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Abstract. In this paper the application of robust control to a 5-1ink biped robotic model 
is investigated through the sliding mode approach, and compared to pure computed torque 
control. The biped consists of five links, namely the torso and two links in each leg. These 
links are connected via four (two hip and two knee) rotating joints which are considered 
to be friction-free and driven by independent d.c. motors. The locomotion of the biped is 
assumed to be constrained on the sagittal plane. The paper provides a full derivation of the 
biped dynamic model (single-leg support phase, biped-in-the-air phase) and an outline of the 
computed torque and sliding mode control algorithms. The simulation results were derived 
with two sets of parameters (one of which corresponds to a human-sized biped) and several 
degrees of parametric uncertainty (from 10% to 200%). In all cases the results obtained 
through the sliding mode control were much better than those obtained with the computed 
torque control. This superiority was shown to become stronger as the degree of uncertainty 
and the size of the biped increases. 

Key words. Biped robots, robust control, sliding mode control, single leg-support phase, 
computer torque control. 

1. Introduction 

The area of  legged robotic systems has attracted throughout the years the at- 
tention of  a large number of researchers and is now at a sufficiently mature 
state [1 ]. Bipeds are a class of  legged robots that attempt to imitate the human- 

type locomotion.  The first and simplest model used for the study of some of  the 
characteristics of  human walking is the inverted pendulum [2-4]. More complex 
models with more degrees of  f reedom were used mainly after 1980 for a more 
complete study of  human walking as well as for the actual construction of  biped 
robotic systems [5-11].  For  example,  Miura and Shinoyama [7] have used a 
3-1ink model  (torso and two simple legs) to construct a biped robot (BIPER-3) 
the behavior  of  which was studied on both the sagittal and frontal planes. Fu- 
rusho and Masubuchi  [8, 9] have used a planar 5-1ink model as a basis for the 
construction of  their initial biped (Kenkyaku-1) which was later improved by 
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adding two more links (Kenkyaku-2, weight 40 kg, height 1.10 m) [10]. A 
very interesting anthropomorphic biped robot (called BLR-G1) was constructed 
by Sano and Furusho [11]. An improved 9-1ink version of it (BLR-G2) has a 
weight of 25-kg and a height of 0.97 m. An important work was also carried out 
in Waseda University (Tokyo) where a series of bipeds have been constructed 
(since 1973) [13]. The most recent of them (WasedaLeg-12) is weighted 107 kg 
and has 1.80 m height. This robot is equiped with modem force sensors on its 
feet and joints, and uses hydraulic actuators. The minimum step time realised 
by WL-12 was 1.3 sec and the maximum stride 0.30 m. 

Our purpose in the present paper is to investigate the effectiveness of sliding 
mode control when applied to such biped robots. As a first step in this study, we 
selected a 5-1ink model (i.e. no ankle joints and feet). The results are encouraging 
and suggest the use of sliding mode control in actual experimental and other 
bipeds. Since the derivation of the Euler-Lagrange model of 5-1ink bipeds is 
not readily available we provide here the full procedure, including the equations 
of the impact of the free leg on the ground. The control algorithms are well 
known and readily available in the robotics literature and so only a short outline 
of them is provided here. The approach used for the sliding mode control is the 
one presented by Slotine [14-16]. For the convenience of the reader the basic 
steps of Slotine's derivation are repeated here too. The simulation results were 
obtained for a small-sized biped and for a human-sized biped in order to explore 
the effectiveness of control under a large repertory of situations. The parametric 
uncertainty considered ranges from 10% to 200% and both the walking-on-an- 
horizontal-plane-surface mode and the staircase-climbing mode were studied. 
In all cases the sliding mode performs much better with the superiority of its 
performance being stregthened as the degree of uncertainty increases. 

2. The 5-Link Biped Robotic Model 

In this section the dynamic equations of the 5-1ink biped robot of concem will be 
derived in the two distinct phases of 'single-leg support' and 'biped-in-the-air'. 
As a preparation for this, the kinematic model of the biped will be first presented. 

2. l. KINEMATICS MODEL 

The biped robot under study has the form shown in Figure 1 [9]. It consists 
of five links, namely the torso (link 3) and two links in each leg (the upper 
legs, i.e. links 2 and 4, and the lower legs, i.e. links 1 and 5). These links are 
connected via four rotating joints; two hip joints and two knee joints, which are 
considered to be friction free and each one is driven by an independent DC motor. 
It is assumed that the locomotion of this biped mechanism is constrained on the 
sagittal plane as shown in Figure 1. Since this biped does not possess ankle 
joints and feet it is not possible to increase or reduce its speed using the torques 
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Fig. 1. 5-1ink planar biped robot model. 

in these joints. However, a biped can walk without direct control of its angular 
momentum through the ankle torque, but indirectly through appropriate use of 
the effect of gravity. 

The parameters shown in Figure 1 are as follows: 
mi: mass of link i. 

O0-xoYozo: 
(Xb, Yb): 

li: length of link i. 
di: distance between the mass center of link i and its lower joint. 
I~: moment of inertia with respect to an axis passing through the mass 

center of link i and being perpendicular to the motion plane. 
0i: angle of link i with respect to the vertical (the positive direction 

of 0i, i = 1,2, 3, 4, 5, is the one shown in the figure). 
the fixed coordinate frame (i.e. the inertia reference system). 
position of the point of support. 
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(x~, Ye): position of the free end. 
_re: velocity of the free end. 

From Figure 1 it follows that 

xe  = Xb + ll sin 01 + 12 sin 02 + 14 sin 04 + 15 sin 05, 

Ye = Yb + II cos 01 + 12 cos 02 -- 14 cos 04 -- 15 cos 05 

(la) 
(lb) 

and 

~:e 11 COS 01 01 ~- 02 
-ve= ~/e = - l l s i n 0 2  - I z s i n 0 2  

(2) 
14 O4 ( COS 04 -k- 05 . 

+ \ / 4  sin 04 \ 15 sin 05 

Now if ( cgx ,  c 9 y )  are the coordinates of the biped's center of mass, and (xci, Y~i) 
the coordinates of the center of mass of link i, then 

Xcl = d l  sin 01, 

Ycl = dl cos  01, 

xc2 = Ii sin 02 + d2 sin 02, 

Yc2 = 11 cos  01 + d 2 c o s  02, 

xc3 = ll sin 01 + 12 sin 02 + d3 sin 03, 

Yc3 = II cos  01 + / 2 c o s  02 + d3 cos  03, 

xc4 = ll sin 02 + le sin 02 + (/4 - d4) sin 04, 

Yc4 = II COS 01 + 12 COS 02 -- (/4 -- d4) cos 04, 

Xc5 = II sin 01 + 12 sin 02 + 14 sin 04 + (15 - ds) sin 05, 

Yc5 = ll cos 01 + 12 cos  02 -- 14 cos  04 -- (15 -- d5) cos 05 

(3) 

and 

Cgx = 

c g y  = 

m | x c l  -k- m2Xc2 -t- rrt3Xc3 -~- m4Xc4 + rrt5Xc5 ) 

(m l  + m 2 + m 3 q - m 4 + m 5 )  

(mlYc/ q- m2Yc2 + m3Yc3 + m4ffc4 q- m5YcS) 

(ml  q - m  2 + m  3 - t - m 4 + r n 5 )  

/ (4) 

2.2. DYNAMIC MODEL: SINGLE-LEG-SUPPORT PHASE 

This situation is schematically shown in Figure 2. It is assumed that the friction 
of the ground is sufficiently large to ensure no slipping of the supporting end. 
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Fig. 2. Biped with one leg in the air. 

Since the motion of the biped is performed on the plane of Figure 1 the angles 
0i (i = 1 , 2 , . . . ,  5) are sufficient for fully describing its configuration. 

The Lagrange dynamic model describing the motion of the biped in this phase 
is found to be (see Appendix 1 for the derivation): 

D_(O) . 0 + h_(O, O) + G(O) = To, (5) 

where 

0 = [01,02 . . . . .  05] T, 
7;, T T o  = [ T o l , T o 2  . . . .  , 05] , 

5 

_h(e, 0) = col  
j=l(j#0 

_c(_0) = col  [c~(_0)], 

D(e)  = [D~j(e)], 

(hjj(oj)2)] 
i , j  = 1,2 . . . . .  5. 

(6) 
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Here, Toi is the generalized torque that corresponds to 0i, col [ai] is a column 
vector with elements ai, and D(0_) is the inertia matrix of  the biped with elements: 

D =  [Dij], i,j--" 1, . . . ,5 ,  (7) 

D l l  = I i + m l  d2 

D12 = P12 cos  (01 

D13 = 1913 cos  (01 

D14 = PlaCOS (01 

D15 = PlsCOS (01 

D21 = D12, 

D22 = [2 -4- m2 d2 

D23 = P23 cos  (02 

D24 = P24 cos  (02 

025  = 

D31 = 

D33 = 

-4- 

- -  0 2 )  , 

- 03), 

-4-04), 

+ 05), 

(m2 -4- m3 -4- m4 -4- m5)l 2, 

P12 = m2d2ll -4- (m3 -4- m4 -4- m5)/112, 

P13 = m311d3, 

Pla = ma l l  (la - da) -4- m5l t l4 ,  

p15 = m s t l  ( is  - d s ) ,  

4- (m3 -4- m4 -4- m 5 ) l  2, 

- 03), P23 = m312d3, 

-4- 0a),  P24 = real2 (la - da) -4- m512la, 

p25 cos (02 + 05), -- m 12(l  - ds) ,  

D13, D32 = D23, 

I3 -4- m3 d2, D3a = 035  = 0, 

041 = D14, D42 = D24, 043 = 1934 = 0, 

944  : / 4  -4- m a ( 1 4 - d a )  2 -4- m512, 

945  =/945 cos  (04 - 05), P45 ~- m514(15 - d5),  

Ds1 = D15, D52 = D25, D53 = D35 = 0, 

= d 2, 055 I5+m5(15- 5) 
D54 = D45, 

The elements hijj and Gi are as follows: 

h122 = P12" sin (01 -- 02), 

h144 ---- - P l a "  sin (01 -4- 04), 

h211 = - P 1 2 "  sin (01 - 0 2 ) ,  

h244 = - P 2 4 "  sin (02 + 04), 

h311 = - P 1 3 "  sin (01 - -  0 3 ) ,  

h344 = h355 = 0 ,  

h133 = P 1 3 "  sin (01 - 03), 

h155 = - P l s "  sin (01 -4- 0 4 ) ,  

h233 = P23" sin (02 - 03), 

h255 = -P25 �9 sin (02 -4- 05), 

h322 --- -P23" sin (02 - 03), 
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t/411 = --P14" sin (01 + 04), h422 = --P24" sin (02 + 04), 

h433 = 0, h455 = P45" sin (04 -- 05), 

h511 = --P15" sin (01 + 05), h522 = -P25" sin (02 + 05), 

h533 = 0, h544 = - P 4 5 "  sin (04 -- 05), 

73 

(8) 

Now, 
joints 

7-1: 

7-2: 

7-3: 

r4: 

G1 = - [ m l d l  -t- (rn2 + m3 --I- m4 -k- m5)ll]gsin O1, 

G 2 = - [ m 2 d  2 q- ( m  3 n t- m 4 --I- m5)1219 sin 02, 

G3 = - [m3d3] 9 sin 03, 

G4 = [m4(/4  - d4) + m5/4]g  sin 04, 

G5 = [m5(15-  d5)]9sin 05. 

