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Abstract. This paper presents the current state of the art in the adaptive control of single rigid 
robotic manipulators in the constrained motion tasks. A complete mathematical model of a single 
rigid robotic manipulator in contact with dynamic environment is presented. The basic approaches 
in deriving the environment model are given. The significance of the dynamic environment in the 
scope of the stability problem of the whole system robot-dynamic environment is emphasized. A 
classification of the adaptive contact control concepts in manipulation robotics is presented. The 
main characteristics of the most important adaptive strategies in constrained manipulation are given. 
The advantages and the drawbacks of the presented methods are emphasized. The paper covers results 
published a few years ago, as well as some recent trends in this field. One important result in the 
stability analysis of robotic manipulators in the constrained motion tasks is reported. Finally, some 
concluding remarks are given and possible future investigation trends in adaptive control of robotic 
manipulators are indicated. 
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1. Introduction 

The nature of  relation between a robot and its environment can be categorized in 
two classes [ 1 ]. The first one concerns the non-contact, e.g. unconstrained, motion 
in a free workspace, without any relevant environmental influence exerted on the 
robot. A limited number of  most frequently performed simple robotic tasks in 
practice, such as pick-and-place, spray painting, gluing or welding, belong to this 
group. In contrast to these tasks, many complex advanced robotic applications 
such as grinding, cutting, drilling, insertion, fastening, joining, contour following, 
debarring, scribing, drawing, sweeping, assembly, require the manipulator to be 
mechanically coupled to other objects. These tasks are refereed to as essential 
contact tasks, because they include phases where the robot end-effector must come 
into a contact with objects in its environment, produce certain forces upon them, 
and move along their surfaces. The terms constrained or compliant motion are 
usually referred to contact tasks. 
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Contact tasks are characterized by dynamic interaction between the robot and 
its environment, which often cannot be predicted accurately. In many cases, the 
magnitude of mechanical work exchanged between the robot and its environment 
during contact may vary drastically. Therefore, for a successful completion of 
contact tasks either the interaction forces have to be monitored and controlled, 
or control concepts ensuring compliant interaction with the environment must be 
applied. Compliance can be considered as a measure of the ability of a manipula- 
tor to react on interaction forces. The term refers to a variety of different control 
methods in which the end-effector motion is modified by the contact forces [1]. 

The type of contact tasks may vary for specific requirements, but in all cases, 
the robot has to perform three kinds of motion: so-called gross motion, related 
to robot movement in free space, compliant or fine motion, related to robot 
movement constrained by an environment, and interface or approach motion, 
representing all transitions between gross and compliant motion. 

The state of the art in the non-adaptive control of robotic manipulators in 
constrained motion tasks is presented in [1, 2]. There are also several reviews of 
adaptive control of unconstrained (free) motion of robotic manipulators [3-5]. In 
this paper we will consider the current state-of-the-art in the adaptive constrained 
motion control of single rigid robotic manipulators. 

The adaptive control algorithms should be employed only when simple clas- 
sical non-adaptive controllers cannot achieve desirable performances. For exam- 
ple, when the predicted variation of the robot or environment parameters would 
exceed the capability of the robust control to 'overcome' it, the adaptive control, 
that is control with variable gains, should be introduced. Adaptive control is often 
necessary in the constrained motion tasks because: (i) in the contact tasks the 
robot works in the ambient conditions which may not be completely known in 
advance; (ii) in defining the environment model it is difficult to take into account 
all the existing effects, that is, in deriving the environment model the imprecise 
modeling is always unavoidable; (iii) the parameters of the robot or environment 
dynamics usually are not known in advance, they cannot be predicted accurately, 
and need to be estimated on-line; (iv) the robot or environment parameters may 
vary in a wide range, and it is not possible to solve the contact control task with 
the non-adaptive robust control with fixed gains. 

