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Several experimental findings have emphasized the 
significant role played by Vascular Endothelial 
Growth Factor/Vascular Permeability Factor 
(VEGF/VPF) in tumor angiogenesis. For example, 
VEGF/VPF actions are predominantly restricted to 
endothelial cells [1], and the expression of VEGF/ 
VPF is enhanced in tumor cells that lack oxygen and 
glucose [2]. In addition, inhibiting the interaction of 
VEGF/VPF with endothelial cells slows the growth 
of several tumors in vivo [3, 4]. The purpose of this 
review is to summarize what is known concerning 
one aspect of the biology of VEGF/VPF, the inter- 
action of the growth factor with its cell surface re- 
ceptors. 

Structural properties of VEGF/VPF receptors 

There are two known high affinity VEGF/VPF re- 
ceptors; these are KDR/FLK1 [5-8] and FLT1 [9, 
10]. KDR (kinase insert domain containing recep- 
tor) was cloned from a human umbilical vein endo- 
thelial cell cDNA library [5]. FLK1 (fetal liver ki- 
nase 1) is the mouse homologue of KDR and was 
originally cloned from a fetal liver stem cell cDNA 
library [7]. FLT1 (fms-like tyrosine kinase) was ini- 
tially cloned from a human placenta cDNA library 
[9]. KDR, FLK1, and FLT1 were each discovered as 
orphan receptors using PCR and degenerate oligo- 
nucleotide primers designed from the kinase do- 
mains of known receptor tyrosine kinases. 

There are now over 30 known receptor tyrosine 
kinases (RTKs); these have been categorized into 9 
subtypes based upon similarity in structural lea- 

tures. A recent review [11] placed KDR/FLK1 and 
FLT1 into RTK subtype 5, which also contains the 
orphan receptor FLT4 [12, 13]. KDR/FLK1, FLT1, 
and FLT4 each contain a single membrane spanning 
domain, seven extracellular immunoglobulin-like 
domains and a kinase-insert domain. There is a 
33% identical match in amino acid sequence be- 
tween KDR and FLT1 in the extracellular domain, 
80% match in the kinase domain, 43% match in the 
kinase insert domain, and a 22% match in the cyto- 
solic tail. 

Several investigators have noted structural simi- 
larities between VEGF/VPF and PDGF (platelet- 
derived growth factor) [14-16]. While there is a low 
sequence homology (18 %), both growth factors are 
dimers and each contain conserved cysteines defin- 
ing inter- and intra-disulfides. As with PDGF, there 
is a second gene (PIGF: placenta growth factor) en- 
coding a growth factor with 45% sequence homol- 
ogy to VEGF/VPF [17]. Both the PDGF and 
VEGF/VPF systems contain two receptors, and 
there are analogies as to how the ligands bind to 
their respective cell surface receptors. VEGF/VPF 
interacts with both FLT1 and KDR (PDGF-B di- 
merize both PDGF<z receptor homodimers and 
PDGF-[3 receptor homodimers) and PIGF interacts 
with only FLT1 (PDGF-A will only dimerize 
PDGF-a receptor homodimers) [18-20]. A recent 
study has identified naturally occurring VEGF/ 
VPF and PIGF heterodimers [21], further empha- 
sizing the similarities between VEGF/VPF and 
PDGE It may be expected that heterodimers exist 
between KDR and FLT1, though this has not as yet 
been reported. 
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Heparan sulfate proteoglycans are required for 
binding of VEGF/VPF to its receptors 

Evidence supporting an essential role of heparan 
sulfate proteoglycans (HSPG) in the binding of 
VEGF to receptors is: 
(1) Heparin augments binding of ~25I-VEGF to 

both Bovine Aortic Endothelial (BAE) and 
Human Umbilical Vein Endothelial (BAE) 
Cells [22]. 

(2) Treatment of endothelial cells with heparinase 
results in the abolishment of 125I-VEGF binding 
which can be restored by adding heparin [22]. 

(3) Heparin is required for radioligand binding to a 
soluble FLK1 receptor [23]. 

(4) KDR-transfected CHO cells which are muta- 
ted in their ability to synthesize heparan sul- 
fates do not bind radioligand in the absence of 
heparin [24]. 

HSPG are also required for basic fibroblast growth 
factor (bFGF) binding to its receptor [25, 26], al- 
though there are significant differences between 
the VEGF/VPF and bFGF systems. While greater 
that 90% of bFGF binding to cells is due to low af- 
finity cell surface HSPG [27], there are no low affin- 
ity VEGF/VPF binding sites on endothelial cells. 
The size of heparin and degree of sulfation which 
maximally augments binding is different for VEGF/ 
VPF than that for bFGF [28]. 