7- 

(9) 

let = [7-1,72, 7"3, 7"4] T be the vector of the driving torques of the four 
of the biped, where (Figure 2): 

driving torque of the knee of the supporting leg; 

driving torque of the hip of the supporting leg; 

driving torque of the hip of the free leg; 

driving torque of the knee of the free leg. 

If ql, q2, q3 and q4 are the relative angle deflections of the corresponding joints, 
then (see Figure 2): 

ql = 0 1  -- 02, q 2 = 0 2  -- 03, q3 = 0 3 + 0 4 ,  q4=04--05 

and so the relation 

4 Oqj 
Toi = ~_~ ~ OOi ' 

j= l  

gives: 

i =  1 ,2 , . . . , 5 ,  

To= E . z ,  (lo) 

where E is the 5 x 4 matrix 

E = 

1 0 0 0 
- 1  1 0 0 

0 - 1  1 0 
0 0 1 1 
0 0 0 - 1  
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Thus the biped dynamic model (5) becomes 

D(O). _0 + h(O, ~ + C(_O) = E .  z. (11) 

We observe that only four of the five degrees of freedom 01,02 . . . .  ,05 can be 
controlled directly by the four driving torques T 1, 7- 2, 73 and T4. The angle 01 at the 
contact point with the ground (hypothetical joint 0) is controlled only indirectly 
using the gravitational effect. The presence of this non (directly) controllable 
degree of freedom is one of the most important characteristics of the locomotion 
of our biped robot. A similar property characterizes the other legged locomotion 
mechanisms too. 

To facilitate the control procedure, which is to be described in Section 3, the 
model (11) is transformed to (for the details see Appendix 2): 

D_D_q(q) " gl d- h q(q, (1) + G__q(q) = Tq, 

where (here Tqo = 0): 

Iqil I hq~ I q~ I ~ ql hal Gql Yql 
q =  , h _ q =  . , ~ =  . , T q =  . , 

Lhq4 Gq4J LTq4 

and 

(12a) 

(12b) 

Dq(i, 1) = Ail + Ai2 + Ai3 - Ai4 - Ais, ) 

Oq(i, 2) = - A i  2 - Ai3 + Ai4 + Ais, 

I Dq(i, 3) = -Ai3 + Ai4 + Ais, (i = 1 . . . .  ,5). 

Dq(i, 4) = Ai4 + Ai5, 

Dq(i, 5) = -Ai5,  

(12c) 

This model uses the variables qi (i = 0, 1 . . . . .  4) instead of 0i (i = 1,2 . . . . .  5), 
where qo corresponds to the hypothetical joint 0 at the contact point (Xb, Yb) 
with qo = 01. 

2.3. DYNAMIC MODEL: BIPED IN THE AIR 

Suppose now that at the moment when the free leg touches the ground, the 
supporting leg leaves immediately the ground. This means that at the moment 
of collision of the free end with the ground the constraint Xb = Y6 = constant 
and ~:b = ~)b = 0, which was valid in the single-leg-support phase, is removed 
(see Figure 2). This implies that the dynamic model (5) or (12a) of the single- 
leg-support phase cannot be applied to compute the instantaneous changes of the 
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Fig. 3. Biped with both legs in the air. 

joint angular velocities at the moment when the free end of the biped collides 
with the ground. 

Our purpose here is to present the biped dynamic equations when both legs 
are in the air (Figure 3). In this case, for a full description of the configuration 
and the position of the biped, one needs, in addition to 0i (i = 1 , 2 , . . . ,  5) the 
coordinates Xb and Yb of the left end of the biped (Figure 3). 

Applying the standard procedure through the Lagrange equations (see Ap- 
pendix 3) one finds the following dynamic model for the biped in the air: 

_Do(o~) .o~ + ~ (~,_oa) +_Ca(~) = L ,  (13) 

where 

= [01, 02, 03, 04, 05, Zb, yb] T, 
G__ a = [Ca(l)  . . . .  , G a ( 7 ) ] T ,  

g a ( i )  = g~, i = 1,2 . . . . .  5, Ga(6) = 0, 
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____Ga(7) = mi g = mtotal "g, (14) 

Da(i, j )  = Dij, i = 1 . . . .  ,5, j = 1 . . . . .  5, 

Da(1 ,6 )  = P16 c o s  01, Da(1,  7) = - P 1 7  sin 01, 

PI6 = P17 = mld l  (m2 + m3 + m4 + m5)/1,  

Da(2, 6) = P26 cos 02, Da(2, 7) = -P27 sin 02, 

P26 = P27 = m2d2 + (m3 + m4 + m5)/2,  

Da(3, 6) -- P36 cos 03, Da(3,  7) -- -P37 sin 03, 

P36 = P37 = m3d3, 

Da(4,  6) = P46 c o s  04, D a ( 4 ,  7)  - -  P47 sin 04, 

P46 = P47 =- m4 (/4 - d4) + m514, 

Da(5, 6) -- P56 cos 05, Da(5, 7) = P57 sin 05, 

P56 -- P57 = m5 (15 - d5), 

D,~(6, i) = Da(i, 6), i = 1 . . . .  ,5,  

Da(6, 6) = ( m l  + m2 + m3 + m4 + m5)  = mtota 1, 

Da(6, 7) = 0, 

Da(7,  i) = Da(i, 7), i = 1 . . . . .  5, 

Da(7,7)- -  ( m  1 + m  2 + m  3 + m 4 + m 5 )  = m t o t a  1. 

For  the 7 • 1 vectors __T a and h_~ we have 

Ta(i) = To(i), i = 1 . . . . .  5, 

f Ta(6) = Tzb = 0, Ta(7) = Tyb = 0, 

(15) 

(16) 

ha(i) = h(i),  i = 1 . . . . .  5, 

ha(6) = -P16(01)2  sin 01 - P26(02)2 sin 02 - P36(03)2 sin 03 

-- P46 (04)2 sin 04 -- P56(05)2 sin 05, 

ha(7) = --PIT(01)2 COS 01 -- p27(02)2 COS 02 --P37(03)2 COS 03 

q- P47 (04)2 COS 04 %" P57 (05)2 COS 05 �9 

(17) 

The e lements  D~j, Gi,  hi and Toi are determined using Equations (7) through (10). 
The dynamic  model  (13)-(17) will be used in Section 2.4 for the computa t ion  
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of the sharp changes in the angular velocities of the biped's links at the moment 
of changing the supporting leg, which happens when each step of the biped is 
completed. 

2.4. IMPACT OF THE FREE END ON THE GROUND: INSTANTANEOUS 

EXCHANGE OF THE SUPPORTING LEG 

As mentioned before when the free end of the biped, at the completion of each 
step, comes into contact with the ground, then an instantaneous exchange of 
the support of the biped to this end is taking place, while the other end (i.e. the 
previous supporting leg) leaves immediately the ground. This process is assumed 
to take place in an infinitesimal time interval, equal to the duration of the impact 
of the free end with the ground. The instantaneous change A_0 of the angular 
velocities t)i, i = 1,2 . . . . .  5, of the links, at the moment of the collision of the 
free end with the ground, is given by (for the derivation see Appendix 4) [17]: 

A0_ = _o;'. (J_&. n ; ' .  2 ) - ' - A x e ,  (is) 

where D a is the inertia matrix (15) of the model (13). The new angular velocities 
of the links, after the exchange of the supporting leg, are used as initial condi- 
tions for the new step. In this way one can simulate and study the continuous 
locomotion of the biped. 

The 2 x 7 Jacobian matrix Ja of the biped in the air is given by 

0_x e 
J a  ~ 

0_0a 

where the position vector x e = [xe, ye] T is given by (1), and 0 a is the vector 
defined in (14). Using Equation (la-b) one finds that: 

Ja(1, 1) = li cos 01, Ja(2, 1) = - l l  sin 01, 

Ja(1,2) = / 2 c o s  02, Ja(2, 2) = - /2  sin 02, 

Ja(1,3) = 0, Ja(2, 3) = 0, 

Ja(1,4) = / 4 c o s  04, Ja(2,4) = / 4 s i n  04, 

Ja(1,5) = 15 cos 05, Ja(2, 5) = 15 sin 05, 

Ja(1,6) = 1, Ja(2,6) = 0, 

Ja(1,7) = 0, Ja(2,7) = 1. 

(19) 

Given that the velocity _v e becomes zero immediately after the collision with the 
ground, we have 

A:~e • --J~e,before, 



78 S. TZAFESTAS ET AL. 

where ~e,before is the velocity of the free end just before its contact with the 
ground. Therefore, the formula (18) gives 

0_afte r : _0before q_ D a l .  j_~T. (J--~a" D-~ -1" J---aT) -1" ( - -  ~e,before), (20) 

where 0_befor e and 0afte r are the link velocities just before and just after the ex- 
change of the supporting leg, respectively. It should be remarked here that the 
angular displacements of the joints do not change during the infinitesimal time 
interval of the collision, and so ~ and Ja in (18) or (20) are computed at the 
configuration of the biped at the moment of the collision. 

3. Robust Control of the 5-Link Biped 

As we have seen in Section 2, the dynamic performance of the biped is described 
by the model (12a) in the single-leg support phase, and by the model (13) when 
both legs are in the air. These models have exactly the same form, which for 
convenience is rewritten here as 

__D(q) �9 ~ + _h(q, q) = z ,  (21) 

where T_ is the vector of the driving forces and here the term h(q, i/) involves all 
terms due to centripetal, Coriolis and gravitational forces. This term is strongly 
nonlinear and its effect increases drastically as the velocities of the biped's joints 
increase. Any linear control law ignores totally these nonlinearities, which actu- 
ally couple the joints, with the result of reducing the accuracy of the trajectory 
tracking, especially at large operational velocities. The approach of linearizing 
the dynamic model (21) about some (fixed) operating point _x 0 = [q0, q_ 0 = 0] 
and applying linear control laws is based on the assumption that the system state 
actually remains in the closed vicinity of _z 0. If this is not true (which is the case 
in most practical situations) then the performance of this approach may not be 
acceptable. 

In addition to the existence of the nonlinearities, the system involves uncer- 
tainties due to several sources, the primary of which is the uncertainty in the 
biped robot parameters. This parametric uncertainty requires the introduction of 
suitable nonlinear terms in the control law that make it robust in the uncertainty. 

Our purpose here is to study and compare the performance of the computed 
torque control (which is nonlinear) and the sliding mode control (which robus- 
titles the computed torque control and makes it highly insensitive to parametric 
and other uncertainties), when applied to the biped locomotion described above. 

3.1. BIPED COMPUTED TORQUE CONTROL 

The computed torque control is actually based on the feedback linearization 
technique, i.e. on the use of a control law structure similar to that of the system's 
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Fig. 4. Structure of computed torque-control. 

dynamic model. Thus, the computed torque control law for the model (21) has 
the structure: 

Z=__D(q)~+_h(q,q) (22) 

and eliminates the nonlinearities involved in the model (21). 
Indeed, using the control law (22) in (21), and assuming that __D(q) is invertible 

(away from the singular configurations), yields: 

/~ = _u. ( 2 3 )  

The model (23) represents a set of n = 5 decoupled double integration systems, 
each one of which can be controlled by a suitable linear control law. 