The adaptive control algorithm allows the manipulator to identify its own 
dynamic model, or the environment model, and to adjust to changes in the manip- 
ulator or environment dynamics, in order to successfully complete the control 
task. Generally adaptive control is composed of two parts: (i) an identification 
part, which identifies parameters of the plant itself, or controller parameters, or 
environment parameters; (ii) a control law part, which implements a control law 
which is the function of the parameters identified. Hence, adaptive control tech- 
niques include automated identification scheme and control design scheme. Both 
schemes may be determined in different ways. 
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The key adaptive techniques are automatic tuning, gain scheduling, and con- 
tinuous adaptation. In any case, the main problem in the synthesis of the adaptive 
controllers is to prove that the resulting system is stable. The desirable goals in 
the design of adaptive robot controllers are: (i) insensitivity to robot and envi- 
ronment parameter uncertainties; (ii) decoupled joint response; (iii) low demand 
for on-line computations. 

The plan of this paper is as follows. In Section 2.1 the robot dynamics model 
and the model of actuators driving the robot joints are presented. In Section 2.2 
two basic approaches in deriving the environment model are given. In Section 3 
a classification of the adaptive contact control concepts in manipulation robotics 
is presented. The most important adaptive strategies in constrained manipulation 
and one important result in the stability analysis of robotic manipulators in the 
constrained motion tasks are presented in Section 4. Finally, in Section 5 some 
concluding remarks are given and possible future investigation trends in adaptive 
control of robotic manipulators are indicated. 

2. Dynamic Model of Robot in Contact Tasks 

2.1. THE ROBOT DYNAMICS MODEL 

The mathematical model of the robot in the constrained motion tasks consists of 
the model of the robot mechanism, model of the actuators driving its joints, and 
the environment model (contact force model) [6, 7]. 

Dynamic model of a robot mechanism having n degrees of freedom and 
interacting with its environment can be written as: 

H(q, ~)q + C(q, (t, ~)(l + 9(q, 4) = 7 - dT (q, ~)F, (1) 

where q is the n-dimensional vector of the robot joint angles; H(q, 4) is the 
(n x n) positive definite matrix of the moments of inertia of the manipulation 
mechanism of the robot and its actuators system; C(q, q, ~)(1 is the n-dimensional 
nonlinear vector function representing centrifugal and Coriolis moments; 7- is the 
n-dimensional vector of driving forces in joint space; J(q, 4) is the (m x n) full 
rank Jacobian matrix connecting the velocities of the robot end-effector with the 
velocities of the robot joint angles; i.e.,/5 = (Of/Oq)(t = J(q, ~)(1, where p is the 
(m x 1) vector of external robot coordinates which determines the end-effector 
position and orientation, f is the function which defines the relationship between 
joint (internal) coordinates q and external coordinates p: p = f(q) ;  ~ = ~(t) 
is the /-dimensional vector function of the time dependent robot parameters; 
F = F(t)  is the m-dimensional vector function of the generalized forces and 
moments acting on the end-effector from the environment. The dimension of 
the vector F can be adopted in the Cartesian coordinates to be 3 or 6. Three 
cases may arise: (i) m = n, in that case it is possible to determine the joint 
velocities 0 corresponding to the given external velocities/~; (ii) m > n, in that 
case it is not possible to determine the joint velocities 0 corresponding to the 
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given external velocities ~5 (except in some special cases); and (iii) m < n, when 
some additional criteria should be introduced in order to determine the unique 
corresponding to the given ~5. 

The above dynamic model can be transformed into the equivalent model which 
is very suitable for analysis and synthesis of a robot controller in the contact tasks. 
This model describes the end-effector motion in the Cartesian (operational) space, 
Khatib [8], that is the space where manipulation tasks are naturally specified. The 
dimension of this space m is less or equal to the dimension of the joint space 
n. The dynamic model of the robot mechanism in the Cartesian space may be 
written as: 

A(p)i6 + f~(p, iS)i5 + O(p) = u - F, (2) 

where p is the (m • l) vector of external robot coordinates which determines the 
end-effector position and orientation, A, f~ib, 0 ,  u are counterparts of H, C~, g, T, 
respectively. If m = n, the relationships between the corresponding matrices and 
vectors from the joint space and the Cartesian space are given by: 

A(p, ~) = j - T ( q ,  ~)H(q,  ~ ) j - l  (q, ~), 

 (p,p)p = j - T ( q ,  O, - A(p, U(q, 
(3) 

O(q) = j - T ( q ,  ~)g(q, ~), 

u = j - T ( q ,  ~)T. 