Preliminary evidence would suggest that heparan 
sulfates modulate growth factor binding to KDR 
and FLT1 differently. Heparin augments 125I-VEGF 
binding to KDR-expressing melanoma cells, but in- 
hibits radioligand binding to FLTl-expressing mel- 
anoma cells [20, 29]. Melanoma cells expressing 
both receptor subtypes show a biphasic sensitivity 
to added heparin [20]. While these results indicate 
that in certain cells KDR and FLT1 show a different 
sensitivity to heparin, a more detailed mechanistic 
analysis of the results is complicated by the pres- 
ence of endogenous HSPG on the melanoma cell 
surface. Similar complications were circumvented 
for studies on bFGF by developing experimental 
systems where the effect of heparin on binding of 
growth factor could be monitored in the absence of 
cell surface HSPG [25, 30]. These systems are being 
adapted for studies on VEGF/VPF and it has re- 

cently been shown that heparin is required for 
VEGF binding to both a soluble FLK1 receptor and 
KDR expressed in HSPG deficient CHO cells [23, 
24]. The effect of heparin on binding to FLT1 in 
these systems has not been studied. 

It is not clear whether HSPG exert their effect by 
interacting with growth factor or receptor. Until re- 
cently, studies examining the effect of heparin on 
binding were done using the 165 amino acid alterna- 
tively spliced form [31, 32] of VEGF/VPE VEGF/ 
VPF165 is a heparin binding protein, as are two of the 
other three alternatively spliced variants of the 
growth factor. VEGF/VPF~21, on the other hand, 
does not bind heparin and a recent study has exam- 
ined the requirement for heparin in VEGF/VPF121 
binding to receptors [29]. It was shown that heperi- 
nase treatment of FLTl-expressing melanoma cells 
blocks binding of growth factor indicating either an 
essential interaction of HSPG with cell surface re- 
ceptors or the presence of cell surface heparin bind- 
ing proteins which regulate receptor function. In- 
terestingly, addition of exogenous heparin to hepa- 
rinase-treated cells restores VEGF/VPF~65 binding 
but not VEGF/VPF12 ~ binding [29] indicating that 
changes in the composition of cell-surface heparin- 
like molecules may differentially affect the interac- 
tion of various VEGF isoforms with VEGF recep- 
tors. 

Signaling through VEGF/VPF receptors 

The specific roles of KDR/FLK1 and FLT1 in vascu- 
lar development and function is not clear, though 
there is some information on the signal transduc- 
tion pathways induced by the specific receptor sub- 
types. Binding to VEGF/VPF induces autophos- 
phorylation of both receptors [33]. To date it has 
proven easier to demonstrate biological conse- 
quences of VEGF/VPF binding to KDR/FLKlthan 
to FLT1. Waltenbergerger et al. [33] has expressed 
both receptor subtypes in Porcine Aortic Endothe- 
lial (PAE) cells. These investigators showed that 
while KDR-expressing cells showed striking chang- 
es in cell morphology, actin reorganization and 
membrane ruffling, chemotaxic and mitogenicity 
upon VEGF stimulation, FLT1 expressing cells 



lacked such responses. Tyrosines 953,998,1065, and 
1061 have been identified as autophosphorylation 
sites on KDR [34], though the SH2-domain con- 
taining signaling protein which bind to these sites is 
not known. 

While it has been more difficult to demonstrate 
cellular responses stimulated by VEGF/VPF bind- 
ing to FLT1 than for KDR/FLK1, it has been easier 
to identify signaling proteins which interact with 
FLT1. From studies done in rat sinusoidal endothe- 
lial cells it was shown that VEGF/VPF binding to 
FLT1 leads to phosphorylation of PLC 7 and GAP 
proteins as well as activation of MAP kinase [35]. In 
FLTl-expressing PAE cells VEGF/VPF induces 
phosphorylation of Fyn and Yes [33]. Cunningham 
et al. [36] has utilized a yeast two-hybrid system to 
demonstrate that the FLT1 tyrosine kinase domain 
interacts with the p85 subunit of phosphatidylinosi- 
tol 3-kinase. 

The cellular consequence of PIGF binding to 
FLT1 is at present unclear. Purified PIGF isoforms 
have little or no direct mitogenic or premeability- 
enhancing activity on adrenal cortex-derived capil- 
lary endothelial or human umbilical vein endothe- 
lial cells [18]. However, the PIGF isoforms are able 
to significantly augment the action of low concen- 
tration of VEGF both in vivo and in vitro [18]. 

Regulation of VEGF receptor expression during 
angiogenesis 

There are now several reports documenting that 
the expression of both VEGF/VPF and its recep- 
tors are increased in appropriate cell types during 
physiological circumstances requiring neovascular- 
ization. Studies on tumor angiogenesis have shown 
that expression of KDR/FLK1 and/or FLT1 in endo- 
thelial cells correlates with vascularity, metastasis, 
and proliferation of human colon cancer [37], the 
progression of von Hippel-Lindau Disease-associ- 
ated and sporadic hemangioblastomas [38], the 
growth of human gliomas [39] and correlates with 
human hepatic tumorigenesis [40]. The increased 
expression of receptor appears to be essential for 
the progession of these tumors since inhibition of 
FLK1 by either a dominant negative receptor [3], or 
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neutralizing growth factor antibody [4] blocks tu- 
mor progression. In addition to its role in tumor an- 
giogenesis, increased expression of VEGF/VPF re- 
ceptors contributes to the progression of other 
physiological processes requiring neovasculariza- 
tion. Expression of KDR/FLK1 and/or FLT1 is in- 
creased in the developing embryonic vasculature [7, 
41], in the vessels bordering healing skin wounds 
[41], and in the venular endothelium in delayed hy- 
persensitivity skin reactions [42]. 
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