A useful decoupled control law is the proportional plus derivative control law, 
which has the form 

_u = ~ - / 4  D �9 _~ - K____p .g/, (24) 

where ~j = qj(t) - qdj(t), qd(t) is the desired joint trajectory vector and 

/~D = diag [KDj], _K_~p = diag [Kpj]. 

The block diagram of the resulting closed-loop computed-torque control system 
is as shown in Figure 4. The closed-loop equation for the error ?/(t) is 

+ KD" ~ + K p .  ~ = 0. (25) 

It is easy to verify that if the matrices K__ D and K___p are positive definite (i.e. 
if KDj > 0 and Kpj > 0 for all j)  then the tracking error O(t) tends to zero 
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asymptotically as t --+ e~. If A is the desired bandwidth (undamped cyclic natural 
frequency) then, for obtaining a critically damped closed-loop performance one 
must select 

K__ D = diag [2,k] and K p  = diag [)~2]. (26) 

The bandwidth /~ should be selected sufficiently large in order to get a fast 
response, but it should not exceed a certain limit in order to avoid the excitation 
of possible unmodelled high frequency characteristics and to be compatible with 
the sampling rate used. 

The biggest practical problem that arises is due to the time required to compute 
the quantities D(q) and h(q,//) and there exist many techniques to overcome this 
difficulty [18, 19]. A good solution is to use two different sampling periods: a 
large one for the computation of D(q) and _h(q,//) and a small sampling period for 
the controller (which is then able to partially cover the errors of the computation 
of D(q) and h(q,//)). 

3.2. SLIDING MODE ROBUST CONTROL 

The basic disadvantage of the computed torque control technique is that in prac- 
tice D(q) and _h(q,//) are not available exactly but approximately as ~(q)  and 

h_(q, 0). This uncertainty may be due to parametric uncertainty or to restricted 
computational power as indicated above or to both reasons. In practice therefore 
one can only use the control law (instead of (22)): 

Z = D(q)u + ~(q,//) (27a) 

which leads to the system (instead of (23)): 

= (D-ID)u_ + D - I ( ~  - _h). (27b) 

This means that the system is actually coupled and nonlinear, and the linear 
control law (24) may lead to unacceptable performance. To face this problem 
many techniques are available which fall in two main categories namely adaptive 
control techniques and robust control techniques. Here, we have selected for 
application the sliding mode robust control technique which is easy to implement 
and leads to very good results. 

The details of this technique can be found elsewhere [14-16]. Here we give 
only the basic equations of the algorithm. 

Consider a system of the type 

x(n)(t) = a(x) + b(x_)u(t), (28) 

where u(t) is the control input, x = [x,5: . . . . .  x(n-l)] T is the system's state 
vector, and the nonlinear functions a(x_) and b(x) are not known exactly but with 
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errors [Aa[ and lAb[ bounded by corresponding bounded continuous functions 
of  _z. However ,  the sign of  b(_z) is assumed to be known. 

Let a t ime-varying surface S(t) in the state space ffl n defined by the equation 
s(z__, t) = 0, where 

s(z_, t) = + A �9 (29) 

with A being a positive constant that represents the control bandwidth. This 
surface is called the sliding surface. 

Clearly, if _Xd(t = 0) = x_(t = 0), where Xa(t) is the desired trajectory, the 
problem of  making x_(t) - X_d(t ) is equivalent to that of  making s(x, t) = 0 
for all t > 0, i.e. to that of  remaining on the sliding surface S(t). Indeed, 
s = 0 represents a linear differential equation which, subject to the above initial 
conditions ~(0) = x(0) - Xd(O) ---- 0, has the unique solution: 

= X - -  Z.d • [X',X . . . . .  ~ ( n - 1 ) ] T  = 0.  

Actually, constraining s within certain bounds corresponds to constraining the 
tracking vector ~ in some interval. This means that s constitutes a convenient 
measure of  the tracking accuracy. 

Specifically, it can be shown that if 7(0) = 0, then the condition 

Is(t)l ~< ,I, for all t ~> 0 

implies the condition 

[~(i)(t)[ ~< (2A)ie for all e > /0  and t ~> 0 (30) 

for i = 1,2 . . . . .  n - 1, where e = ~ / A  n-1 
The problem of  keeping the scalar function s to zero, can be solved if the 

control signal u(t) in (28) is selected such that outside the surface S(t) the 
following condition holds: 

! .  d -vl l, (31) 
2 dt 

where ~7 is a positive constant. 
The validity of  the 'sliding condition' (31) ensures that the distance from the 

surface s = 0 (measured by s 2) decreases along all the trajectories of  the system. 
Thus this condition forces all the trajectories of the system to slide on S(t). This 
is why (31) is called sliding condition. Once a trajectory arrives at S(t) it always 
remains on it, which means that S(t) is an invariant region for the system. 

The idea behind the use of  (29) and (31) is to select an appropriate function 
of  the tracking error and then to construct a feedback law u in (28) which 
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makes the function 8 2 a Lyapunov function of the closed-loop system in spite 
the presence of the parametric uncertainties in a(_x) and b(x). Moreover, the 
validity of the sliding condition (31) ensures that when x(t = 0) r Z__d(t = 0) 
[i.e. when z_-(t = 0) r 0], then the trajectories will slide to S(t) in time less than 
[s(t = 0)1/~ 7. Once the trajectory reaches the sliding surface, the tracking error 
tends to zero asymptotically with a time constant (n - 1)/A. 

On the basis of the above facts, the sliding controller design involves two 
steps. In the first a control law is selected for the system (28) such that the 
condition (31) is satisfied. To be able for this control law to face robustly the 
model inaccuracies, it should be discontinuous across the sliding surface S(t). 
However, such a discontinuity leads to undesirable control chattering and must 
be suitably smoothened in such a way as to achieve an acceptable compromise 
between the trajectory tracking accuracy and the control bandwidth. These two 
steps are fully described in [16] and so here only the final results will be given. 
Thus, for a second-order system of the type (28) with b(_z) - 1 and the function 
a(z_) being available only approximately as 3(z__) with error bound A: 

l a -  a I <~ A (32) 

the best approximation ~ of a continuous control law that makes ~ = 0, is 

= - 3  q- ~:d -- ' ~ '  (33) 

where ~ = x - x d is the tracking error. 
To satisfy the sliding condition (31): as ~< -r/Is I ( r />  0) in spite of the exis- 

tence of the uncertainty in a, the term ksgn (s) is added which is discontinuous 
on s = 0, i.e. 

u = ~ - ksgn (s), k = A + ~?, (34a) 

where 

+1, s > O ,  
s g n ( s ) =  -1 ,  s < O ,  (34b) 

O, s = O .  

A similar result can be obtained if we apply integral control, i.e. if we consider 
the integral fo ~(t ')dt'  as the error variable of concern. The control law is again 
given by (34a-b) with 

= - a +  ~d -- 2 A ) -  A2~. (35) 

If now b(x) 7~ 1 is known with uncertainty expressed by the bounds bmin and 
bmax, i.e. 

0 < bmin ~< b <~ bmax (36) 
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then we choose as an estimator'b(z) of  b(x) the geometric mean of bmin and bmax, 
i.e.: 

= (bmin" bmax)1/2 

Then using (37), the relation (36) can be written as 

/3-1 ~< ~ bmax 1/2 

(37) 

(38) 

where/3  is a kind of gain margin. Note that the uncertainty in the function b(z_) 
can be given either in the form (36) or directly in the form (38). 

Now, the control law (34a) is replaced by 

u = b -  1 (~ _ ksgn (s)) (39a) 

with 

k ~>/3(A + r/) + (/3 - 1)1 1. (39b) 

Clearly, the increase in the amplitude k of the control discontinuity is needed in 
order to take into account the uncertainty in the gain b of the control signal. 

To eliminate the 'chattering' of  the control signal which is due to the discon- 
tinuity of u at s = 0, we smooth this discontinuity in a thin boundary layer: 

B(t) = {x, Is(x, t)[ ~< cI,}, ,I, > O, (40) 

around the discontinuity surface s = 0. Here �9 is the thickness of the boundary 
layer and e = @/A n-1 is its width. Outside B(t) the control law is defined as 
in (34a) or (39a). The satisfaction of the sliding condition (31) now guarantees 
that the boundary layer B(t) attracts all trajectories of the system. Thus, all 
trajectories that start inside B(t = 0) remain in B(t) for all t /> 0, whereas all 
those that start outside B(t) slide towards it and enter it after some finite time. 

Inside B(t) we have 

Is(t)[ <~ �9 for all t ~> 0 (41a) 

which implies that 

I (i)(t)l ~< (2A)ie, i = 0 . . . . .  n - l, (41b) 

where c = '~/A n-1. This means that now we do not have a perfect trajectory 
tracking but an approximate tracking with accuracy determined by e. 

The smoothened control law for the case b = b = 1 is {see (34a)}: 

u ----- ~ - k_-(z_)sat (s/O), (42a) 
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where sat(y) is the saturation function 

sat(y) = { y' lyl ~< 1, 
sgn(y), lYl > 1, 

and 

(42b) 

AO 
g~ + "~r = fld " k(x-a) if k(x_a) >1 fl---~ , 

r q'- = k(X--d)/rid if k(X_d ) < - -  

with initial condition 0 ( 0 ) =  fldk(X_d(O))/)~, and 

respectively, where fla = fl(--Zd) {see (38)} and 

= 

by: 

(45a) 

(45b) 

(46) 

(47) 

Recalling that e -- O / A  n-1 (see (41b)) the balancing Equation (47) implies that 

Ane ~ rid" k ( x a ) ,  (48) 

i.e. the product of the nth power of the bandwidth ,~ and the maximum tracking 
error is approximately equal to the parameter uncertainty measured along the 
desired trajectory. The tradeoff Equation (48) tells us that the balancing con- 
ditions (43) and (45a, b) determine the best tracking performance that can be 
achieved with a given desired maximum control bandwidth and a given extent 
of parametric uncertainty. Of course, the desired trajectory _z a must also be 
sufficiently smooth for not exciting non-modelled high frequency components. 

k(z) = k(_z_) - ~ .  (42c) 

The dynamic evolution of the thickness ~(t)  of the boundary layer is governed 
by the equation 

g~ + ,X~ = k(Xd) (43) 

which is obtained from (42c) by setting -k(_T_a)/~ = )~. 
Now, introducing (43) in (42c) gives 

k(x) = k(x__) - k (_X_d) + ,k~ (44) 

which provides an alternative definition for k(x). 
In the general case where bib  r 1 the above relations (43) and (44) are replaced 
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3.3. BIPED SLIDING MODE CONTROL 

The above sliding mode robust control technique will now be applied to the 
5-1ink biped robot model under study. 

