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Fractal rheological models and fractional differential equations 
for viscoelastic behavior 
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Abstract." A constitutive equation for viscoelastic behavior containing time 
derivatives of stress and strain to fractional order is obtained from a fractal 
rheological model. Equivalence between tree and ladder fractal models at long 
times is demonstrated. The fractional differential equation is shown to be 
equivalent to ordinary differential formulations in the case of a simple power- 
law response; the adequacy of such formulations to describe non-linearity has 
been demonstrated previously. The model gives a good description of visco- 
elastic behavior under all stress modes and will be extended in future to include 
aging effects. 
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1. Introduction 

Several authors (Tschoegl, 1989; Friedrich, 1991; 
G16ckle and Nonnenmacher,  1991) have recently sug- 
gested (or revived) use of differential or integral equa- 
tions of  fractional order to describe viscoelastic 
behavior intermediate between purely elastic and 
purely viscous. Such equations are usually introduced 
as a generalization of the differential equation related 
to the standard linear solid, or Zener model, obtained 
by replacing time derivatives of  stress and strain by 
derivatives of  fractional order. These descriptions 
lead asymptotically to power law behavior. (Similar 
generalizations of the diffusion equation have also 
been introduced and solved by Wyss (1986) and by 
Schneider and Wyss (1989).) Such formulations are 
concise in the sense that they give an adequate 
description of real viscoelastic behavior with a limited 
number of material parameters, with no need to use 
a relaxation (or retardation) spectrum. Tschoegl 
(1989) and Friedrich (1991b) have stated, however, 
that these equations do not have any physical inter- 
pretation, although Bagley and Torvik (1983) ob- 
tained a fractional differential constitutive equation 
of order 1/2 from the Rouse model. The general dif- 
ferential equation given by Friedrich (1991 a) 

¢y + za ~a G p - 8~ ~ 
0 t  ~ = r L M ~ - - ~ - + L E e  (1) 

was shown to violate the thermodynamic condition 
for a monotonically decreasing energy function unless 
a =/?. Friedrich also showed that Eq. (1) can give a 
valid solution for a___fl if a derivative of strain to 
order a is added to the righthand side, or if EE = 0. 
G16ckle and Nonnenmacher (1991) used a description 
similar to Eq. (1) and showed that the relaxation func- 
tion resulting from this equation can be expressed 
in terms of Fox functions, interpolating between 
stretched exponential short-time behavior and power- 
law behavior at long times. They were able to fit 
literature data on relaxation of polyisobutylene in the 
glass transition range using only four parameters 
(EM, EE, z and p = a)  and showed that the same pa- 
rameters could be used to describe literature data on 
storage and loss compliance in the same range; they 
were also able to fit dynamic data on natural rubber 
and galactomannan-borax gel using the four parame- 
ter model. Thus, this model adequately describes 
behavior in a variety of physical systems and strain 
histories. They found that fl must be different from a 
to model the slope of the rubbery pseudoplatean, and 
that a difference between a and fl leads to a limiting 
frequency restricting the range of validity of the treat- 
ment. They consider a = fl as a special case. Also, 
Bagley and Torvik (1983) were able to fit dynamic 
data on butyl rubbers covering three decades of fre- 
quency to their fractional differential formulation of 
the Rouse model. 



N. Heymans and J.-C. Bauwens, Fractal rheological models of viscoelasticity 21l 

Independently, rheological models of viscoelastic 
behavior exhibiting self-similarity have been shown 
by Bauwens (1988, 1992a) to give an excellent descrip- 
tion of the low-strain creep behavior of glassy poly- 
mers. These models also exhibit asymptotic power- 
law behavior. In certain cases, they can be described 
by ordinary differential equations; such equations 
have independently been shown to describe diffusion 
of deformation by a random walk along a linear 
structure and thus have physical meaning. Simulta- 
neously, it has been shown by Schiessel and Blumen 
(1993) that a special kind of ladder model can be de- 
scribed by a fractional differential equation. 

