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Ritanserin, a 5-HT2 receptor antagonist, 
activates midbrain dopamine neurons 
by blocking serotonergic inhibition 
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Abstract. The effect of systemic administration of ritanserin 
(R 55667), a 5-hydroxytryptamine (5-HT2) receptor antag- 
onist, on midbrain dopamine (DA) neurons was studied 
with single cell recording techniques in the chloral hydrate 
anesthetized male rat. Dopamine cells of the zona com- 
pacta, substantia nigra (ZC-SN) and the ventral tegmental 
area (VTA) were identified by established criteria. Ritan- 
serin (0.5-2.0 mg/kg, IV) dose-dependently increased both 
the burst firing and firing rate of the midbrain DA neurons. 
These effects were prevented by endogenous 5-HT depletion 
through pretreatment with the 5-HT synthesis inhibitor 
para-chlorophenylalanine (PCPA, 300 mg/kg, IP, • 3), 
which did not significantly alter the firing characteristics 
of the midbrain DA cells when given alone. These results 
suggest that 5-HT exerts an inhibitory control of midbrain 
DA cell activity mediated by 5-HT2 receptors. The stimula- 
tory effect of ritanserin on midbrain DA systems might 
contribute to some of its clinical effects, such as improve- 
ment of mood, drive and motivation as well as its therapeu- 
tic actions in parkinsonism and type II schizophrenia. 
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Ritanserin, a selective antagonist at serotonin (5-hydroxy- 
tryptamine, 5-HT) receptors of the 5-HT2 (Sz) type with 
low affinity for dopamine (DA) D2 receptors (Leysen et al. 
1985), has recently been reported to exert significant thera- 
peutic effects in several neuropsyehiatric disorders. For ex- 
ample, a clearcut mood elevating action in dysthymic states 
has been observed (Reyntjens et al. 1986), including im- 
provement of fatigue, drive and motivation. In addition, 
ritanserin has been found to reduce negative symptoms in 
chronic schizophrenia (Gelders et al. 1986; Reyntjens et al. 
1986) as well as extrapyramidal side effects such as parkin- 
sonism, associated with neuroleptic treatment (Bersani et al. 
1986). Other studies claim a beneficial effect of ritanserin 
in Parkinson's disease (Maertens de Noordhout and Del- 
waide 1986; Meco et al. 1986). Thus, the mode of action 
of specific 5-HTz receptor antagonists in neuropsychiatric 
disorders is of considerable interest, especially since post- 
mortem studies indicate changes in brain 5-HT2 receptor 
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densities in schizophrenic patients (Mita et al. 1986), pa- 
tients with Alzheimer's disease (Crow et al. 1984; Reynolds 
et al. 1984) and suicide victims (Stanley and Mann 1983). 
Yet, the functional and pharmacological significance of 
such clinical observations remains to be clarified. 

The distribution of specific 5-HT2 binding sites appears 
to be similar in rat and human brain (Pazos et al. 1985, 
1987). Animal experiments have indicated that central 
5-HT2 receptors are involved in the mediation of behaviour- 
al effects of  5-HT such as the 5-hydroxytryptophan-induced 
head twitch (see Leysen 1984). Also, these receptors have 
been ascribed an important r61e in major effects of hallucin- 
ogens (Glennon et al. 1983; Rasmussen and Aghajanian 
1986), which are antagonized by ritanserin in rats (Colpaert 
et al. 1985). Finally, electrophysiological experiments have 
described a slow depolarization of central neurons appar- 
ently mediated by 5-HT2 receptors (Aghajanian 1981 ; Da- 
vies et al. 1987). 

Major clinical actions of ritanserin, such as enhanced 
mood and motivation as well as antiparkinsonian effects, 
might suggest a facilitatory effect of the drug on brain dopa- 
minergic neurotransmission. Studies utilizing histochem- 
istry reveals both 5-HT and tryptophan hydroxylase activity 
within the midbrain DA cell clusters (Fuxe 1965; Reubi 
and Emson 1978; Steinbusch 1981) and autoradiography 
shows 5-HT-containing projections from the midbrain 
raphe nuclei to the substantia nigra (SN; Fibiger and Miller 
1977; Imai et al. 1986) and to the adjacent ventral tegmental 
area (VTA; Parent et al. 1981). Recently, serotonergic ter- 
minals have been shown to make direct synaptic contact 
with DA cells in the SN and VTA (Herv6 et al. 1987; Neder- 
gaard et al. 1988a). In addition, Dray et al. (1976) found 
that stimulation of neurons in the median raphe nucleus 
produces a marked inhibition of SN neurons, a response 
which is prevented by endogenous 5-HT depletion through 
pretreatment with para-chlorophenylalanine (PCPA; Fibi- 
ger and Miller 1977). 

