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Anaerobic degradation of organic material proceeds in four consecutive phases
(Fig. 1). Polymers are hydrolyzed to monomers, which are fermented to various
products. In the acetogenic or hydrogenic phase (Bryant and Wolin, 1975) these
reduced products may be oxidized to acetate, formate and carbon dioxide, with
hydrogen being formed as electron sink. The latter compounds are the substrates
of methanogenic bacteria, which allow the hydrogenic metabolism to proceed by
removing the product (H,) of the equilibrium reactions.

Methanogenesis is optimal in anaerobic ecosystems supplied with large amounts
of organic substrates. The contribution of these ecosystems to the atmos-
pheric cycle of methane depends on the direct and open contact with the air. As
shown in Fig. 2, most (90 ;) of the atmospheric methane originates from ecosys-
tems where the methanogens stay between one meter above the surface of the
earth (as in ruminants) and one meter below that (as in swamps and paddy
fields). Though these ecosystems convert only a minor part of the products of
photosynthesis, their contribution to the recycling of carbon should not be
underestimated. On a molar basis about 5 percent of the carbon fixed by photo-
synthesis is converted to atmospheric methane. The methanogens in these eco-
systems recycle even more of the carbon, since they use acetate as the preferred
substrate in swamps, paddy fields and muds of fresh water (Jeris and McCarthy,
1965; Smith and Mah, 1966; Cappenberg, 1974; Strayer and Tiedje, 1978).
Apart from methane acetate is also converted to carbon dioxide.

Methane produced in sediments below a layer of about ten meters does not
reach the atmosphere, but is converted to carbon dioxide by methane oxidizing
bacteria (Koyama, 1963; Howard, Frea and Pfister, 1971; Ehhalt, 1974). More-
over anaerobic bacteria may be involved in the oxidation and cometabolism of
methane in sediments (Davis and Yarbrough, 1966; Barnes and Goldberg, 1976;
Reeburgh, 1976). In deep lakes and trenches in the ocean some anaerobic regions
occur which are saturated with methane (Reeburgh, 1976). In such areas and in
the sediments of the ocean methane-hydrates are formed, which are stable at
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Fig. 1. Anaerobic degradation of organic material in four consecutive phases.
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Fig. 2. Contribution of various anaerobic ecosystems to the atmospheric cycle of methane. The data
are taken from Koyama (1963), Robinson and Robbins (1968), Lovelock (1971), Ehhalt (1974),
Weinstock and Chang (1974) and Seiler (1977).
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Fig. 5. Reactions involved in the tropospheric oxidation of methane. The data are partly taken from
Ehhalt (1974) and Hubrich and Stuhl (1976).
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pressures above 26 atmosphere, equivalent to a water layer of 260 meter (Kap-
lan, 1974). The presence of these methane-hydrates in the sediments of the ocean
1s apparent from acoustical measurements (Schubel and Schiemer, 1972; Clay-
pool and Kaplan, 1974; Hampton and Anderson, 1974). High pressures do not
affect methanogenesis (Koyama, 1963; Claypool and Kaplan, 1974). As a result
of these processes only a minor part of the methane produced in nature reaches
the atmosphere (Fig. 3). A recent report of Reeburgh (1976) illustrates this for
a deap sea trench near Venezuela (Fig. 4). Methane produced in the sediments
partly diffuses downward as methane-hydrates. Another part diffuses upward
and is converted both under anaerobic and aerobic conditions; almost none of it
reaches the atmosphere.

Methane molecules delivered to the atmosphere remain there for an average
period of 1.5to 7 years (Weinstock and Niki, 1972 ; Ehhalt, 1974, 1976). The major
sink is present in the upper troposphere and lower stratosphere, where methane
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reacts with the intermediates and products of the ozone cycle (Fig. 5). So the
methanogenicbacteria are the driving force for anumber of cycles, and most of the
atmospheric hydrogen, carbon monoxide and formaldehyde, and a substantial
amount of stratospheric water is formed from methane (Weinstock and Niki,
1972; Ehhalt, 1974; Weinstock and Chang, 1974; Ehhalt and Volz, 1976).

Finally all methane is oxidized to carbon dioxide, so photosynthesis may
proceed thanks to the action of methanogenic bacteria.
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