In the case of electric DC motors it is sufficiently accurate to adopt their dynamic 
models in the form: 

ic i = A i x  i + b iN(u  i) + f iu i ,  i = l , 2 , . . . , n ,  (4) 

where x i is the (hi • 1) state vector of the ith actuator model; A i is the (ni • ni) 
actuator matrix; b i and f i  are the (ni • 1) input distribution and load distribution 
vectors, respectively; u i is the scalar input to the ith actuator; N(u i )  is the 
nonlinearity of the amplitude saturation type; ni is the order of the actuator 
state model. The actuator model is usually of third or second order, where x i = 
(qi, qi, iiR)T o r  x i = (qi, qi)T respectively, and i~ is the ith rotor current. 

2.2. THE ENVIRONMENT MODEL 

The environment model describes the complex relation between the reaction 
force F and the end-effector position p, velocity ~5 and acceleration/~, e.g. F = 
F(p,[a, iS). There are two basic approaches in deriving the environment model: 

First approach: when the contact between the robot and the environment does not 
imply energy transfer or dissipation, i.e. when the environment imposes purely 
kinematic constraints on the end-effector motion. (Yoshikawa [9], McClamroch 
and Wang [10], Mills and Goldenberg [11]). In this case the dynamics of the 
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environment is neglected and only a static balance of forces and torques occurs at 
the contact. This environment model is only valid for frictionless contact surfaces, 
and since most real contact surfaces do have friction, application of this model 
need to be further investigated. According to this approach, the environment is 
described by a set of m rigid mutually independent hypersurfaces: 

q~(p)=0 ,  q~(P)=[ r162  T, m<~n .  (5) 

The normal component of the interaction force F can be written as: 

Fn = DT(p)  " )~, D(p) = O~(p)/Op, (6) 

where: 

- A is the m-dimensional vector of generalized Lagrange multipliers associated 
with the constraints which represent normal contact force components; 

- Fn represents the normal contact force in Cartesian space; 
- D(p) is the ( m x  n) matrix. 

So, in this approach the normal component of the contact force between the robot 
end-effector and the constraint surface can be expressed in the Cartesian space 
in terms of the constraint multiplier vector )~ (it is assumed that the friction force 
& = o). 

Second approach: when the contact between the robot and the environment does 
imply energy transfer or dissipation, i.e. when the robot end-effector is coupled 
with the dynamic environment (De Luca and Manes [12], Yao and Tomizuka [13], 
[14]). In this case dynamic interactions between the robot and its environment 
are taken into account together with the purely kinematic constraints imposed on 
the end-effector. The robot exerts active forces at the tip, i.e. forces which are 
not compensated by a constraint reaction and produce work on the environment. 
These additional active contact forces are responsible for the energy transfer 
between the robot and the environment and have to be introduced when the 
dynamics of the environment is included. 

In general case of treating the contact tasks, the complete environment dynam- 
ic model must be taken into account because the dynamic environment does not 
have to be passive in the consideration of the complete stability problem of the 
robot in contact. The environment dynamics has a significant influence on the 
robot stability and insufficiently accurately modeled environment dynamics can 
significantly influence the contact task performances. Beside that, without know- 
ing a sufficiently accurate environment model it is not possible to determine the 
nominal contact force F~ So the assumptions as environment passivity and its 
stability which have been widely used in the papers up to now, do not guarantee 
robot stability when the robot comes into a contact with dynamic environment. 
This fact significantly narrows the class of the real contact tasks in which the 
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methods which use the assumption that the dynamics of the environment can be 
neglected, may be practically implemented. 