If D and h are the available estimates of D and h, at each time instant t, 
then the sliding controller has the form (27a) with ui (i = 1,2 . . . .  , n) being 
determined by 

ui = Li(q)[~i - -ki(q,//)sat ( s i / r  ], (49) 

where ki(q, q) and ~ i  (i = 1,2 . . . . .  n) are defined by the balancing Equa- 
tions (45a, b) and (46) and the gi 's are chosen according to (35) as: 

Ui = ~tdi - -  2A'qi  - -  A2"qi ' (50) 

where q'i = qi - qdi  is the tracking error of the trajectory of the ith joint. The 
sliding surfaces si in (49) are selected as: 

t 

(51) 

where the indefinite integral ft (which contains a constant to be determined) 
is defined so as si(t = 0) = 0. The gain coefficient Li(q) and the uncertainty 

bounds that are used for computing -ki(q, q) are discussed below. 
Clearly, the main difference of the control law (49)-(50) from the simple 

computed torque PD control law is the presence of the robustification term Li(q). 

-ki(q, / /)sat(si /~i)  which ensures stability and best performance in spite of the 
uncertainty in the biped model. 

The amplitudes k i ( q ,  q )  of the controller and the boundary layer thickness ~ i  

are computed from (45a, b) and (46) using the values of ki(q,//) that result from 
known uncertainty bounds of D(q) and _h(q,//). 

To determine these bounds, let us define two vector sets M j  (j = 1,2 . . . . .  n) 
and A D j  (j = 1,2 . . . . .  n) as 

D - 1  = [MI M 2 . . .  __M_Mn], (52a) 

AD = L) -- D = [ADD_ 1 A D 2 ' ' '  ADn].  (52b) 

The vectors M j  and A D j  depend only on the configuration of q. 
Introducing the control law (27a) into the biped model (21) gives the closed- 

loop equation 

20 = ( / +  _D-IAD)_u + D- Ah, (53) 
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where I is the unit matrix and Ah = h - h. 
It is now assumed that 

M T "  L)i > 0, i = 1 . . . . .  n. (54) 

This condition means that D -1 is symmetric and that ui contributes to/~i with 
a predictable sign. In practice, the condition (54) can be satisfied even for large 

parametric uncertainties, if ~ is selected to be a positive definite diagonal matrix 
A 

(involving for example the diagonal elements of the original matrix D). 
The scalar b o u n d s  flmin and ,-i/~max (which may depend on q) are then defined 

as  

{4 min ~ max i = 1,.. n, (55) , ., 

and the gains Li of (49) are selected as {see (37)}: 

L~ = w-~(/3min/~max]r--z ] - 1 / 2 ,  i = 1, . . . ,  n. (56) 

The corresponding gain margin/3i is equal to {see (38)}: 

/3 i = (/3max//~min ] 1/2 i = 1, , n .  (57)  
\ t ' ~  / r ~ z  J ' �9 . . 

Then the control discontinuity amplitudes ki(q,?l) satisfy the conditions {see 
(39b)}: 

/3~ I(1 - ~-1)I~l + (M._M_a)TAh a ki(q, (t) >1 
k (58) -1 

+ Lj I d l. I_M  jl + 
j#i 3 

for i = 1, 2 . . . . .  n, where ~7i are the positive constants that are used in the sliding 
conditions {see (31)} and __~Ma, Ah a_ denote the vectors with components the 
absolute values of the corresponding components of M i and A_h. In practice, an 
a priori worst-case analysis for the satisfaction of the conditions (55) and (58) 
is usually sufficient. In [16] it was shown that these conditions can be satisfied 
analytically if n = 3, i.e. in the case of a 6 degrees-of-freedom robot with 
decoupled the motion of the spherical end effector. In the general case a good 
approximation is obtained by computing the bounds (55) and (58) using, in place 

h a  

of the true __~,M a the estimates __M i which are obtained from the inversion of _D. 
Similarly, the approximate upper bounds of AD~ and A_h a can be expressed 

in terms of ~ and ~. For example, if the only source of uncertainty in the 

estimate E) of the inertia matrix D is the fact that the moments of inertia are 
known with accuracy 10%, one can use the approximation AD~ ~< (10%)~ a 
where the inequality is meant component-wise. Thus, if the structure of the 
parametric uncertainty of the biped robot is known, the bounds (55) and (58) can 
be computed fairly easily. 
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4. Simulation Results 

In this section the results of a simulation study will be presented for the case 
where the biped is walking on a planar horizontal surface and the case where 
the biped climbs a sequence of stairs of known height. The computed torque 
and sliding mode control laws will be applied and compared for various degrees 
of uncertainty. We shall see that a complete simplification of the system model 
as is done in the local (decoupled) proportional plus derivative (PD) control 
has very limited value. When the modelling errors and other uncertainties take 
large values (as in the case of a biped or an anthropomorphic robot) we have to 
use the full robotic model as is done in the computed torque-control technique. 
However, the computed-torque control requires an exact knowledge of the system 
parameters (inertia parameters, link lengths, etc.) which is not tree in practice. 
This means that the control law is not robust as is the sliding mode control. 
These issues will be fully clarified and verified by the results that follow. 

4.1. S T E A D Y  H O R I Z O N T A L  WALKING M O D E  

The 5-1ink biped robotic model shown in Figure 1 was used throughout the sim- 
ulation study. Each of the four joints (two hip and two knee joints) are assumed 
to be driven by an independent motor. The motion of the biped is assumed to be 
constrained on the plane of the figure. The values of the parameters mi, Ii, li, 
and di (see Section 2.1) are shown in Table I. 

Our basic goal is to realize a steady stable gait on a horizontal plane. Such 
a gait can be obtained by feeding to the control system repeatedly at every-step 
the same reference signal [8]. In practice, the biped robot system should have a 
hierarchical structure, at the higher level of which the desired reference signal is 
selected (possibly using information about the surface of the ground from suitable 
sensors) (Figure 5). After the completion of each step, this reference signal is fed 
to the lower hierarchical level which involves the joint motion control system. 
The reference signal qr(t) for the steady walking on the horizontal plane is 
selected as described below. To keep the biped body in the vertical position (i.e. 
03 = 0, see Figure 1) we choose 

qr2(/~) = 02(~)- (59) 

Table I. Parameters of the biped robot 

Link Mass rni Moment of Length l~ Location of center 
(kg) inertia Ii (m) of mass di 

(kg m) (m) 

Torso 14.79 3.30 x 10 - 2  0.486 0.282 

Thigh 5.28 3.30 x 10 -2 0.302 0.236 

Leg 2.23 3.30 x 10 -2 0.332 0.189 
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(Upper Level) 

Selection of the 
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continuous walk 

qr, q~ 
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Fig. 5. 
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I qr' ~ Control 
I - ~ "  I system 
I 

a ,_q+ 

Level III 

Robotic 
I Driving system 
I torques 

State 
teedback 

Sensor -q~ 
devices 

Hierarchical structure of the robotic control system. 

It is assumed that the transition of the supporting leg is instantaneous at the 
completion of each step. This assumption, which means that there is no phase 
of simultaneous support at both legs, is necessary since the biped has not 'soles' 
at the feet. Furthermore, because each foot has no ankle joint and sole, the 
reference signals must be selected so as to make use of the gravitational effect 
in order to increase the angular momentum of the biped about the supporting 
end toward the desired direction of motion. Thus the following gait model is 
considered which satisfies all the above requirements. 

(i) 

(ii) 

(iii) 

At the moment where the free leg touches the surface of the ground, the 
supporting leg leaves immediately the ground. 

The same reference signal qr(t) is fed repeatedly at each step. 

Just before the contact of the free end with the ground, the reference 
signals qrl(t), qr3(t) and qr4(t) are given constant values qrsl, qrs3 and 
qrs4, respectively, as shown in Figure 6 which depicts the desired reference 
signals used for the control of joints 1, 3 and 4. In this way, the biped con- 
figuration at the moment where the free end touches the ground, is always 
the same, independently of the small deviation that may occur at the time 
where each step is completed. This leads to a constant step length (stride) 
over the whole duration of the biped walking. Let qrs3 = qh (say 30 ~ 
and q~sl ----- 0. The reference signal qr4 in the knee joint is selected so 
as to keep this joint at the moment of contact of the free end with the 
ground at some nonzero value, in order to have a certain increase of the 
angular momentum upon the completion of the one leg support phase. For 
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example, let qrs4 = qk = qh = 30~ = 0.52 rad as shown in Figure 7. Then 
from qrsl = 0 it follows that (/1 + 12) cos qrs2 = / 4 c o s  qh + 15 and so 

l 4 cos  qh + 15 
qT82 = arcos (60) 

ll +12 

Stride = (ll + 12) sin qrs2 + 14 sin %. (61) 

Thus the stride is kept constant throught. 

(iv) Finally as is seen from Figure 7 the free leg (angle q~3(t)) is moved for- 
ward very fast, such that the momentum increases in the correct direction 
because of the gravitational effect. 

The reference signals described above were applied in all but the first (starting) 
step. At the starting step the slightly different reference signals of Figure 8 were 
used. 

4.2. COMPUTED TORQUE VERSUS LOCAL PD CONTROL 

Using the relative angle displacements as generalized variables the biped is de- 
scribed by the dynamic model (12a, b) where 

Tq = [0, TI,T2,7-3,74] T and q =  [qo, ql,q2, q3,q4] T 

(qo = 01 is the angle of rotation of the hypothetical joint 0 at the point of contact 
with the ground). 

The computed torque control law has the form {see (22) and (12a, b)}: 

Tq = D q ( q ) u  + hq -[- Gq, 

where u is the 5 x 1 state feedback vector with components ,{4 / 
ul = - D e [ 1  l~ " Z (Dq[l' j  + l] " Uj+l) + he(1 ) + G q ( 1 )  , (60a) 

' j = l  

u j +  1 = ~lrj --  K D j ~ j  -- I ( p j e j ,  ( j  = 1 , 2 , 3 , 4 ) .  (60b)  

The component Ul is selected such that Tq(1) = 0 which is required by the 
fact that the biped has the noncontrollable joint q0. In (60b) qrj (j = 1,2, 3, 4) 
are the reference signals, qrj the desired acceleration of joint j at each time, 
and ej = qj - qrj the trajectory error. The constants KDj and Kpj can be as 

described in Section 3.1, i.e. Koj = 2A and Kpj = ..~2 (i = 1,2,  3, 4) (see (26)). 
In this way a critically damped system is obtained with control bandwidth A. 
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Reference signals for steady walking on an horizontal plane surface. 

Fig. 7. Biped configuration at the moment where the free end touches the ground. 
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Fig. 8. Reference signals for the starting step (from the vertical position). 

Thus, the only parameter that remains for selection is the parameter A. Here we 
assume the following: 

(i) Maximum control bandwidth 300 rad/sec (A <~ 300 rad/sec). 

(ii) Sampling period Ts = 2 msec (i.e. sampling frequency fs = 500 Hz) 
which is realistic if the algorithm is programmed in ASSEMBLY and all 
trigonometric functions are stored in the memory. 