It is the purpose of this paper to show the connec- 
tion among such fractal theological models, and also 
the relationship between these models and the under- 
lying deformation mechanism of a polymer chain. It 
will be shown that fractal rheological models lead to 
an analytical description of the time-dependent 
behavior in terms of integro-differential equations of 
fractional order, and therefore that the rheological 
model, the fractional differential equation approach 
and, under certain restrictive conditions, the ordinary 
differential equation approach are equivalent. Conse- 
quently, the most convenient approach may be used 
in each specific problem. It will also be shown that 
fulfilment of Friedrich's or G10ckle and Nonnen- 
macher's conditions for thermodynamic compatibili- 
ty arises naturally when the fractional differential 
equation is obtained from a fractal rheological model. 

It is not the purpose of this paper to show that frac- 
tional differential formulations of viscoelastic behav- 
ior fit experimental data adequately, as this has been 
done previously and can be found in the literature 
(e.g., Bagley and Torvik, 1983; GlOckle and Nonnen- 
macher, 1991). 

2. Rheologieal model 

2.1 General fractal tree model 

Classical rheological models of viscoelastic behav- 
ior have been fully discussed by Tschoegl (1989). It is 
well known that no single element adequately de- 
scribes all deformation modes equally well (the Max- 
well element is better suited for stress relaxation and 
the Voigt model for creep). Behavior of real polymers 
can be reproduced by a combination of Maxwell 
elements in parallel or of Voigt elements in series, 
resulting in a distribution of relaxation or retardation 
times. Although these two distributions can be inter- 
converted using classical procedures, they are not 
identical, and cannot therefore be considered as a 

fundamental property of the material, i.e., use of 
such distributions is simply a curve-fitting procedure 
requiring a large number of empirical parameters. 

An alternative model requiring a low number of pa- 
rameters which are identical for all deformation 
modes has been suggested by Bauwens (1988) and is 
shown in Fig. 1. In the most elementary form of this 
model, the viscoelastic response, determined by the 
complex modulus X, is represented by an elastic ele- 
ment E deforming in a viscous medium represented by 
an element whose complex modulus is io)r/, both 
elements being connected in series with the visco- 
elastic medium, i.e., with an element whose complex 
modulus is X. The self-similar and recursive nature of 
the model is immediately apparent, since any part of 
the model (from any branching point to "infinity") is 
identical to the whole model. (For a definition of self- 
similarity see Mandelbrot, 1982.) The model is thus a 
fractal model. The complex modulus of the whole 
model fulfils the equation: 

X =  \ E  X/t + \ / - - ~  X )  ' (2) 

which on rearranging gives: 

X =  i]/~-rlE= e]/icor , (3) 

where r = ~/E is the time constant of the basic ele- 
ment, which is also the shortest time constant of the 
model. 

Fig. 1. Self-similar (fractal) tree model for viscoelastic be- 
havior 
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itu,,/ 

Fig. 2. Two-stage generalization of fractal tree model 

If the viscous element is itself replaced by a fractal 
viscoelastic element composed as shown in Fig. 2, 
whose complex modulus is Z, 

X =  Z ~  (4) 

and 

Z = / ] / ~ - r / X  , 

giving 

X =  (io)q)l/4E1/2X1/4 , 

o r  

( 5 )  

(6) 

X =  (i09~)1/3E 2/3 (7) 

By expressing X as l/Z1Z 2 and iterating the process 
of decomposition of elements Z i, Eq. (6) can be 
generalized to yield 

X = (i¢orl)Z(1/2i)EX(l/2J)xl-X(I/2i)-X(l/2J) , ( 8 )  

where the sums cover all values of i o r j  corresponding 
to the levels of decomposition where an element Z is 
a viscous or elastic element respectively. Thus, Eq. (7) 
becomes 