The overall dynamics of the robot-environment system is derived in a unique 
framework in [12]. The general dynamic model of the environment with which 
the robot is interacting may be described in the form of a vector nonlinear 
differential equation, [ 12]: 

M(q)i~ + L(q, O) = ST(q) F, (7) 

where M(q) is the nonsingular, positive definite and continuous (n • n) inertia 
matrix; L(q, (t) is the continuous nonlinear n-dimensional vector function; ST(q) 
is the continuous (n • m) matrix with a rank equal to m, i.e., rank(S) = m. The 
parametric description of the environment dynamics has been given in [12]. 

However, in some practical cases, it is reasonable to assume that some of the 
dynamic effects of the environment may be neglected. In these cases, taking into 
account only the dominant effects, it is sufficiently accurate to adopt a simplified 
linearized environment model [15-17]: 

F = --gE(s)(p - PE), (8) 

where s is the Laplace operator, PE is the (m • l) vector of coordinates of the 
point of impact between the end-effector (tool) and the environment, gE(s) is 
the (n • m)  matrix which establishes a linear mapping between ( p -  PE) and F.  
The environment model may take one of the following forms which are special 
cases of the general model (8): 

(i) Stiffness model F = - K E ( p -  PE), (9) 

(ii) Damping model F = - - D E ( p -  fiE), (lO) 

(iii) General impedance model 
(11) 

F = - M E ( #  - jSE) -- DE(p -- PE) -- KE(p -- PE). 

In the above equations KE is the (m • m) semi-definite environment stiffness 
matrix, DE is the (m • m)  semi-definite environment damping matrix, and ME 
is the (m • m) positive definite inertia matrix. 

Supposing that the contact surface is not frictionless, i.e. that the friction force 
Ft ~ 0, Yao and Tomizuka [13, 14], modeled the interaction force F between 
the robot and its environment in the following way: 

F = F~ + Ft = DT(p)A + atf t(#,p,  A) = [DT(p) + LT(#,p,f)]A, (12) 

where (i) Ft = atft(#,[o, )~) is the vector of the friction force; its directions are 
specified by at, the unit tangent directions of the surfaces opposite to the end- 
effector velocity f E Rm; the magnitude is linearly proportional to the normal 
contact force F~, i.e. A, and friction coefficient # E R m, with sign determined 
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by the end-effector velocity/5; (ii) L is the (m • n) matrix which elements are 
linear with respect to the friction coefficient # E R m. The other terms have the 
same meaning as in (6). 

3. Classification of Adaptive Control Methods 

In general, adaptive control methods can be classified into direct, indirect and 
composite methods of adaptive control. 

In the indirect adaptive control the adaptation algorithm is driven by the pre- 
diction error associated with the identification algorithm (Li and Slotine [18], 
Schwartz, Warshaw and Janabi [19], Middleton and Goodwin [20]). The predic- 
tion errors are defined as the difference between the actual torque and the predict- 
ed torque applied to the manipulator. The drawbacks of the indirect method of 
adaptive control are: (i) the actual tracking errors are not taken into consideration; 
(ii) the manipulator trajectory must be persistently excited. 

In the direct adaptive control the adaptation algorithm is driven by the trajec- 
tory tracking errors. (Slotine and Li [21], Craig, Hsu and Sastry [22], Colbaugh, 
Glass and Seraji [23]). The drawbacks of the direct method of adaptive control 
are: (i) the manipulator trajectory must be persistently excited in order to ensure 
convergence of the parameter estimates to the true parameter values; (ii) the error 
dynamics is a function of the estimated parameters, i.e. it cannot be arbitrarily 
specified; (iii) computational complexity. 

Composite adaptive control, Slotine and Li [24], bases the adaptation algo- 
rithm both on the trajectory tracking error and prediction error, and therefore 
represents a combination of a direct and indirect approach. 