The results obtained with A = 100 are shown in Figures 9a and 9b. Figure 9a 
shows the tracking error for 0 ~< t ~< 4 sec and Figure 9b depicts the error at 
the collision time (1 ~< t ~< 1.5 sec) of the free end with the ground. Figure I0 
shows the torque variations in a small time interval (1.05 ~< t ~< 1.2 sec) around 
the exchange of the supporting leg. From Figure 9(a, b) one observes that the 
tracking error is returned to zero after a time period less than or equal to 0.1 sec 
(A = 100 rad/sec implies a time constant = 1/100 sec = 0.01 sec). The average 
tracking error for A = 100 is 0.0123 rad. 

For A = 150 the error vanishing period is 0.05 sec and the average tracking 
error is 0.0070 rad. The corresponding figures for A = 200 are 0.04 sec and 
0.0014 tad (see Figure 11). The walking mode of the biped on the horizontal 
surface has the form of Figure 12. 
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Fig. 9. Trajectory tracking error obtained with computed torque-control. 
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Fig. 12. Locomotion mode of 5-1ink biped (stick diagram). 

The tracking error that was obtained by local (decoupled) PD control, i.e. 
by a control scheme where each joint is controlled by an independent PD con- 
troller, has the form shown in Figure 13. One observes here the existence of 
a steady-state error (although very small) in contrast with the computed torque- 
control where the error is always returned to zero in a given finite time. The 
corresponding average tracking error is now 0.0107 rad. The comparison of 
Figures 11 and 13 shows the superiority of the computed torque scheme over 
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Fig. 13. Tracking error of local PD control for )~ = 200. 

Table II. Parameters of a human-sized biped 

Link Mass mi Moment of Length l~ Location of center 
(kg) inertia li  (m) of mass di 

(kg m) (m) 

Torso 49.00 2.350 - -  0.280 

Thigh 7.63 0.089 0.431 0.247 

Leg 4.55 0.105 0.502 0.267 

the simple local PD scheme. This superiority is strengthened further if we use a 
biped with the parameters given in Table II which are analogous to those of the 
human body (masses, moments of inertia and lengths). 

The effect of this increase in the model parameters (particularly in the masses 
and moments of inertia of the biped links) is to obtain a large increase in the 
tracking errors obtained with local PD control. This is so, since the local con- 
trol does not take into account the nonlinear structure of the model. The er- 
ror obtained in this case with the local PD control is depicted in Figure 14 
for a time interval 3 sec (average tracking error 0.0359 rad), the angle dis- 
placements ql, q2, q3, q4 in Figure 15, and the driving torques in Figure 16. 
From Figure 15 one can easily see the difficulty of the system to follow up 
the desired reference signals. Another undesirable characteristic of the local 
control is the fact that the biped cannot maintain its body in the vertical po- 
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Fig. 15. Angle displacements of the human-sized biped joints with local PD control. 

sition (angle 03) as it is seen in Figure 17. The results obtained when we 
apply computed torque control (A = 150) to the human-sized biped are shown 

in Figures 18 and 19. The average tracking error (again over a time period 

of 3 sec) is 0.0033 rad which is ten time smaller than that obtained with lo- 
cal control. However, this is achieved through driving torques that are about 
10 times larger from the ones corresponding to the small-sized biped of Ta- 

ble I. 
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4.3. STAIR CLIMBING GAIT 

Here, the capability of the biped to climb a set of  stairs of  fixed height h is 

examined using the computed torque control algorithm. Full knowledge of the 

biped parameters is assumed and the results presented correspond to h = 10 cm. 

For a gait on a flat horizontal surface the stride is given by (61) where the 

angle qrs2 is given by (60). Thus, the stride on a flat horizontal surface is 
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Tracking error of the human-sized biped with computed torque-control (~ = 150). 
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Fig. 19. Driving torques of the human-sized biped with computed torque-control (A = 150). 

constant and known. To climb a stair in front of it the biped needs to measure 

(with the aid of suitable sensors) the height difference at the end of the stride, 

so as to adapt the reference vector signal qr(t). To enable the biped to climb a 
stair the reference signals described in Section 4.1 must be modified as follows. 

(i) The value qrs3 = qh must be increased sufficiently in order for the free 
end to overtake the stair obstacle. 
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Fig. 20. Biped climbing a sequence of stairs of equal height (10 cm). 

(ii) The body is again kept vertical although it could be at a positive angle in 
order to increase the angular momentum. 

(iii) Since in our model there is no ankle joint (which would increase exter- 
nally the angular momentum in the desired direction) we assume that the 
angle qT3(t) does not take permanently a constant value during the whole 
step time, but it starts decreasing, just before the contact of the free leg 
with the ground, such that at the contact instant to have a velocity towards 
the ground and the back. In this way the biped achieves the necessary 
impact for the rise of its center of gravity and the regular gait forward. 

With a reference signal that satisfies all the above assumptions, the biped can 
climb a series of steps as shown pictorially in Figure 20. The path of the center 
of gravity (coordinates c9 x and cgy  with respect to the supporting end each time) 
has the form shown in Figure 21. Finally the trajectories of the joint angles and 
driving torques have the form of Figures 22 and 23. The above results were 
achieved with the application of the computed torque-control algorithm with 
exact knowledge of the biped parameters (i.e. with no uncertainty), and show 
that our 5-1ink biped can walk efficiently on a staircase (and consequently on any 
anomalous surface) provided it has the means to measure the height difference h 
each time. 

4.4. SLIDING MODE CONTROL 

Here we shall give the results obtained for the above biped when controlled by a 
sliding mode controller of the type described in Section 3.3. Thus the controller 
has the form {see (49)}: 

ui+t = L i - [ ~  - ki �9 sat (si/cI'i)] ( i =  1 . . . . .  4), (61a) 
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Fig. 21. Variation with time of the position of the center of gravity. 
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Fig. 22. Trajectories of the joint angles. 

where the ki ' s  and ~ i ' s  are defined by the balancing conditions (45) and (46), 

and the ~i 's  are given by 

u i  = ?lri - -  2 X e i  - -  A 2 e i  (i = 1,2, 3, 4), (61b) 
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Fig. 23. Variation with time of the corresponding driving torques. 

where ei = qi - qri. The sliding surfaces in (61a) are selected as 

si = ~i + 2~ei + ~2 f e i ( t ' )d( .  

t 

(61c) 

Here, it is assumed that although we do not know the uncertainty in the biped 

dynamics, we have available some bounds on the uncertainty of the biped pa- 

rameters (e.g. we know the values of the link masses and moments of inertia 

with accuracy • • 100%, say 45%). Using these bounds we can compute 

approximately the scalar quantities flnaJn and /3  max with the aid of (55), i.e. 

/4min T ~ ~ max i 1 . . . . .  4. 0 ~ ~'i ~ Mi+lDq,i+l <~ ~'~ , = (62) 

For the needs of this relation and for the satisfaction of the condition (54), i.e 

MTDq,i > 0, the matrix Dq is selected to be diagonal and positive definite with 

elements the diagonal elements of the original matrix Dq. We recall that the 

vectors Mi (i = 1 , 2 , . . . ,  5) are defined by Dq I = [M1, M2 . . . .  , M5] (see (52a)), 

the multipliers Li are given by (56) and the corresponding gain matrix /3i is 

defined by (57): 

fli = (/3max//3min] 1/2 
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The control discontinuity amplitudes ki(q, el) satisfy the inequalities (58), namely: 

ki(q, q)/>/3i  

-4- 

[ ( 1 - / 3 ~ 1 )  [~il 

4 

Z 
j = l  

+ (M~+I)TAHq 

Lj[Orj[ InT§247 I + 

(63) 

where r/i are positive constants used in the sliding conditions (31), and the el- 
ements of AH~, M~ are the absolute values of the elements of AI-Iq and Mi, 
respectively. 

Here we use for M~ the estimates 1VI~ that are obtained from the inversion 
of D. The same is also done to compute 3 min and/3 max in (62), i.e. we set 

D q l =  M = [MI M 2 " " M 5 ] ,  ~ q l =  ~l = [~I 1 1~I2" �9 "1~I5] 

and ADq = Dq - Dq and obtain 

MrIlq,i = M T (Dq,i + ADq,i) = 1 + MTADq,i = 1 + MTAI)q,i. (64) 

Now assuming that 

Dq = diag [L)q,ii], 1VI = diag [1/L)q,ii], 

L)q,ii -- Dq,ii ADq[i ,  i] 
faT AD ,. - 

as explained above, the relations (62), (64) and (65) give 

ADq[i, i] 
~m~. < 1 + <~ ~m~x. 

L)q[i, i] 

The quantities ADq[i, i] can be computed from (12a, c), i.e. 

ADq[1, 1] = AAll +AA12 + AA13 - AA14 - AA15, 

ADq[2, 2] = -AA22 - AA23 + AA24 + AA25, 

ADq[3, 3] = -AA33 + AA34 + AA35, 

ADq [4, 4] = AA44 + AA45, 

ADq[5, 5] = -AA55. 

(65) 

(66) 
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Also 

A A l j  

AA2j  

AA3j  

AA4j  

AAs j  

= 5D[1, j ]  + 5D[2, j ]  + 5D[3, j l  

- 6D[4, j] - 3D[5, j] (j = 1 . . . .  ,5), 

= -5D[2 ,  j] - 5D[3, j] + 5D[4, j]  + 3D[5, j]  (j = 2 . . . . .  5), 

= - S D [ 3 , j ] + S D [ 4 , j ] + S D [ 5 , j ]  (j  = 3  . . . . .  5), 

= S D [ 4 , j ] + S D [ 5 , j ]  (j = 4 , 5 ) ,  

= - 5 D [ 5 ,  j ]  ( j  = 5) .  

The bounds 5D[i , j ]  that appear in the above relations can be easily computed 
using (7) as follows. It is assumed that the link masses of the biped are known 
with uncertainty em x 100% (0 ~< e m <  1). Similarly, let e I, e z and e d be the 
known uncertainties in the moment of inertial I and the parameters I (link length) 
and d (position of center of mass with respect to the end of the link). Then 

AD[1, 1] = e i .  ?1 + ?~tl~ll [(1 + era)(1 + ed) 2 -  1] 

-1- ('~2 -t- ?~3 + ?~/4 + m5)?12 [( 1 + e .0 ( l  + el) 2 -  1], 

AD[2, 2] = e I �9 I2 + m2~22[( 1 + era)(1 + ed) 2 -  1] 

+ (m3 + m 4 + m 5 ) I 2 [ (  1 +era)(1 + el) 2 -  1], 

AD[3,3] = e , .  73 + m3~33 [( 1 + em)(l q- ed) 2 -  l], 

AD[4,4]--- e I �9 ?4 + m4(i4 - d4)2 [( 1 -I- era)(1 + e/d4) 2 -  1] 

+ ~5742[(1 + era)(1 + el) 2 -  l], 

where eld 4 is computed as follows 

( /4 -d4 )  2 -  (14-34) 2 

[14(1 + e l ) - d 4 ( l - - e d ) ]  2 -  (14--34) 2 

[(i4 -- 34) -+- Cl4el -1- d4ed)]  2 -- (14 -- 34) 2 

14el + d4ed -- 1 . 

2 l+ i4Z  / 

Therefore: 

eld 4 --  
14e/ q- d4e d 

14 - de  
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In general eld i denotes the uncertainty bound for (li -- di) and the following 
relation holds 

liel q- die d 
eld i - -  

Thus: 

AD[5, 5]----(31 �9 -[5 q-m5(15- d5)2 [( 1 q-ern)(1 + e/d5) 2 -  1]. 