X = ( i o ) s f E  1 -p (9) 

where 

Z(1/2)i  (10) 
fl = X(1/2)i + X(1/2)j • 

Since Eq. (10) is simply a binary representation of a 
number, an appropriate choice of the values of i and 
j allows any exponent fl to be obtained to any desired 

precision. The model can thus be formally generalized 
to give any exponent fl (although evidently ease of 
visualization of the structure of the model has become 
obscured in the process). It is thus legitimate to name 
the generalized model a "viscoelastic element of expo- 
nent fl", expressing behavior intermediate between 
purely elastic behavior (obtained if fl = 0) or linear 
viscous behavior (obtained if fl = 1). 

This model will be called the tree model hereafter to 
distinguish it from the ladder model to be investigated 
below, which is also a fractal model. 

2.2 Ladder models 

The ladder model, or Marvin-Oser model, has been 
extensively discussed by Tschoegl (1989). The classical 
ladder model can be depicted as in Fig. 3. The com- 
plex modulus X fulfills the equation: 

1 1 1 
- - -  + ( 1 1 )  

X X+ico~ E 

o r  

X -  i¢°~l + ~(i4~l)2+ Ei°gtl (12) 

The ratio rl/E is the time constant r of the model. In 
terms of this time constant, Eq. (12) can be written: 

X -  i°9~+ ~(i4~1)2+i°9re2 (13) 

Like the tree model, the ladder model is fractal. 
Differential operators of fractional order appear in its 
mathematical expression; although the model is con- 
ceptually simpler to visualize than the tree model, its 
analytical description is more complicated. The two 
models are equivalent in the continuous limit, since 
the viscous element then acts on an infinitely short 
segment; thus t/becomes vanishingly small while E re- 

Fig. 3. Ladder model and its self-similar representation 
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mains constant. In this case, Eq. (13) relative to the 
ladder model reduces to Eq. (3) shown above to de- 
scribe the fractal tree model. This equivalence will be 
discussed more flflly below (4.1). 

The ladder model with identical values of E and r/ 
for all elements can thus only yield fl = 1/2; Schiessel 
and Blumen (1993) use a ladder model in which E and 
r / o f  the k th element depend on k as: 

Ek = 1 F(f l )  F ( k + l - f l ) E  o , (•4) 

2 k -  1 F(1 - f l )  F ( k -  1 +f l )  

and 

Y ~ )  F ( k  + l - f l )  
t/k = 2 -  r/0 . (15) 

r ( 1 - p )  r(k+~) 

By expanding the Laplace transform of the constitu- 
tive equation of  the model as a continued fraction, 
they showed that, to a first approximation, the 
behavior of the model can be described by a fractional 
differential with exponent ft. Their model is thus hier- 
archical, but not self-similar. 

2.3 Response  o f  the mode l  

The symbolic operator (ico) ~ represents the time- 
domain operator d~ /d t  ~, so that differentiation to 
fractional order appears naturally as a consequence of 
the fractal nature of the rheological model. The dif- 
ferential equation 

d• 1 d -/~ 
a = E r  p e or e - - -  - S a  (16) 

E r B dt 

can easily be solved by classical methods. The solu- 
tion can be found from the general relationship given 
by Oldham and Spanier (1974) (to whom the inter- 
ested reader is referred for more information on frac- 
tional calculus than can be given here): 

dq t p F ( p +  1) 

dt  q F (p  - q + 1 ) 
t p - q  , (•7) 

where q is positive for differentiation and negative for 
integration and the arguments of  the gamma func- 
tions must be positive. Since, in fractional calculus, 
formally identical relationships are used for differen- 
tiation or integration, the term "differintegral" is ap- 
plied to either operator.  

It should be noted in passing that the two Eqs. (16) 
are not equivalent for a general function; they are, 

however, equivalent for functions which are expan- 
dable in terms of differintegrable units, in particular 
for functions which can be expressed as a series of 
powers of t ~ and which are bounded for t = 0. As 
shown by Friedrich (1991 b), by G1Ockle and Nonnen- 
reacher (1991), and below, this is the case in creep and 
stress relaxation; an explicit solution of the fractional 
differential equation for periodic functions is given by 
Oldham and Spanier, and the dynamic response is not 
considered further in this paper. 