The first attempt to contribute in the field of adaptive control of robotic manip- 
ulators was made in 1979 by Dubowski and DesForges [25]. Since then, research 
in adaptive robot control has been very active, for both single and multiple robot 
manipulators. The literature on the adaptive control of rigid robot manipulators 
may be grouped in the following way: 

(i) literature on the adaptive control of single rigid robot manipulators in 
unconstrained motion tasks (Ortega and Spong [5], Middleton and Goodwin 
[20], Slotine and Li [21], Craig, Hsu and Sastry [22], Colbaugh, Glass and Seraji 
[23], Koivo and Guo [26], Vukobratovic and Kircanski [27, 28], Vukobratovic, 
Stokic and Kircanski [29], Sadegh and Horowirz [30], Reed and Ioannou [31], 
Carelli, Kelly and Ortega [32]), etc.; 

(ii) literature on the adaptive control of single rigid robot manipulators in 
constrained motion tasks (Yao and Tomizuka [13, 14], Fukuda, Kitamura and 
Tanie [33], Jean and Fu [34], Lu and Meng [35], Kelly, Carelli, Amestegui 
and Ortega [36], Slotine and Li [37], Arimoto, Liu and Naniwa [38], Walker 
[39], Vukobratovic and Ekalo [40, 41], Pourboghrat [42], Mo and Bayoumi [43], 
Lozano and Brogliato [44], Liu, Arimoto and Kitagaki [45], Zhen and Goldenberg 
[46], Hu et al. [47]), etc.; 
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Figure 2. Classification of adaptive constrained motion control methods. 

(iii) literature on the adaptive control of multiple rigid robot manipulators 
in unconstrained motion tasks (Koivo [48], Pittelkay [49], Seraji [50], Me and 
Bayoumi [51], Walker, Kim and Dionise [52], Bolandi, Carroll and Chen [53], 
Zribi and Ahmad [54], Uchiyama and Yamashita [55], Hsu [56], Jean and Fu 
[57], Damm [58]), etc.; 

(iv) literature on the adaptive control of multiple rigid robot manipulators 
in constrained motion tasks (Yao et al. [59], Hu and Goldenberg [60], Su and 
Stepanenko [61], Yao and Tomizuka [62]), etc. Since the literature on the adaptive 
control of rigid robot manipulators is very extensive, it should be noted that in 
this paper we consider only the current state-of-the-art in the adaptive control 
of single rigid robot manipulators in constrained motion tasks. According to 
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the reported contributions in the field of adaptive constrained motion control 
methods, they can be classified into: 

(i) methods which do not take into account the dynamic environments: adap- 
tive hybrid position/force control, adaptive impedance control, adaptive inverse 
dynamics method (also called adaptive computed torque method), adaptive hybrid 
impedance control. 

(ii) methods which do take into account the dynamic environments: adaptive 
method of Yao and Tomizuka and adaptive method of Ekalo and Vukobratovic. 

The classifications reported in this section are summarized in Figure 1 and 
Figure 2. 

4. The Most Important Adaptive Concepts in Constrained Manipulation 

4.1. ADAPTIVE IMPEDANCE CONTROL 

The adaptive impedance control problem can be formulated in the following way. 
Consider the robot manipulator described by (2). The dynamic vector parameter 
of the manipulator and the payload is constant, but unknown. The Jacobian matrix 
J(q) is assumed to be non-singular and, since it does not depend on the dynamic 
parameters, is assumed to be known. If Pa denotes a desired bounded motion 
trajectory, e(t) denotes a motion error and F(t) is interaction force measured 
at the end-effector, the impedance control problem can be stated as to design a 
controller which computes torque T SO that the following control aim is satisfied: 

e(t) = pd(t) -- p(t) > --[sZME + sDE + KEJ-IF( t )  as t --+ oc, 

where s = d/dt, ME, D z  and KE are (mx m) diagonal positive definite matrices 
which define a target impedance (see (11)). So, if the impedance error # is defined 
as: 