Consequently, the present study was undertaken to ex- 
plore the effect of systemic ritanserin administration on the 
activity of midbrain DA neurons in the zona compacta 
(ZC), SN and the VTA with single cell recording techniques. 
Furthermore, we tested whether the stimulatory effect ob- 
served could be antagonized by 5-HT depletion by repeated 
pretreatment with PCPA. 

Preliminary results were presented at the Society for 
Neuroscience Annual Meeting in New Orleans 1987 (Ugedo 
et al. 1987). 
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Materials and methods 

Animals and preparation. Male Sprague-Dawley rats weigh- 
ing 200-300 g (Alab, Sollentuna, Sweden) were used. Rats 
were anesthetized with chloral hydrate (400 mg/kg IP), after 
which a tracheal cannula and a jugular vein catheter for 
intravenous administration of drugs and additional anes- 
thetic were inserted before the animal was mounted in a 
David Kopf stereotaxic instrument. Rectal temperature was 
kept at 36-37 ~ C by means of an electric heating pad. The 
skull was exposed and a small hole was drilled over the 
ZC-SN or the VTA. Coordinates, determined from the atlas 
of Paxinos and Watson (1986), were 3.3 mm anterior and 
2,0 mm lateral to lambda for the ZC-SN, and 3.3 mm and 
0,7 mm for the VTA. In some experiments, rats were pre- 
treated with PCPA, 300 mg/kg/day IP for 3 consecutive 
days and tested 24 h after the last injection. 

removed and the recording site was verified histologically. 
All electrode marks were found within the ZC-SN or VTA 
for cells included in this study. 

Drugs. p-Chlorophenylalanine methyl ester (Sigma, St. 
Louis, USA) and apomorphine HCI (Apoteksbolaget, Swe- 
den) were dissolved in 0.9% NaC1. Ritanserin (sample for 
clinical trials) was generously supplied by Janssen Pharma- 
ceutica, Beerse, Belgium. 

Data analysis. Statistical evaluation of firing rates and vari- 
ation coefficients was made with Student's paired t test. 
Since burst firing values deviated from a normal distribu- 
tion, they were analyzed with the non-parametric Wilcoxon 
matched-pairs signed ranks test and no SEM values were 
calculated for them. A two-tailed P value less than 0.05 
was considered significant. 

Extracellular recording procedures. Extracellular recording Results 
electrodes were pulled in a Narishige vertical puller from 
Omegadot glass tubing and filled with 2 M NaC1 containing 
2% Pontamine Sky Blue. Electrode impedance was 2-4 M~2 
measured at 135 Hz. The electrode was lowered into the 
brain by means of a hydraulic microdrive. Typical DA cells 
were found 6.5-7.5 mm from skull surface in the ZC-SN, 
and 7.5-8.5 mm in the VTA. 

Recordings were made from cells whose electrophysio- 
logical characteristics matched those previously established 
for midbrain dopamine cells (Guyenet and Aghajanian 
1978; Wang 1981; Grace and Bunney 1983), i.e. a triphasic 
action potential of more than 2 ms duration with a notch 
in the initial ascending portion and a basal firing rate of 
1-10 Hz. In addition, the recorded cells corresponded to 
antidromically identified DA neurons previously described 
by us (Grenhoff et al. 1986). 

Extracellular action potentials were amplified, discri- 
minated and monitored on an oscilloscope and an audio- 
monitor. Burst firing, firing rate and regularity of firing 
were analysed from inter-spike time interval histograms 
(ISH) created by an Apple II plus computer. The ISH pro- 
gram collects all time intervals between action potentials 
and displays each interval within the appropriate time bin 
of the abscissa of the histogram (Gerstein 1960). In the 
present study, the ISH program had 256 bins with bin- 
widths of 1-8 ms. Burst firing was measured as the percent- 
age ratio of spikes in bursts to the total number of spikes 
of an ISH. Burst onset was signalled by an interspike inter- 
val less than 80 ms and burst termination by an interval 
greater than 160 ms, values previously shown to be optimal Firing 
(Grace and Bunney 1984). As a measure of regularity of charac- 
firing the variation coefficient (v-c) was employed (Werner teristics 
and Mountcastle 1963). The variation coefficient is the per- 
centage ratio of the standard deviation to the mean interval Rate, Hz 
value of an ISH. Each ISH was based on 500 consecutive Burst 
spikes. For analysis of drug effect, an ISH recorded before firing % 
drug administration was compared to an ISH recorded V-C% 
from the same cell within 5 min after drug administration. 
Only one cell was studied in each animal, n 