In creep, strain is found by integration of the con- 
stant stress (ao tp with p = 0) to order fl, hence in 
Eq. (17) p = 0 and q = - f l ,  and since F(1) = 1, the 
strain response is: 

a0 1 (_tr)/~ e - . (18) 
E r (1  +B) 

The stress relaxation response is found by differentia- 
tion of constant strain (eo tp with p = 0) to order 
q = f l  as: 

° - r ( l  - / ~  
(19) 

The model is thus a non-standard model, i.e., it has 
a vanishing instantaneous compliance or an infinite 
instantaneous modulus. It can be transformed into a 
standard model by adding a spring E u in series. The 
model is then a generalized Maxwell model composed 
of  an elastic element in series with a viscoelastic fl ele- 
ment. The behavior is now described by: 

E r  p d~ e = 1~ a , (20) 
dt  ~ E M dtPJ 

i.e., Eq. (1) with a = ft. The creep response becomes 
simply: 

e = -~ , (2t) 
E M E F(1 +fl)  

or, on replacing 1 /E  M by J0 and E F ( 1  + f l ) r @ E  M by 
r0 ~, 

J = J0 1 + . (22) 

As expected, the response of  the standard model in 
creep is obtained simply by adding the instantaneous 
compliance J0 to the retarded compliance. It can be 
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noted that, with no loss of generality, E can be taken 
equal to E M by a suitable adjustment of the time 
constant, thus no distinction will be made below be- 
tween the two moduli. 

The relaxation response can be found either by 
Laplace transform or by expanding a in powers of t ~ 
as carried out by Friedrich (1991 b) as: 

Gy a = ~ aj . (23) 

Equation (20) becomes 

E e o  = 

r (1  -,8) 

2 rt - + 
F [ l + j f l ]  // @ J / ~  " 

(24) 

Term-by-term identification between both sides of 
Eq. (24) gives the recurrence relationship for the coef- 
ficients of Eq. (23), for all j ~a - 1: 

r[1 +j,e] 
, ( 2 5 )  

aj+~ = - a j  F [ l  + U + l )B ] 

whereas for j = - 1 the starting condition is obtained: 

ao+ a _ i £ ( l  - B )  = E~teo • (26) 

There remains one degree of freedom in the choice of 
the parameters of the expansion. The short-time re- 
sponse can be found by choosing a_ 1 = 0; giving 

a 0 = E M e  0 

aj = ( -  1 )J EMe° (27) 
r[1 +j/~] 

The instantaneous modulus is, of  course, E M and at 
short times the expansion is similar to that of the 
stretched exponential. 

The long-time response is found by choosing 
a0 = 0, giving 

EMEO 
a _  1 - m 

r ( t  -~)  

a _ j  = ( - 1 )  j+l EMeO 

e [ l  - j p ]  

(28) 

The expansion contains only terms of  negative power 
and is necessarily limited to j f l  < i, since the fractional 
differential is not defined for larger powers of 1 / t ;  for 
t-> r the response is asymptotically a power law of ex- 
ponent fl; Eq. (28) can therefore be considered as 
yielding an asymptotic expansion valid at long times, 
showing that the response is a simple power law only 
at times much longer than the time constant. In prac- 
tice, the (theoretically) convergent series defined by 
Eq. (27) leads to problems with rounding-off errors 
for t / r  greater than 20 or 30; in this region the asymp- 
totic long-term expansion is not yet sufficiently pre- 
cise to be a valid continuation of the series. However, 
by extending the series t o j f l <  2, using Eq. (28) for the 
coefficients, a closer approximation can be obtained, 
as shown in Fig. 4, although there is no justification 
for extending the expansion to powers lower than - i. 