# = e + [s2ME + sDE + KE]-IF( t ) ,  (13) 

then the control aim is to provide 

# ( t ) - + 0  as t - + o c .  

The most important adaptive impedance controllers are proposed by Lu and 
Meng [35], and Kelly et al. [36]. Here we will present the adaptive impedance 
controller given in [36]. It requires measurement of only position, velocity and 
force. The controller consists of two parts: a control law part and adaptive part 
(parameter estimator). The control law part is given by 

T = JT[AISr + filgr + ~) -- K D f l  + F], (14) 

/3 = -(/~ + 9U), (15) 

where A, fi, and ~) are the estimates of A(p), f~(p, iO), and O(p), respectively; 
is the (m x m) matrix whose eigenvalues are strictly in the right-half complex 
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plane; KD is the (m • m) positive definite matrix, possibly time-varying; # is 
the impedance error (13), ibr and iSr can be determined by 

Pr = f)d + q2e + (sire + ~)(s2ME + SDE + K E ) - I F ,  

~ = iSd + ~e  + s(sIm + ~) ( s2Mz  + sDE + K E ) - I F ,  

where Im is the ( m x  m) identity matrix. 
The authors used the following well-known fundamental property of the robot 

dynamics, [63]: 

PROPERTY 1. All the constant parameters (link masses, moments of inertia, 
etc.) appear as coefficients of known functions of the generalized coordinates. If 
each coefficient is defined as a separate parameter, a linear relationship results so 
it is possible to write the dynamic model of the robot mechanism in the Cartesian 
space (2) as: 

A(p, ~)/5 + f~(p, lb, ~)ib + O(p, 4) = Y(p,  fa,]5)~ = u - F, (16) 

where Y(p ,p ,  jS) is the (m • l) matrix of known functions, ~ is the/-dimensional 
vector of parameters, and the other terms have the same meaning as in (2). 

In view of Property 1, the control law (14) can be written as: 

"r = j T [ y ~ _  KDt3 + F], (17) 

that is, 

where Y is the (m x l) matrix whose elements depend on p,p,  pd,fad,fid, F and 

To update the parameter vector ~" an integral adaptive law is considered: 
5-. 

= _ [ , y T ~ ,  (18) 

where F = F y is the (l x l) positive definite adaptation gain matrix. 
The authors [36], have proved that if the control law (17) with the adaptive 

law (18) is applied in closed loop with the manipulator (2), then the control aim 
#(t) --+ 0 as t --+ co is fulfilled. 

The drawbacks of this method are: (i) the effects of uncertainties of the robot 
or environment dynamics, as well as the uncontrollable external perturbations 
are not studied; (ii) the environment model is adopted in a simplified linearized 
form (12), that is, the complete environment dynamic model is not taken into 
account; (iii) there is no experimental analysis on laboratory equipment. 

4.2. ADAPTIVE HYBRID CONTROL 

The most important adaptive hybrid controllers are proposed by Jean and Fu 
[34], Slotine and Li [37] and Lozano and Brogliato [44]. Here we will present 
the controller given in [37]. 
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The problem in the adaptive hybrid control considered in [37] can be stated 
as that of designing a hybrid control law and an adaptation law for a robot with 
unknown dynamic parameters so that the tool can accurately follow the desired 
trajectory pd in the unconstrained directions and impose the desired force Fa in 
the constrained directions. The proposed controller only adapts to the unknown 
parameters of the tool or the robot, and it is not adaptive to the environment 
parameters. The estimation of the environment parameters may be also included 
in the proposed law if the deformation measurements or the derivatives of the 
contact force are available. 