Also 

5 D [ i , j ] = S p i j  ( i = l  . . . . .  4 and j = i + l  . . . . .  5) 

and 

(~P12 = ~t2lld2 [(| + era)(1 + el)(1 + e d ) -  1] 

+ (m3 + ~t4 + ms)lit2 [( 1 + ern)(1 + el) 2 -  1], 

6P13----m311d3 [(1 + era)(1 + el)(1 + e d ) -  1], 

5P14----m411 (14-  d4)[(1 + em)(1 + el)(1 + e l d 4 ) -  1] 

= § § + 

In the same way one can compute the bounds 6p23, 6P24, 5p25, ~P34, ~P35 
and @45- We see therefore that the quantities ADq[i, i] (i = 1, 2 . . . . .  5) can be 
computed using the above relations. Thus using (66), the bounds flmin and/3 max 
that provide suitable measures for the intervals of parametric uncertainty in the 
biped inertia matrix Dq, can be computed. 

The quantities flmin and /3 max can also be computed using a priori values 
for era, e l, e l, and e a according to the existing uncertainty in the values of 
mi, Ii, li and di. The results that are given in the sequel have been obtained by 
using the following a priori values: e m =  e x = 0.45, e z = 0.10 and e a = 0.20 
i.e. a dominating uncertainty in the mass and moment of inertia parameters and 
a smaller uncertainty in the distance parameters. We first compute ~ n  and 
flmax and then the quantities Li = (flminflmax)-l/2 and fli = (flmin/flmax)l/2. 
Then using L~ and 13i we compute the amplitudes k~ of the control discontinuity 
using (63). It only remains to compute the bounds AI-I~ which are required 
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in (63). To this end, the following relations are used: 

and 

IAhqOI - =  IAhll + [Ah21 + IAh31 + IAh41 + IAh51, 

IAGqOI = IAGI[-t-lAG21 + lAG31 + IAG41 + lAGs1, 

IAhqll = IAh21 + IAh31 + IAh41 + IAhsI, 

IACqll = IAa21 + [AG3I + [AG41 + lAG51, 

IAhq21 = lag31 + [Ah41 + IAh5[, 

IACq21 = lAG31 + IAG4[ + IAa51, 
IAh 31 = lab41 + IAh51, 

IACq31 = IAC4I + IAC51, 

IAhq41 = IAh51, 

IACq41 = IACsI. 

The quantities Ahi and AGi (/ = 1 , 2 , . . . ,  5) are computed using (12a) and the 
quantities (~Pij computed above. For example 

IAhll iAh12210~,ma x + ]Ah133 '2 = 103,max + [Ah144[02,max + [Ah15510~,max 

(dPl2 + 5P13 + ~P14 + 5P15) (0max) 2. 

Finally, we have to set a value for r/i which determines the convergence rate to 
the boundary layer. Here the value r/i = r/ = 30 is selected which ensures a 
sufficiently high convergence rate. Also, since the number of calculations in the 
present case does not differ very much from the one of the computed torque it is 
sufficient to use again the sampling time Ts = 2 msec. The quantities ki and Oi 
required in (61a) are computed using the balancing conditions. To summarize 
the values of the parameters used for the results shown in Figures 24 through 28 
are given in Table III. 

Figures 24a and 24b show the variation of the tracking error lel(t)[ + le2(t)[ + 
le3(t)l + le4(t)l in an interval of 3 sec and around the time of completion of the 
first step, respectively. The average tracking error for the first two steps is equal 
to 0.0025 rad. One can observe that the error returns to zero despite the exis- 
tence of parametric uncertainty. Figure 25 shows the variation of si (i = 1,2, 3, 4) 

Table III. Parameter values for the sliding mode control 

e m  e I e l C d T] Ts ,k 

0.45 0.45 0.10 0.20 0.30 2 msec 150 
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Tracking error of the sliding mode control with 45% parametric uncertainty and 
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within the boundary layer [ - ~ i ( t ) ,  + ~ ( t ) ] .  These diagrams contain useful in- 
formation since the ~ i ' s  provide an estimate of the parametric uncertainty at 
each time, and the si's give a measure of the trajectory tracking error. Figure 26 
depicts the variation of the angular displacements of the four joints in a time 
interval of 3 sec, from which one can see the very good tracking of the desired 
reference signals despite the presence of the uncertainty. Finally, Figures 27 
and 28 show the driving torques of the biped in a 3-sec interval and at the com- 
pletion time of the first step, respectively. One can observe the increased values 
of these torques in order to be able to face the existing parametric uncertainty. 

4.5. COMPARISON OF SLIDING MODE WITH COMPUTED TORQUE-CONTROL 

Here, the results of the sliding mode control presented in Section 4.4 will be 
compared with those obtained for the same parameter set (Table III) via com- 
puted torque control. The results obtained using the computed torque control are 
depicted in Figures 29, 30 and 31. Comparing Figures 24 and 29 one observes 
the considerably increased overshoot and the existence of nonzero steady-state 
error in the computed torque case. The average tracking error (0.0048 rad) 
of the computed torque for the first two steps is twice the corresponding error 
(0.0025 rad) of the sliding mode control. Thus in overall for the same control 
bandwidth/~ = 150 (a fact that is also seen in Figures 28 and 31 where the rate of 
change of the driving torques is comparable) the results obtained through sliding 
mode control are much better than those obtained via computed torque (smaller 
overshoot, zero final value of error, much smaller average tracking error). 

The above comparison was made for the parameter uncertainty values e m  = 

e I = 0.45, e t = 0.10 and e d = 0.20. However, for a full study, this comparison 
must be made for a sequence of increasing parametric uncertainty. Since the 
primary source of uncertainty is in the masses and moments of inertia, this 
study was made by increasing the values of e m  and e !  from 0.10 (10%) to 2.0 
(200%) monitoring in each case the average tracking error. To avoid excessive 
oscillations of the biped motion, the integration of tracking error is carried out 
only over a region around the sliding surface s = 0. The best performance 
was achieved when the integration was 'restricted to 20% of the boundary layer 
region (Figures 32, 33). The average tracking error obtained over the uncertainty 
region 10% to 200% is depicted in Figure 34 for the following cases (from top to 
bottom): computed torque-control, sliding mode-control with integral term active 
over the entire region of s, sliding mode-control with integral term active over 
50% of the boundary layer region, and sliding mode-control with integral term 
active over 20% of the boundary layer. The results presented above (as well as 
others not included here) have fully verified the theoretically expected superiority 
of the sliding mode-control over the computed torque-control, especially for 
situations where there exist large parametric uncertainty. 
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Fig. 29. Computed torque with A = 150 under 45% uncertainty. 



ROBUST SLIDING-MODE CONTROL 113 

A 

! 
m 

0.3 

0.2 

0.1 

0 
0 

I h i t 

0 1 1J  2 

(mc) 

2.~ 

0 . 4  ' ' ' ' ' 

0.2 

-O.2 

-0.4, 
0 3 O.J 1 1~ 2 2.5 

(me) 

0.4 

0.2 

0 

-0.2 

..0.4 
0 OJ 1 1.$ 2 2.5 3 

(me) 

0.$ 

0.6 

0.4 

O.2 
/ 

0 

0 O~ 1 l J  2 2.5 3 

Fig. 30. Joint angles during the steady walk on an horizontal plane under computed torque- 
control with A = 150 and 45% uncertainty. 

5. Conclusions 

In this paper the effectiveness of  robust sliding-mode control applied to a 5-1ink 

biped robot was studied and compared to that of  the usual computed torque- 
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control. The theoretical expectation that sliding mode-control is much superior 
than computed torque-control in the presence of strong parametric uncertainty 
was fully verified. The fact that this superiority is strengthened as the uncertainty 
level of the biped model increases was also established. Through the selection 
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Fig. 33. Driving torques for uncertainty about 200% and integration active over 20% of the 
boundary layer region. 

of appropriate reference signals a stable walk of the biped, both on an horizontal 

plane surface and on a staircase, has been achieved. It has been observed that 

if the uncertainty level is very high (higher than 80%) it may not be possible 

to maintain a stable gait with usual PID control. The computational complexity 
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Fig. 34. Comparison of the robustness (represented by the average tracking error) of the 
various control techniques, 

of both the computed torque and the sliding mode-control allow their realiza- 
tion with standard microprocessor hardware and software. In particular, if the 
algorithms are programmed in assembly, the computation time is of the order of 
3-4 msec. Further, by using suitable fast inverse dynamics algorithms (such as 
the Luh-Walker-Paul algorithm) or by parallelizing the computations, this figure 
can go down to less than 1-2 msec. Another improvement can be obtained if 
all the trigonometric functions are prestored and called from a ROM memory. 
Thus, since a sampling frequency of at least 60 Hz (Ts ~< 16 msec) leads to a 
very good trajectory tracking performance, it can be argued that the sliding mode 
control is suitable for use in experimental and practical biped robotic systems. 

Work is in progress in the following directions: 

- to explore biped models with more links (e.g. 9 links or 11 links) [21-22], 

- to explore the performance of alternative robust control schemes [23-25], 

- to explore the benefits obtained by using parallel scheduling computational 
algorithms [26], 

- to explore the effectiveness of robust control to handle the situation where 
one or more robotic arms are attached on the body, considering the effect 
of their motion as uncertainty to the biped locomotion model. 
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6. A p p e n d i c e s  

6.1. APPENDIX 1. DERIVATION OF THE BIPED DYNAMIC MODEL (5) 

The model (5) is derived by applying the Langrange equation of motion 

d { 0_~_~ } OK OU 
d--t - Oq--~ + Oqi Qi (i = 1,2, . . . ,  5), (A1) 

where K and U are the total kinetic and total potential energy of the biped, 
respectively. The potential energy of the biped (Figure 2) is equal to: 

U : m l g d  1 cos  01 

+ m 2 g ( / l  cos  01 + d2 cos 02) 

+ m39(/1 cos 01 +/2cos 02 + d3 cos 03) 

+ ~'~4g[/1 COS 01 + /2COS 02 -- (/4 -- d4) cos  04] 

+ m59[l 1 cos 01 -t- 12 cos 02 - l 4 cos 04 - (/5 - d5) cos  05] 

and so 

OU 
OOl 
OU 

002 
OU 

003 
OU 

0O4 
OU 

0O5 

-- [mld, + ( m  2 + m 3 + m 4 + ms)ll]gsin 01, 

-- [m2d2 + (m3 + m4 + ms)12]gsin 02, 

- -  -- [m3d3]g sin 03, 

- Ira4(/4 - d 4 )  + m 5 / 4 ] g s i n  04, 

- -  Ira5 (/5 - d5)] 9 sin 05. 