It should be noted that the response of the standard 
model can be retrieved from Eq. (16) by replacing e by 
e - a / E ;  Eq. (16) thus gives the retarded deformation 
under the relaxing stress a ( t ) .  This equation can also 
be considered as describing a single viscoelastic ele- 
ment with behavior intermediate between linear elasti- 
city (/3 = 0) and linear viscosity & = 1 ). Thus, a com- 
bination of linear elastic and linearly viscous elements 
described by ordinary differential equations yields a 
model exhibiting intermediate viscoelasticity de- 
scribed by a fractional differential equation. lo] 
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Fig. 4. Relaxation function of fractional Maxwell element 
with fl = 0.3. * Power series, Eq. (27). Asymptotic expan- 
sion, Eq. (28): [] limited to JB < 1; o limited to jfl < 2. In- 
set: enlargement of overlap region 
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3. Fractional differential formulation 
for solid models 

3.1 Generalized ~VIaxwell model 

The Maxwell model can be generalized by replacing 
the elastic element and the viscous element by visco- 
elastic elements with exponents respectively equal to 7 
and fl; with no loss of generality, one may assume 
7_<ft. The constitutive equation of the generalized 
model in symbolic notation is: 

e = 0- (29) 
'\& x2/  

o r  

or in fractional differential formulation: 

r z~-OTy=0-+ra with O<a_<fl<l  (31) 
Ot a 

where a has been substituted for /3-7.  Friedrich's 
condition for thermodynamic compatibility of Eq. (1) 
when E E = 0 is thus obtained automatically when the 
fractional differential equation for the generalized 
Maxwell model is derived from a rheological model. 

If 7 = 0, one of the viscoelastic elements becomes 
purely elastic and a =/3 is obtained. On the other 
hand, if one of the elements becomes purely viscous 
B = I .  

3.2 Generalized Zener model 

The constitutive equation for the standard three- 
element solid model (or Zener model, Fig. 5) is found 
from the system: 

E. a, 

Ee,E 

| ×,E2 Em,¢~ 

Fig. 5. Zener model and its extension including a fractal 
viscoelastic element 

(7 = O - 1 + O "  2 

= g ~ + e ~ '  

0-1 = E E g  

a2 = E M e  ~2' , (32) 

where subscripts M and E refer to the Maxwell ele- 
ment and the restraining elastic element respectively, 
and from the response of the viscous element: 

del 
0" 2 = r / M -  (33) 

dt 

Equations (32) allow the deformation of the viscous 
element to be expressed as 

e ~ = e ( l + ~ M  ~ EM0- (34) 

Introducing Eq. (33) into Eq. (34): 

a2 = tlM-~ 1 + EE da ~lM 
EM/ dt E M ' 

and since 

(35) 

(E 2 = 0 - -  G I -= 0---EE£ (36) 

V de (E + E da] (37) 

r l M / E  M is the time constant z0 of the Maxwell ele- 
ment. The constitutive equation of the Zener model is 
therefore: 

da d---e+ Eee . (38) a + ro - ~  = (EM + Ee) ro at 

Friedrich (1991a) and GlOckle and Nonnenmacher 
(1991) generalized Eq. (38) by replacing the time deri- 
vatives of stress and strain with fractional derivatives 
of order a and/3, respectively, and showed that the 
compliance is a monotonically non-decreasing func- 
tion of time only if a =/3. Friedrich (1991b) also 
stated that "The good flexibility of this model with 
fractional derivatives is unfortunately balanced by 
bad physical interpretability". Tschoegl (1989) dis- 
cusses fractional differentiation in Chap. 6, devoted 
to mathematical models, with no reference to rheo- 
logical models. 
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In fact, Friedrich's equation can be obtained from 
the Zener model itself: if the viscous element in the 
Zener model is replaced by a fractal viscoelastic ele- 
ment such as that in Figs. 1 or 2, its viscoelastic re- 
sponse is expressed by a fractional derivative accord- 
ing to Eq. (16), which replaces Eq. (33). Equation (34) 
expressing continuity of deformation remains valid, 
and on differentiating this equation to order fl, we ob- 
tain: 