At the end of each experiment when suitable, the cells 
were tested for the inhibitory effect of a low dose of apo- 
morphine (25 ~tg/kg IV). Finally a 5 ~A negative current 
was passed through the recording electrode, leaving a blue 
spot at the site of the tip of the electrode. The animal was 
perfused transcardially with 10% formalin, the brain was 

Firing characteristics of midbrain DA neurons 

Midbrain DA cells of the ZC-SN or VTA displayed firing 
rates within the range of 1-10 Hz and showed generally 
two types of firing patterns: 1) single spike firing and 2) 
burst firing. Bursts were characterized as a series of 2-15 
spikes of diminishing amplitude, separated by short inter- 
vals and followed by a longer pause (see Methods). A cell 
was defined as burst firing when it fired at least two three- 
spike bursts out of a series of 500 spikes. Table 1 shows 
the baseline firing parameters of the recorded cells. 

Effects of  ritanserin on DA neurons 

In the ZC-SN, cumulative doses of ritanserin (0.5-2.0 mg/ 
kg IV) increased burst firing in a dose-dependent manner 
(Fig. 1), an example of which is given in Fig. 2. Occasionally 
a non-burst firing cell was brought into a burst firing mode. 
At 1.02.0 mg/kg (IV) ritanserin also increased the firing 
rate (Fig. 3), which is reflected in the post-drug ISH (Fig. 
2) as a shift to the left (shorter inter-spike intervals). The 
lowest dose produced, in addition to increased burst firing, 
decreased regularity of the firing pattern, quantified by a 

Table 1, Firing properties of midbrain DA neurons in untreated 
and para-chlorophenylalanine (PCPA)-pretreated rats 

ZC-SN VTA 

Untreated PCPA Untreated PCPA 

3.55-t-0.47 4.07_+0.46 3.74+0.52 4.30_+0.42 

11 9 18 21 

47.7+3.4 39.3_+4.1 60.3_+4.3 57.3+4.0 

17 16 15 13 

The variation coefficient (V-C) is the ratio between the standard 
deviation and the mean interval value of an inter-spike time interval 
histogram, expressed as per cent. PCPA was administered in a 
dose of 300 mg/kg, IP daily for 3 days. The experiments were per- 
formed 24 h after the last injection. Each value is the mean _ SEM 
of n cells per group 
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Fig. l .  Effect of cumulative doses of ritanserin (0.5-2.0 mg/kg IV) 
on the burst firing of ZC-SN and VTA dopamine neurons in un- 
treated (n) and PCPA pretreated rats (300 mg/kg/day IP, 3 days) 
(=). Results (mean) are presented relative to control values given 
in Table 1. The figure on the columns indicates the number of 
cells. * P<0.05, ** P<0.02 
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Fig. 3. Effect of cumulative doses of ritanserin (0.5-2.0 mg/kg) 
on the firing rate of ZC-SN and VTA dopamine neuron in un- 
treated (n) and in PCPA pretreated rats (300 mg/kg/day IP, 3 days) 
(=). Results (mean-t-SEM) are presented as percentage of control 
values given in Table 1. The figure on the column indicates the 
number of cells. * P<0.05, ** P<0.01 
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Fig. 2A-D. Inter-spike time interval histograms from a ZC-SN dopamine cell before (A) and after ritanserin. Ritanserin 0.5, 1.0 and 
2.0 mg/kg IV (B, C and D) increased firing rate from 2.15 to 3.08, 3.30 and 3.48 Hz, and burst firing from 0 to 2, 8 and 13%. 
This is reflected in a shift to the left (shorter inter-spike intervals) of the histogram and the emergence of a bimodal interval distribution, 
the left peak representing the short intervals within bursts 

significant increase of  the var ia t ion coefficient from 
48.7_+4.5% (mean •  to 52.8_+4.8% (n=13,  P <  
0.01). 