First, a compliance frame Re is set up to describe the compliant motion task 
and the vectors pa and Fd representing the desired position trajectory and desired 
force are expressed in the compliance frame. The dynamic model of the robot is 
transformed into a representation in terms of velocity and acceleration vectors in 
the compliance frame. The tool velocity vector Pc is related to the generalized 
velocity p by a transformation matrix R 

P = Rpc. (19) 

Therefore, the accelerations are related by 

j5 = RjSc + RPc. (20) 

Using (2), (19) and (20), the dynamic model of the robot mechanism in the 
compliance frame may be written as: 

Ac(p)iOc + f~c(p,P)Pc + (gc(p) = uc - Fc, (21) 

where Fc = R T F  is the contact force in the compliance frame, Ac = R T A R  
is the inertia matrix in the compliance frame, f/c = R y g t R  + RrA/~ is the 
compliance frame matrix which corresponds to matrix f~(2), Oc = R T o  is 
the gravity force in the compliance frame, and uc = R T u  is the driving force 
expressed in the compliance frame. 

Using a hybrid control approach, the velocity vector Pc can be partitioned 
according to the division of constrained and unconstrained directions 

If the robot arm with the tool and the contact surface are assumed to be rigid, then 
the motion of the robot end-effector in the constrained directions is negligible 
compared with motion in the unconstrained directions, and therefore Pc can be 
written as: 
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The dynamic equations for the unconstrained and constrained directions can be 
partitioned as: 

Acl (p)~Sp + ~cl (p,p)/Sp q- {~cl (P) = Ucl, (24) 

Ac2(p)lfip + ~c2(p,/5)/Sp + Oc2(p) = Uc2 - re, (25) 

where fc  is the contact force in the force controlled directions, uc = {ucl ue2} T 
is the driving force expressed in the compliance frame. 

In the position controlled directions the following control and adaptation laws 
are considered 

Ucl = -Acl (p)jSpr + ficl (p, lb)ibpr + ~)cl (P) - KpkV, (26) 

= - P ~  IYfkt,, (27) 

where { is the/-dimensional vector containin..g thesuitably selected set of unknown 
manipulator parameters, ~" is its estimate, { = { - { is the parameter estimate 
error, Pp is (I x l) positive definite matrix, K p  is ( m x  m) positive definite matrix 
which may be chosen to be time-varying, ~b = i@ - ibpr is ( m x  1) vector which 
is a measure of the tracking accuracy, ibpr = P,t - ZpiFp, where iba is the desired 
motion velocity, Zp is the (m • m) positive definite matrix, iF/, is the position 
tracking error, Yp is the (m x l) matrix which has parallel meaning as Y in 
Section 4.1, i.e. 

7kcl (p)iSp + ficl (P, ib)/Sp + ~)cl (P) = Yp'(, (28) 

-Acl = a c l  - Act, ficl = ficl  -- ~ c l ,  ~)cl = 6 c l  -- Oc l ,  

where ' ~ '  denotes estimates of the corresponding matrices. 
In the force controlled directions the following control and adaptation laws 

are considered 

~Zc2 ~--- Uc21 q- ~Zc22, 

Uc21 = ~ic2tJpr -'[- fic2i@r q- 6c2 ,  

uc22 = fd -- k f ( f  - fD)  -- kv!of, 

(29) 

(30) 

(31) 

where ' .':" denotes estimates of the corresponding matrices, fa  and f are the 
desired and measured contact forces in the constrained directions, ki  is the force 
feedback gain and kv is the positive definite matrix which can be chosen to be 
an appropriate constant matrix or the following time-varying matrix 

k v = k0Ac22, 

where ko is a positive constant, and Ac22 is computed using the estimated param- 
eters from (27). 
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Finally, using (26), (29)-(31), it is possible to determine uc = {Ucl uc2} T, 
and to compute the driving forces in the joint space 

7" = JT R-Tuc .  

This algorithm requires measurements of the joint position, joint velocity and 
contact force. The drawbacks of the proposed method are: (i) it is based on 
the conventional hybrid control which has significant theoretical shortcomings 
[64], [41]; (ii) it is not adaptive to the environment parameters; (iii) it requires 
knowledge of the link lengths. 

