering. 

Remark 5.2. Under the assumption of Theorem 5.1, GP, E, SFM and N are indepen- 
dent. This is shown by the orderings >- constructed in cases (i), (ii), (iii) and (iv) of 
Example 4.1 (note that in each of these four cases the ordering R was assumed to be 
linear). 

6. Characterization of the Lexicographic Maximax Extension 

Though our primary interest in this paper is to provide axiomatic characterization of 
the lexicographic maximin extension, our investigation also yields, as a by-product, a 
characterization of the lexicographic maximax extension of R. 

Let u* 6 Re + be such that u* > u(x) for all x s X. Then for all A = {al , . . . ,  a~} such 
that u(a~) >__ u(as-1) > . . .  > u(aO, we denote 

n~-s 

v*(A) = (u(as),..., u(aO[ u*, . . . ,  u*) 

Definition 6.1. A binary relation ~ over ~(X) is called the lexicographic maximax 
extension of R to n (X) iff for all A, B e n (X), 

(6.1) If A I B ,  then A N B; and 
(6.2) If not A I B ,  then [A > B iff v*(A) _>rv*(B)] where >L is the lexicographic 

ordering on Re (n) . 
The lexicographic maximax extension of R to ~ (X) will be indicated by ~*.  

Definition 6.2. Let > be a binary relation over n(X). ~ satisfies 
(6.2.1) (E') ifffor all A, B e n(X)  and for all x ~ X - (A w B), [xR(A w B) and A >- B] 

implies {x} ~ A >- {x} u B; and 
(6.2.2) (U') iff for all a e X, and all B, C ~ n(X), [B >- {a} and C >- {a}] implies 

[B ~ C > {a}]. 
E' and U' are, intuitively, the duals of E and U respectively. 
We now state Theorem 6.1 which provides characterization of the lexicographic 

maximax extension for the general case where R is an ordering (not necessarily linear), 
and Theorem 6.2 which provides a characterization of the lexicographic maximax 
extension for the special case where R is a linear ordering. The proofs of these 
theorems are omitted since the proof of Theorem 6.1 is exactly analogous to the proof 
of Theorem 4.1 and the proof of Theorem 6.2 is exactly analogous to the proof of 
Theorem 5.1. 

Theorem 6.1. Assume that there exist 2,)~, 2, ~ ~ X such that 2 P ~ P 2 P ~, and let ~ be 
an ordering over ~z(X). Then >~ = ~ * iff ~ satisfies GP, E', SFM, N and U'. 

Theorem 6.2. Let IX] _> 4 and let R be a linear ordering. Let ~ be an ordering over n (X). 
Then ~ = > *  if f  >- satisfies GP, E', SFM and N. 



122 P.K. Pattanaik and B. Peleg 

References 

1. Arrow K J, Hurwicz L (1972) An optimality criterion for decision-making under ignorance. 
In: Carter CF, Ford JL (eds) Uncertainty and expectations in economics. Augustus 
M. Kelley, Fairfield, NJ 

2. Barbera S (1977) The manipulation of social choice mechanisms that do not leave too much 
to chance. Econometrica 45 : 1573-1588 

3. Barbera S, Pattanaik PK Extending an order on a set to the power set: Some remarks on 
Kannai and Peleg's approach. (mimeograph, 1982); J Econ Theory (unknown) 

4. Fishburn PC (1972) Even-chance lotteries in social choice theory. Theory Decision 3 : 18-40 
5. Fishburn PC (1981) Comments on the Kannai-Peleg impossibility theorem for extending 

orders. (mimeograph, 1981); J Econ Theory (unknown) 
6. Gardenfors P (1976) Manipulation of social choice functions. J Econ Theory 13 : 217-228 
7. Gardenfors P (1979) On definitions of manipulation of social choice functions. In: Laffont 

J-J (ed) Aggregation and revelation of preferences. North-Holland, Amsterdam 
8. Heiner R, Packard DJ (1982) A uniqueness result for extending orders; with application to 

collective choice as inconsistency resolution. (mimeograph, 1982); J Econ Theory (un- 
known) 

9. Kannai Y, Peleg B A note on the extension of an order on a set to the power set, (mimeo- 
graph, 1981); J Econ Theory (unknown) 

10. Kelly J (1977) Strategy-proofness and social choice functions without single-valuedness. 
Econometrica 45 : 439-446 

11. Krantz D, Luce RD, Suppes P, Tversky A (1971) Foundations of measurement. Wiley, 
New York 

12. Luce RD, Raiffa H (1957) Games and decisions. Wiley, NewYork 
13. Milnor J (1954) Games against nature. In: Thrall RM, Coombs CH, Davis RL (eds) 

Decision processes. Wiley, New York 
14. Packard DJ (1979) Preference relations. J Math Psychol 19 : 295-306 
15. Packard DJ (1981) Plausibility orderings and social choice. Synthese 49:415-418 
16. Pattanaik PK (1978) Strategy and group choice. North-Holland, Amsterdam 
17. Rawls J (1971) Theory of justice. Harvard University Press, Cambridge, MA 
18. Rescher N (1976) Plausible reasoning. Van Gorcum, Assen/Amsterdam 