In the VTA, 1.0-2.0 mg/kg (IV) of  r i tanserin increased 
the burst  firing (Fig. 1) and  all doses (0.5-2.0 mg/kg IV) 
produced an increase in the firing rate in a dose-dependent  
manner  (Fig. 3). N o  changes in regulari ty were observed 
at  any dose of  r i tanserin in the VTA. A n  example of  the 
post-drug ISH recorded from a V T A - D A  cell before and 
after r i tanserin adminis t ra t ion is shown in Fig. 4. 

In  some experiments,  an inhibi t ion of  cell firing was 
seen in the first minute  after injection. This transient  effect 
was immediate ly  followed by the excitat ion described here. 
The excitatory action o f  r i tanserin was never observed to 
abate, not  even when a neuron was followed for over 4 h. 
This long lasting effect of  r i tanserin on D A  neurons may  
reflect the slow dissociat ion o f  r i tanserin from 5-HT2 recep- 
tors observed in binding experiments (Leysen et al. 1985). 

After  r i tanserin adminis t ra t ion an IV injection of  a low 
dose of  apomorph ine  (25 gg/kg) produced  a 30-100% inhi- 
bit ion of  all cells tested (n = 12). 

Effect of  ritanserin on DA cells after 5-HT depletion 

In order  to determine the role of  endogenous 5-HT in the 
excitatory effect of  r i tanserin on D A  cells, rats were pre- 
t reated with the 5-HT synthesis inhibi tor  PCPA,  which 
causes a virtually complete deplet ion of  5-HT in brain tissue 
(Koe and Weissman 1966), in a dose of  300 mg/kg/day  IP 
for 3 days. Under  these condit ions the baseline firing char- 
acteristics of  midbra in  D A  cells were not  significantly dif- 
ferent from those obtained in untreated animals (Table 1). 
However,  this pre t reatment  total ly blocked the excitatory 
effect of  r i tanserin (0.5-2.0 mg/kg IV) on ZC-SN and VTA 
D A  neurons (Fig. 3). A t  the highest dose (2.0 mg/kg IV), 
a decrease in regulari ty o f  the firing pattern,  i.e., an increase 
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Fig. 4A-D. Inter-spike time interval histograms from a VTA dopamine cell before (A) and after ritanserin. Ritanserin 0.5, 1.0 and 
2.0 mg/kg IV (B, C and D) increased the firing rate from 4.90 to 7.03, 7.04 and 7.18 Hz and the percentage of burst firing from 
59 to 69, 72 and 74%. This is reflected in the shift to the left (shorter inter-spike intervals) of the histogram 

in the variation coefficient from 35.9 _+ 4.3% (mean + SEM) 
to 39.2_+4.7%, was seen in the ZC-SN (n=10, P<0.05).  
Thus, a higher dose of ritanserin was necessary to elicit 
decreased regularity of ZC-SN cell firing after PCPA pre- 
treatment. 

The typical inhibitory effect of a low dose of apomor- 
phine (25 pg/kg IV) on the midbrain DA neurons was al- 
ways observed after ritanserin administration in the PCPA- 
pretreated rats (n = 10). 

Discussion 

The major finding of the present investigation is the signifi- 
cant and long lasting, dose-dependent ritanserin-induced 
activation of midbrain DA neurons, both in the ZC-SN, 
the origin of the nigrostriatal DA system, and in the VTA, 
which is the source for the so-called mesolimbic DA system 
(see Bj6rklund and Lindvall 1984). The increased activity 
of the DA cells involved both single spike firing and burst 
firing without a simultaneous change in regularity of dis- 
charge. Although conventional neuroleptics increase DA 
cell firing by means of their DA receptor blocking proper- 
ties (Bunney et al. 1973), such a mechanism can probably 
not account for the similar effect of ritanserin, since this 
drug has relatively low affinity for D2 receptors (Leysen 
et al. 1985). In addition, the present study showed that a 
small dose of apomorphine still causes inhibition of the 
DA cell firing after ritanserin administration. Thus, ritan- 
serin causes profound activation of midbrain DA cells with- 
out concomitant blockade of DA receptors. Clearly, such 
an action on the nigrostriatal DA system may be relevant 
for the purported antiparkinsonian effect of the drug. In 
addition, ritanserin-induced activation of the mesolimbic 
DA cells may serve as one underlying mechanism for the 
mood elevating action of the compound as well as asso- 
ciated enhancement of  motivation and drive, since the me- 
solimbic DA system has been profoundly implicated both 
in reward mechanisms (see Bozarth 1986) and in motiva- 
tional behaviour (Papp and Bal 1986). 