(A2a) 

(A2b) 

(A2c) 

(A2d) 

(A2e) 

The kinetic energy of link i is given by 

1 2 1 K~ = ~ miv~i + ~ Ii(0~) 2 ( i  = 1 . . . . .  5 ) ,  

where vci = [Scci, ~]ci] T is the linear velocity of the center of mass of this link. 
In the present case one has the following: 

1 (/1 + mld2)(Ol) 2, K l  ----- (A3a) 
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( llCOS81 )01+ ( d2c~ )02 
vc2 = -11 sin 01 -d2 sin 82 

1 1 K2 = ~ (i2 + ~2e~) (02) 2 + ~ (~2~)  (0,) 2 

-{- (TTL2d2/1)COS (81 -- 82)0102, 

119 

(A3b) 

Vc3 = ( 

1 
K3 = 

ll COS 81 12 COS 82 ( d3 cos 83 -llsin81)01+( sin 82) 02+ ) 03 -12 \ -d3 sin 03 

(I3 + m3 d2) (03) 2 

1 2 2 '  2 
+ 2zr~3{12(01) +/2(82)  -~ 211120102 cos (81 - 0 2 )  

n t- 2[ld30103cos(81-03) + 212d30203cos(82-83)}, (A3c) 

{ llcoSO1 { 12COS02 ~02+ ((14-d4) c~ 
Vc4= \--ll sin 81) 01 + k-12 sin 82 ] (14 - d4) sin 84 

1 
/~'4 = ~ [/4 -{- Tr~4(/4- d4)2] (04) 2 

1 m4{/2(01)2 +/2(02)2 + 211120102cos(81 -02) +~ 
-t- 2l I (/4 -- d4)0104 cos (81 -t- 84) 

-}- 2/2(/4 - d4)0204 cos (82 - 84) }, (A3d) 

and finally 

Vc5 = 

K 5 = 

( 
+ 

1 

11 COS 81 12 COS 82 /' 14 COS 84 
_llsinSl)01+( 8 2 ) 0 2 +  )04  --12 sin \ 14 sin 04 

(/5 - ds) cos 85 
O5 ==~ 

(/5 - ds) sin 85 / 

[i5 + . ~  (z~-  d~)2] (0~) 2 

+ ~- ~ , { ~ ( O l )  2 + z2(02) 2 + 2~z20102 cos (81 - 82) 

q- 211140104 cos (81 + 84) + 212140204 cos (82 -q-84) 

+ 2z, (z5 - a5)0105 cos (01 +o5) + 2z2(z5- d5)0205 cos (82 +85) 
+ 214 (/5 - ds)O405cos (84 -- 85) }. (A3e) 
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Thus  the total kinetic energy  o f  the biped is 
5 

K = E K i  
i=1 

from which one obtains: 

d{O l } d 

.1. 

.1. 

.1. 

.1. 

,1. 

"1" (Trt2/2)01 -{- ('gn2d2/1)02 cos (01 - 02) 

1. (m3/2)01 ,1. (m3/l/2)02cos ( 0 1 -  02) 
1" (m311d3)O3cos (01 - 03) 
1. (m412)01 .1. (m4lll2)O2cos ( 0 1 -  02) 
+ m4/1 (/4 - d4)04 cos (01 ,1. 04) 

+ ( ~ 5 ~ ) o l  + (,~5~1~2)o2cos ( o l -  02) 
+ m5111404 cos (01 "1" 04) 
+ ~511(15 - e5)05 cos (Ol + o5) } 

= [/1 "1" ml d2 "1" (m2 "1" m3 "1" m4 "1" ~Tt5)/12] 01 
1. [~2d211 ,1. (-~3 .1. ~ 4  .1. m5)1112]0~ cos ( 0 1 - 0 ~ )  

[~311d3]O3cos(01--03) 
[~'t24/1 (/4 -- d4) .1. 7r~5/1/4] 04 cos (01 .1. 04) 
[~5~1 (15 - d5)]~5 cos (ol + 05) 

[m2d2/1 "1" (m3 ,1. m4 .1. m5)1112]0102 sin (01 - 02) 

[m2d211 .1. (m3 ,1. m4 ,1. m5)1112] (02)2 sin ( 0 1 -  02) 

[m311d3]0103 sin (01 - 03) 

[m311d3] 
[m411(14 
[~4/1 (/4 
[mSll (/5 

(03)2 sin ( 0 1 - 0 3 )  

- d4) ,1. m51114]OlO4sin (01 + 04) 

- d4) .1. mslll4] (O4)2sin (O1 ,1.04) 

- ds)]OlOssin (01 + 05) 

- d s ) ]  (05)2 sin (01 +05) ,  (A4a) 

d{O ) 
= [I2 .1. . ~ d ~  .1. (,~3 .1. ~ 4  .1. m~)t~] ~ 

+ [ .~l~d~ + (,~3 + ~ 4  + m~)Z~l~]~, cos (O~ - O~) 
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+ [m312d3]'03 cos (02 - 03) 
+ [m412(14-d4)+ m51214]O4cos(02 +04) 
+ [-~51~(15 - ~5)] ~5 cos (02 + o5) 

-- [7"~2lld 2 + (m3 + rrt 4 + m5)lll2](O1)2sin(Ol-02) 
+ [m2lld2 + (rn3 + m4 + mS)ll12]O102 sin (01 - 02) 

+ [m3/2d3] (03)2 sin (02 - 03) 

- [m312d3]0203 sin (02 - 03) 

- -  [m4/2(/4 -- d4) + 7/25/2/4] (04)2 sin (02 + 04) 
- [Trt4/2 (/4 - d4) + m51214]0204 sin (02 + 04) 

- [m5/2(/5 - ds)] (05)2 sin (05 + 05) 

- [m512(15 - d5)]0205 sin (02 + 05), (a4b) 

 {oK} 
at ~ = [13 + m34]~3 

+ [m3/ld3]~) 1 cos (01 - 03) 
+ [m3~2e3] ~2 cos (02 - 03) 

- [m3lld3](O1)2sin (01 -03)  

+ [Trt311d3]OlO 3 sin (01 - 03) 

-- [m312d3] (02)2 sin (02 - 03) 
+ [rn312d3]0203 sin (02 - 03), (A4c) 

d{OK} 
dt ~ 4  = [14 + m4(/4 -d4 )2  + Trt5/2] 04 

+ [m4/l(14-d4)+ m51114]OlCOS(Ol +04) 
+ [m4/2 (/4 
+ [rrt5/4 (/5 

-- [rrt4/1 (14 
- -  [Try4/1 (14 

--[~-t4/2 (/4 
--[m4/2 (/4 

--d4) + fn51214]'02cos (02 + 04) 
- ds)]Oscos ( o 4 -  o5) 

- d 4 )  + ~'n51114](Ol)2sin(O1 +04) 
- d 4 )  + m51114]OlO4sin (01 +04) 

- e4) + ms/2z4] (02)2 sin (02 + 04) 
- d4) + rns/214]O204sin (02 + 04) 
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+ [ 1 n 5 / 4 ( / 5  -ds)] (05)2 sin (04  - - 0 5 )  

-- [m514(/5 -- d5)]0405 sin (04 - 05) , 

S. TZAFESTAS ET AL. 

(A4d) 

Also 

= 

+ [m5/l(15-d5)]01cos(01 +05) 
+ [mst2(/~ 
+ [m514(15 

- [ . ~ l ,  (z5 

--  [ m 5 / 1  ( /5  

-[.~512(15 
-[m512(15 
-[m~14(15 
+ [77~5/4 (/5 

- ds)] o2 cos (02 + o5) 
- d 5 ) ] 0 4 c o s ( 0 4 - 0 5 )  

-ds)]  (o,)2si. (ol +05) 
--d5)]0105 sin (01 + 05) 

- ds)] (02) 2 sin (02 + 05) 

- d5) ] 0205 sin (02 + 05) 

- -  d5)] (04)2 sin (04 - 05) 

- d5) ]O405 sin (04 - 05). 

OK 
O01- : -- (m2d211) 0102 sin (01 - 02) 

- [(m3 + m4 + m5)111210102 sin (01 - 02) 

- [Tt23/ld3]0103 sin (0, - 03) 

--[7gt411(14-d4) + lrt5lll4]OlO4 sin (Ol +04)  

- [m511(15 -d5 ) ]0105  sin (01 +05 ) ,  

(A4e) 

(A5a) 

OK 

002 
= ( m z d f l , ) O l 0 2  sin (01 - 02) 

+ [(TO, 3 + Tt24 + Tt25)/1/2] 0102 sin (01 - 02) 

- [m312d3]0203 sin (02 - 03) 
- -  [m412(14 - d4) + m51214]O204sin (02 + 04) 

- [m512(15 - d 5 ) ] 0 2 0 5  sin (02 + 05), (A5b) 

OK 
003 = [rr~3lld3]Ol03 sift (01 - 03) 

+ [m312d3]O203 sin (02 - 03), (A5c) 
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OK 

004 
[m4/1 (/4 -- d4) q- ~'/,5/1/4] 01D4 Sin (01 q- 04) 

- [m412(Z 4 - d4) --}- m51214]0204 sin (02 + 04) 

- [Tt25/4 (/5 - d5)] 0405 sin (04 - 05), (A5d) 

OK 

005 
Ira511 (15 - -  d5)]0105 sin (01 q- 05) 

- [m5/2(/5 - d5)]0205 sin (02 + 05) 

q- [Tt1514 (/5 -- d5)]0405 sin (04 - 05). (A5e) 

Using (A2a-e) ,  (A3a--e) and (A4a--e) in (A1) one obtains the desired model (5). 

6.2. A P P E N D I X  2. Transformation of the biped model (5) to the 
model  (12 a-c)  

The generalized torques Tqi (i -- 0, 1 . . . . .  4) that correspond to the variables: 

q0 = 01, ql = 01 - 02, q2 = 02 - 03, q3 = 03 + 04 and q4 = 04 - 05 are: 

Tqo = O, Tqi = ~-i (i = 1 . . . . .  4), (A6) 

where ~-i are the actual driving torques of  the four joints. The fact that Tqo = 0 
indicates that the angle q0 of  the hypothetical joint 0 is not directly controlled 
by a driving torque. 

The variables 0i (i = I, 2 . . . . .  5) are expressed in terms of the qi's (i = 
0, 1 . . . . .  4) as: 

01 = q 0 ,  

0 2 = 0 1  - q l  = q 0 - q l ,  

03 = 0 2 - q 2 = q 0 - q 1 - q 2 ,  

0 4 = q 3 - 0 3  = - q 0 + q l + q 2 + q 3 ,  

05 = 0 4 - q 4  = - q 0 + q l  + q 2 + q 3 - q 4 .  

(A7) 

Thus, from the relation 

5 
Tqi = Z TO j Oqj 

j= l  Oqi ' 
i = 0 , . . . , 5 ,  
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one obtains: 

TqO= 

Tql = 

Tq2= 

Tq3= 

Tq4= 

Now, 

T~ nt- T~ nt- Z~ - Z~ - T~ I 

I 

-To2 - To3 + To4 + To5, 

-To3 n t- To4 n t- To5 , 

To4 + To5, 

-To5. 

S. TZAFESTAS ET AL. 

(A8) 

using (A6), (A7) and (A8) the biped model (5) is transformed as follows: 

All01 + A1202 + A1303 + A1404 + A1505 + hqo + Gqo = Tqo = 0 

where 

Alj = Drj~ + Dzj + D3j - D4j - Dsj, j = 1 . . . . .  5, 

h q o = h l  + h z + h 3 - h 4 - h 5 ,  

Gqo. = G1 + G2 + G3 - G4 + G5. 