F e d%] 

or on rearranging: 

dB a p d/~ e 
a + r 0 - ~  = (EM+EE)TO-~+EEe . (40) 

Thus, Friedrich's and G1Ockle and Nonnenmacher 's  
thermodynamic compatibility condition for the gener- 
alized Zener model is automatically fulfilled by re- 
placing the viscous element by a fractal viscoelastic 
element. 

Friedrich (1991 a) noted that Eq. (1) could give a 
valid solution with a <_fl if a derivative of  strain to 
order a is added. This corresponds to replacing the 
elastic element EM by a viscoelastic element of  order 
y. Following the steps leading to Eqs. (31) and (40), 
the model is now described in symbolic notation by: 

e(EE[X1 +X21 +X1X2) = a(X1 +X2) , (41) 

o r  (0a) 
I + T  a o ' =  

Ot a 

EeO+<) +eMr   e , (42) 

i.e., Eq. (1) with a derivative to order a added to the 
r.h.s. 

4. Discussion 

4.1 Equivalence between models in continuous limit 

As shown above (2.2), the ladder model becomes 
equivalent to the tree model in the continuous limit. 
The physical interpretation of this equivalence is that, 
in the tree model, if the viscous elements become soft 
enough, the stress acting on any viscous element is 

transmitted directly to the "ground" through the elas- 
tic elements in series, which act as a rigid connection. 

The two models are therefore equivalent in the con- 
tinuous limit, that is as long as the time scale of the 
experiment is much longer than the shortest relaxa- 
tion time, i.e., the relaxation time of the monomer.  
(The shortest relaxation time of  the continuous model 
unphysically vanishes.) The tree model yields a more 
manageable constitutive equation if all elements are 
linear, and corresponds to a more realistic description 
of an entangled mass of  polymer chains; however, it 
is not immediately clear how the constitutive equation 
can be generalized to account for non-linear behavior, 
e.g., non-Newtonian viscosity or rubber elasticity: 
should the constants r and E appearing in the con- 
stitutive equation become dependent on the global 
stress and strain, or should the individual elements in 
the model obey laws depending on the "local" strains 
and stresses? The ladder model lends itself more 
readily to numerical calculations, since the behavior 
at each node can be expressed in terms of the local 
stress and strain rate, and the leading contribution 
shifts steadily along the structure during creep or 
stress relaxation. In the tree model, on the contrary, 
interest shifts from the bottom row of viscous 
elements to the top row of elastic elements (see Fig. 1) 
as deformation proceeds; at intermediate times many 
branches are required simultaneously and the region 
of interest is not clearly delimited. Also, implementa- 
tion of the tree model becomes extremely laborious 
for f l< > 1/2, whereas the ladder model can be im- 
plemented for all fl using Schiessel and Blumen's 
(1993) expressions for E and r/, Eqs. (14) and (15). 
Thus, the ladder model is better suited than the tree 
model for numerical simulations. Such simulations 
are currently in progress. 

4.2 Equivalence between fractional differential 
and ordinary differential formulations 

It has been shown by Bauwens (1992b) that, under 
creep conditions, diffusion of  retarded strain by a 
random walk on a one-dimensional path, e.g., a poly- 
mer chain, is described by the equation: 

de _ (o-0~ 3 _1 (43) 
d(t/r) \ E J  ~2 ' 

which by integration gives the retarded creep compli- 
ance: 

J = - (44) 
E 
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This solution is formally identical to Eq. (18) which 
is the solution in creep of the fractional differential 
formulation of  viscoelastic behavior, Eq. (16). Thus, 
in creep, i.e., for a constant stress step a0 applied 
suddenly at time t = 0, the fractional differential for- 
mulation, Eq. (16), appears to be equivalent to the or- 
dinary differential, Eq. (43). Since most polymer 
scientists are more familiar with ordinary differential 
than with fractional differential calculus, it would be 
too tempting to extend the equivalence to a general 
deformation. It is shown below that this is not a valid 
generalization. 