The present results further indicate that the activation 
of midbrain DA cells by ritanserin is an indirect action, 
requiring intact stores of endogenous 5-HT, since previous 
depletion of 5-HT by pretreatment with PCPA abolished 
this action of the drug. Thus, it can be concluded that sys- 
temic ritanserin administration induces disinhibition of the 
DA cells, i.e., release from a tonic 5-HT2 receptor-mediated 
control mechanism. 

In contrast to the almost immediate, activating effect 
of the 5-HT2 receptor antagonist on midbrain DA cell activ- 
ity, depletion of endogenous 5-HT by repeated PCPA treat- 
ment caused but a slight and insignificant increase in firing 
rate (Table 1). However, repeated PCPA treatment will im- 
pair 5-HT function gradually over more than 3 days, thus 
allowing various compensatory mechanisms to develop. In 
addition, the possibility that various 5-HT receptor sub- 
types may differentially influence DA cell firing cannot be 
excluded. Thus, the consequences of acute, specific 5-HT2 
receptor antagonism and sustained 5-HT synthesis inhibi- 
tion, respectively, for DA cell firing should not necessarily 
be the same. 

In view of previous morphological and physiological 
evidence (cf., Introduction), the localization of the effect 
of ritanserin might be within the midbrain DA cell clusters. 
However, whereas Dray et al. (1976) found that microion- 
tophoretic application of 5-HT causes inhibition of firing 
of unidentified nigral neurons, two other studies found no 
effect of 5-HT on pharmacologically and antidromically 
identified midbrain DA neurons (Aghajanian and Bunney 
1974; Collingridge and Davies 1981). Thus, microionto- 
phoretic experiments do not provide unanimous support 
for 5-HT-mediated inhibition of these DA cells. Yet, in 
a recent study 5-HT was found to specifically affect mem- 
brane currents of ZC-SN cells, but only when applied to 
distal dendritic fields extending into the zona reticulata (Ne- 
dergaard et al. 1988a). Moreover, this action was antago- 
nized by cinanserin, which blocks 5-HT2 receptors. Also, 
previous experiments have revealed that 5-HT can increase 
the release of dendritic DA within the SN, an effect which 
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is calcium dependent and antagonized by cinanserin (Wil- 
liams and Davies 1983). In  fact, the facilitatory effect of 
5-HT on dendritic release of DA in the SN seems similar 
to that of amphetamine. Recently two reports have pro- 
vided evidence that amphetamine can cause inhibit ion of 
DA cell firing locally within the SN (Nedergaard et al. 
1988b) and in the VTA (Viscardi et al. 1987) by release 
of DA from the dendrites. Consequently, ritanserin may 
disinhibit DA cell firing by antagonizing 5-HT-induced re- 
lease of DA and subsequent autoinhibi t ion of the DA neu- 
rons. Nevertheless, the rather low density of 5-HT2 recep- 
tors in the rat SN and VTA, respectively, as judged by 
autoradiographic evidence (Pazos et al. 1985), might sug- 
gest that ritanserin's primary site of action to disinhibit 
DA cell firing is localized at some other site in brain. 

The significant, long lasting activation of DA cell firing 
by ritanserin is of considerable interest in view of its re- 
ported therapeutic action on so-called negative symptoms 
in chronic (type II) schizophrenia, which are relatively resis- 
tant  to treatment with conventional  neuroleptics. In fact, 
some clinical findings indicate a reduced central DA func- 
tion in this degenerative type of schizophrenia (van Kam- 
men et al. 1983; Karoum et al. 1987). 

The thymostenic effects of ritanserin, i.e., mood eleva- 
tion and improvement  of energy have, so far, been ex- 
plained by the increased slow wave sleep induced by the 
drug (Reyntjens et al. 1986). The present study allows the 
additional interpretation that such behavioural effects, as 
well as improvement in parkinsonism and chronic schizoph- 
renia, may be related to activation of midbrain DA systems 
through release from serotonergic inhibition. 
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