(A9a) 

A2101 -k- A22"02 + A2303 -k- A2404 -k- A2505 -k- hql + Gql = Tql = 7-1 

where 

Azj  = - D z j  - D3j + D4j + D5j, j =  1 . . . . .  5 

hql = - h 2  - h3 q- h4 -}- hs, Gql = - G 2  - G3 + G4 + G5. 

(A9b) 

A31~)l + A3202 + A3303 + A3404 + A3505 + hq2 + Gq2 = Tq2 = 7-2 

where 

A3j = - D 3 j  + D4j + D5j, j = 1 . . . .  ,5, 

hq2 = -h3 +h4  + h5, Gq2 = -G3  + G4 + G5. 

(A9c) 

A4101 + A4202 + A4303 + A4404 + A4505 -t- hq3 + Gq3 = Zq3 = 7-3 (A9d) 

where 

A4j = D4j + D5j, j -= 1 . . . . .  5, 

hq3 = h 4 +  h 5, Gq3 = G 4 + G 5. 

A51"O1 + Ase02 + A53t)3 -k- A54~)4 -+- A5505 + hq4 + Gq4 -= Zq4 = 74 (A9e) 
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where 

A5j = - D s j ,  j = 1 . . . .  ,5, 

hq4 = -h5,  Gq4 = -G5.  

Finally, using the transformations (A7) one obtains the transformed biped dy- 
namic model (12 a-c) as desired. It is easy to verify that the new inertia ma- 
trix Da is symmetric, as expected. 

6.3. A P P E N D I X  3. Derivation of the biped dynamic model (13) 

The model (13) is again derived by applying the Langrange Equation (A1). The 
potential energy of the system in the air (Figure 3) is: 

U = m | g ( y  b + dl cos 01) 

+ m2g(Yb + ll cos 01 + d2cos 02) 

+ m3g(Yb + 11 cos 01 +/2COS 0 2 Jr- d3 COS 03) 

+ m4g(y b q-11 COS 01 + 12COS 02 -- (14 -- d4) cos 04) 

+ ~ 9 ( y b  + l~ cos o~ + l~ cos 02 - t4 cos 04 - (l~ - d~) cos 0~). 

Therefore 

OU 
= G i ,  i =  1 , . . . , 5 ,  

00~ 

where the G~'s are as defined in (6), and 

OU 

OX b 

OU 

OY b 

= 0 ,  

-- (ml + m 2 + m 3 + m 4 + m 5 )  9 = m o ; ~ g .  

The kinetic energy of link i is given by 

1 2 1 �9 2 
K~ : ~,~v~ + ~ ~(0~)  (i = 1 , . . . ,  5), 

(AIO) 

where vc~ is the velocity of the center of mass of link i. Thus using the rela- 
tions (A3) and the fact that the velocities vci for the model in the air are increased 
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1 1 2 2 
K5 = ~ [ / 5 + m 5 ( 1 5 - d 5 ) 2 ] ( 0 5 )  2+-~m5[12(01) 2+/2(02) +/2(04)  

+ 211120102cos (Ol - 02) + 21li40104 COS (01 n t- 0 4 )  

q- 212140204 cos (02 + 04) + 2ll (15 - d5)0105 cos (01 q- 05) 

+ 2z2 (15 - ~5)0205 cos (02 + 05) 

+ 2/4 (/5 - ds)OgOscos (04 - 05)] 

1 
+ ~ m5 [(2b) 2 + (~tV) 2 + 21101 (Xb COS O 1 -  ~)b sin 01) 

+ 21202(5:b cos 02 -- ~)b sin 02) + 21404(5: b cos 04 + ~)b sin 04)] 

+ 2(15 -- ds)Os(Jcb cos 05 + ~/b sin 05)]. ( A l l )  

We thus obtain: 

- -  ~ ~  

dt 

+ mld l  (~b cos O1 - 9bsin O1 -- 5CbOl sin O1 -- 9bO1 cOS 01) 

+ ( m 2 + m 3 + m 4 + m 5 )  

x ll (~b cos O1 --~)b sin O1 --5:bO1 sin Ol --9bO1 cos 01), 

d(O  } 
- -  ~ �9 . , 

dt 

+ m2d2 (zb cos 02 - ~)b sin 02 - 5:b02 sin 02 - yb02 cos 02) 

-/- (m3 -t- m 4 +/'125) 

x 12 (5~ b cos 02 - Yb sin 02 -- 5:b02 sin 02 -- ~/b02 cos 02), 

d{O } 
. . . . .  + (. 3d3) 
dt 

• (XbCOS 03 --~)b sin 03 -Xb03 sin 03 --~lbO 3 COS 03), 

d(O;4} . . . .  "~ [?rt4 (/4 - d 4 )  -t- Irt514] 

X (h} b COS 04 q- 9b sin 04 -- Zb04 sin 04 q- 9b04 COS 04) , 



128 S. TZAFESTAS ET AL. 

d{O:,} 
. . . .  + d , ) ]  

• (~b cos 05 + Yb sin 05 - 3505 sin 05 + Yb05 COS 05), 

OK 
001 
. . . . .  + mldlOl( -  5cb sin 01 --YbCOS 01), 

OK 
002 

OK 
003 

OK 
0o4 
OK 
0O5 

. . . . .  + m2d202 ( - :i: b sin 02 - Yb cos 02), 

. . . . .  + m3d303 ( - ~ sin 03 -- Yb COS 03) ,  

. . . . .  § Ira4 (14--(/4) § m514]04(- xb sin 04 § ~/b cOS 04), 

. . . .  + [ m 5 ( / 5 - d 5 ) ] 0 5 ( -  :~b sin 05 + YbCOS 05), (A12) 

where the three dots '-- -' in the above relations represent the corresponding right 
hand sides of (A4a-e) and (A5a-e). Also, the following relations hold: 

d{0<} 
dS = (7"r~ 1 § m2 § m3 § ~1"~4 § m5) :~b 

+ mldl01 cos 01 - mldl(01) 2 sin 01 

(ma + m3 + ra4 + m5)/101 cos 01 

(m 2 § mt23 § m4 § ms)/1 (01)2 sin 01 

[m2d2+(m3+m4+ms)12]'O2cos02 

+ 

+ 

§ 

§ 

§ 

m2d2 + (m3 

(m3d3) 03 cos 

Ira4 ( / 4 - d 4 )  

+ m4 + rn5)/2] (02)2 sin 02 

+ m5141 04 cos 0 4 

Ira4 (14 - d 4 )  + m514] (04)2 sin 04 
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= (ml + m2 + m3 + m4 + m5)~)b 

-- mldl~)l sin 01 - mldl (01) 2cOS 01 

-- (m2 + m3 + m4 + m5)llO1 sin 01 

-- (ft~ 2 -t" ~3  q- m4 -Jr- TrL5)/1 (01) 2cOS 01 

- [m2d2+(m3+m4+m5)12]O2sin02 

-- [m2d2 -t- (m3 -I- m4 q- m5)12] (02)2c0s 02 

- (m3d3) 3 sin 0 3 -  (03)2cos 03 

q- [m4(/4-d4)-k-m5141"O4sin 04 

--]- [m4(14 - d4) Jr- m5141 (04)2c0s 04 

+[ms(15-ds)t05sinOs+[ms(15-ds)](05) 
OK 

m O ,  

OX b 

dt O~lb 

2 COS 05, 

OK 
= 0. (A13) 

OYb 

Using (A10) through (A13) in the Lagrange Equation (A1) gives the desired 
biped model (13). 

6.4.  A P P E N D I X  4. D e r i v a t i o n  o f  the  c o l l i s i o n  f o r m u l a  (18)  

The impact of a robot with its environment is a common phenomenon in all 
robotic systems. Industrial robots have to perform some desired tasks which 
require the robot to come in contact with the object under processing and exert 
upon it a suitable force. The impact phenomenon occurs exactly at the moment 
when the robotic end effector touches the object. On the other hand the impact 
phenomenon in legged robots takes place each time the robot exchanges the 
leg(s) of support. 

The impact with the environment implies a sharp change of the joint veloci- 
ties [17]. It is therefore required to compute each time the new joint velocities 
just after each collision. Actually at the moment when the robot comes into 
contact with the environment, a geometric constraint is enforced to the system 
motion. 

Let xe be the instantaneous position/orientation of the robotic end which comes 
into contact with the environment, expressed with respect to the world coordinate 
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(inertia reference) system. Then we have 

xe = xe(0), (AI4) 

where 0 = [01 . . . . .  On] T is the vector of generalized coordinates of the system. 
If Xs is the contact point, the collision occurs when 

xe(0) = xs. (A15) 

Equation (A15) represents an external constraint to the robot motion. Every 
external constraint implies the introduction of a generalized constraint force F6 
in the system dynamic model, where 

F s =  [0_0j  - =  Jr-A' (A16) 

where J is the Jacobian and A is a suitable column vector of Lagrange multipliers. 
In this way, if the robotic dynamic model before the collision is (see Equa- 

tion (5)): 

D(0)0 + h(0, ~)) + G(0) = To (A17) 

then just after the collision becomes 

D(0)~) + h(0, 0) + G(0) = To + F6. (A18) 

During the infinitesimal duration of the collision the joint positions remain un- 
changed, since the joint velocities are finite and their integral over an infinitesimal 
time interval is zero. Integrating therefore (A18) over the infinitesimal interval 
[to, to + At] one obtains (to is the instant of collision): 

to+At to+At 

lim f D(O)Odt+ lim f [h(O,O)+G(O)-To]dt 
At-+O At--+0 

to to 

to+At 
f 

lim 1 F6 .d t .  
At--+0 J 

to 

(A19) 

The second term on the left hand side of (A19) goes to zero as At --+ 0, and so 
(A19) reduces to 

D(0)A0 = ~6,  (A20) 

AO = O(to + At) - O(to), (A21a) 
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to+At 

f~e = / F~ �9 dt (a finite value). 
o 

(A21b) 
, Y  

to 

Equation (120) constitutes an expression of the theorem of conservation of mo- 
mentum and allows the computation of A0 if f~e is known. But in actual 
practice f ~  is not in general known. However, the relative velocity ARe = 
:~e(t 0 + At) - xe(t0) between the contact points of the robot and the environment 
can be measured and used for the computation of A_0. To find the relation between 
ARe and A0 we start from Re = J0 and obtain 

xe - xs = J0 - Rs. (A22) 

Now, if all objects with which the robot comes into contact are not moving, 
(A22) gives 

i.e. JA0 = AXe. 

Therefore, using (A16), (A20) and (A21b) in (A23) one obtains 

A23) 

to+At 

f ~ = j T  / Adt and 

to 

JA0 = J 

Hence 

D-l(0)- j T .  

t o +At ] 

f Adt J to 

t o +At 

Adt= [J I ) - l J r ] - lAxe  

to 

o r  

~6 = jT (JD-1jT) Z~e. (A24) 

Equation (A24) allows the computation of f~6 by using the measured quan- 
tity Axe. Introducing (A24) into (A20) one obtains 

A0 = D-1jT (JD-1jT) - 1 Z ~ e ,  (125) 

i.e. the desired Equation (18). 
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