In the linear viscoelastic range, the response to a 
general stress can be found from the superposition 
principle: 

1 ( 3 / 1 / 3 t  
e(t) = E  ~( t -u) l /3da(u)  

o 

E 0 ( t -  u) I-4/3 ' (45) 

where ~r' is the time derivative of  stress. This integral 
is identical to the Riemann-Liouville definition of the 
fractional differintegral (Oldham and Spanier, 1974), 
so Eq. (45) can be rewritten: 

e(t) = E \ z f l  \3/I dt-4/3 ' (46) 

or, on differentiating Eq. (46) to order 1/3, 

- -  - a ( t )  , (47) 
dt 1/3 e \ V  \ 3 /  

which is identical to Eq. (16) except for a numerical 
factor which is close to 1 if 0 < f l <  1. If Eq. (43) is 
generalized by replacing e 2 by e a, by following the 
steps leading from Eq. (43) to Eq. (47), fl = 1/(a + 1) 
is found; thus fl is linked to the fractal dimension of  
a random walk on a polymeric structure. The frac- 
tional differential formulation is retrieved for a gene- 
ral stress history using Boltzmann's superposition 
principle, and is thus more general than Eq. (43), 
which is only valid in creep, or when the retarded 
response is a simple power law. This can be seen by 
attempting to retrieve the ordinary differential formu- 
lation, Eq. (43), from the fractional differential for- 
mulation, Eq. (16), as follows. 

For a general deformation, the solution can be ex- 
panded as a power series: 

e=~aj (48) 

where j_> 0 since the initial deformation must remain 
finite. 

Differentiation to order fl gives 

d~e F(j+ 1) f t '~ j-p 
~t )d't/r'~ - E F ( j - f l +  1) aj ~-r) ' (49) 

whereas the first-order differential is: 

d(t/r) ~ ajj (50) 

where j_> 0 since the initial deformation must remain 
finite. 

If the expansion contains more than one term, no 
simple relationship can be found between the frac- 
tional and ordinary differentials; in the case of simple 
power law behavior with exponent j ,  however, the 
following relationships are found: 

d~e F(j+ 1 ) e 

d(t/r) ~ F ( j - f l +  1) ( t / r )  ~ 
(51) 

and 

d~ 8 
- -  - j - -  (52) 
d(t/r) ( t / r )  

Raising Eq. (51) to power 1/fl, an equation similar to 
Eq. (43) is retrieved: 

d(t/T) 
de  -J r(/+l) j el/B-~ " (53) 

The ordinary differential formulation is thus valid 
whenever the strain is a power law of  any order j ,  cor- 
responding to a stress which is a power ( j - f l )  of time. 
For example, the ordinary differential formulation is 
valid in stress relaxation for the generalized Maxwell 
element, but not for the generalized standard solid 
model. 

Thus, the fractional differential formulation of vis- 
coelastic behavior can be thought of as describing dif- 
fusion of deformation along a linear chain structure. 
Other interpretations have been given by G16ckle and 
Nonnenmacher (1993) in terms of  continuous-time 
random walks in disordered three-dimensional 
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systems or by Le Mehaut6 and Crepy (1983) in terms 
of diffusion on fractal structures. 

4.3 Physical meaning o f  the fractal Zener model 

The fractal models depicted in Figs. i and 2 can be 
thought of as expressing the behavior of  linear chains 
transmitting stress and deformation to neighboring 
chains through viscous drag. At times much longer 
than the relaxation time corresponding to local mo- 
tions, the reference chain can be assumed as a first ap- 
proximation to move in a rigid environment, leading 
to retrieval of  the ladder model. The model leads to 
an identical formulation of viscoelastic behavior 
whatever the stress-strain history, and is thus internal- 
ly consistent. This contrasts with classical approaches 
using a distribution of Maxwell elements (or relaxa- 
tion times) in stress relaxation and a distribution of  
Voigt elements (or retardation times) in creep. As 
pointed out by Schiessel and Blumen (1993), "such an 
approach is arbitrary on the microscopic level and 
therefore, it does not explain the universality of the 
measured patterns". 

The fractal decomposition of the viscoelastic be- 
havior of a polymer is evidently valid only between a 
lower and an upper cut-off. The lower cut-off occurs 
at the level of  the statistical segment which defines the 
smallest element that can be used in the fractal model. 
The basic elastic element E then describes the confor- 
mational elasticity of  a statistical segment, and the 
viscosity ~/ of the basic viscous element describes 
friction between statistical segments belonging to 
neighboring chains. The elastic element E M in series 
with the viscoelastic element in the Maxwell element 
then describes low instantaneous deformability of the 
statistical segment, and the elastic element E E in 
parallel describes the limiting deformation of  the (en- 
tanglenent or permament) network. This idea paves 
the way to possible refinements in the model: in the 
case of  a thermoplastic polymer, the temporary net- 
work will also flow at long times; this can be modeled 
by adding a slow viscoelastic element with an expo- 
nent a <f l  in series with EE, or by replacing EE by 
such an element. The exponents a and fl express 
prevalence of viscous over elastic behavior or vice- 
versa: a low exponent expresses nearly elastic 
behavior, whereas an exponent close to 1 corresponds 
to nearly pure viscous behavior. Thus, these ex- 
ponents can be expected to be temperature dependent, 
rising on going through the glass transition. 

The conditions for thermodynamic compatibility of 
the response obtained from the model are automati- 

cally fulfilled, since the elements of the model can 
clearly only deform if deformation leads to release of 
energy. Thus, use of such models is justified by the 
simplicity of physical reasoning based on them. 

One distinct advantage of the fractal models or the 
fractional differential formulation derived from them 
is their ability to describe real polymer behavior using 
only a small number of parameters. Although it is, of  
course, possible to derive relaxation and retardation 
spectra from the retardation and relaxation functions, 
as carried out by G16ckle and Nonnenmacher (1991), 
this represents an unnecessary mathematical com- 
plication, since the model itself requires only a single 
characteristic time. The underlying reason for the 
ability to describe real behavior using only one char- 
acteristic time is that the model itself incorporates 
complexity, as does its fractional differential descrip- 
tion: for example, in stress relaxation, no single ele- 
ment can be found in the model on which the stress 
is an exponentially decreasing function of time. Since 
the formulation incorporates complexity, this is not 
required of the parameters. 

5. Conclusions 

It has been shown that constitutive equations for 
viscoelastic behavior involving fractional derivatives 
need not be considered as a mathematical artefact, 
but arise naturally when expressing the rheological 
behavior of a fractal model. The fractional differen- 
tial formulation leads to power-law behavior in creep, 
and is readily solved for a general deformation in a 
linear viscoelastic solid. For extension to the non- 
linear range of viscoelasticity, numerical treatment 
either of the rheological model or of  the fractional 
differintegral is required; these approaches are fully 
equivalent in theory, however, numerical calculations 
on one of the rheological models are likely to be more 
tractable since the solution to the fractional differen- 
tial equation is an alternating series containing large 
nearly compensating terms, rapidly leading to round- 
off  errors. Such work is currently in progress. 

If attention is restricted to the case of power-law 
behavior, the fractional differential formulation is 
also equivalent to ordinary differential equations de- 
scribing diffusion of  deformation by a random walk 
on a linear chain. This approach lends itself to gener- 
alizations taking aging effects into account; work in 
this direction is in progress and will be published 
shortly (Heymans et al., t994). 
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