4.3. ADAPTIVE INVERSE DYNAMICS METHOD 

The adaptive inverse dynamics method proposed by Carelli et al. [32], addressed 
the problem of designing an adaptive force controller which achieves a pure track- 
ing force objective under the following assumptions: (i) the dynamic parameters 
of the robot are unknown, (ii) object stiffness is unknown, (iii) only position, 
velocity and interaction force measurements are required. This method includes a 
non-linear robot model, identifies both the robot and environment parameters, and 
does not use measurement of the acceleration nor the derivative of the interaction 
force. 

The adaptive controller consists of a control law and a parameter update law. 
The control law is given by 

F = F~ + ~(p,f), F~, Fd, ~'d, ff'd)'~-t- Y ~  (32) 

where F is the real force trajectory, Fd is the desired force trajectory, Fd, Fd, and 
Fd are bounded functions to be specified in advance, Fe is the force measured 
by the force sensor, qo E R mxz is a matrix function, ~ E R t is the parameter 

A ;-,. 
vector, ~, ~ are given by the update law, ' .A, denotes the estimated value, Y is 
the ( m x  l) matrix defined as 

Y = L - l ( s ) ~ ;  s = d/dt,  

where L - l ( s )  is a stable realizable filter, L(s) = s + p,p is a positive scalar 
which is chosen together with aD, ctp, so that (k + p) / (k  2 + aDk + ap) is a 
strictly positive real transfer function. 

The first two terms in (32) represent the adaptive inverse dynamics part of the 
control law and the third term is similar to the one used in the adaptive control 
of linear plants with relative degree two [65]. The estimated parameter vector ~" 
is updated with the standard gradient type parameter update law 

= - -FYTf f  ", (33) 

where P is the (l x l) positive definite adaptation gain matrix, if" = Fe - Fd. 
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The main stability result is given by the following theorem proved in [32]. 

THEOREM. Consider the control law (32) with the adaptive law (33) in a closed- 
loop withthe combined robot-environment system (2), (9). Denote the parameter 
error by ~ = ~ - ~. Assuming that." (a) the contact point PE is constant, and (b) 
A - !  is a constant matrix, then the control objective is ensured, that is 

(i) ~,/~ are bounded, and (ii)/~(t) --+ 0 as t -+ oo. 

The drawbacks of the proposed method are: (i) the environment model is adopted 
in a simplified linearized form (9), that is, the complete environment dynamic 
model is not taken into account; (ii) the assumptions that the contact point PE 
and the inertia matrix A are constant often cannot be justified. For example, 
the assumption that the inertia matrix is constant is justifiable when i5 is small, 
that is, when we deal with small motions of a heavy mechanism in contact with 
its environment; (iii) the effects of uncontrollable external perturbations are not 
included in the control law synthesis. 

4.4. ADAPTIVE METHOD OF YAO AND TOMIZUKA 

Yao and Tomizuka [13, 14], have recently proposed a new method for adaptive 
control of single rigid robot manipulators in constrained motion tasks. Starting 
from the dynamic model (1), and the environment model (5), (12), the authors 
introduced a following transformed constrained dynamic model which is the basic 
equation for their adaptive controller design: 

M(rp)V + Ch(rp, §247 q- g(rp) + Bm(IZ, rp, § = Tr + GIA, (34) 

where r is a set of curvilinear coordinates 

= = 

= [r  ( p ) , . . . ,  e n _ m ( p ) l r .  (35) 

The constraints are simply described by r I = 0, that is, the robot motion is 
uniquely determined by the coordinates rp; r  = 1 ,2 , . . .  ,m,  according 
to (5), describe the environment by a set of m rigid hypersurfaces; r i = 
l, 2 , . . . ,  n - m, are (n - m) twice continuously mutually independent curvilin- 
ear coordinates defining which (n - m) position robot coordinates need to be 
controlled in the constrained motion; the choice of r is flexible and can be 
found in [66]. 

V ~ 
1. rp J '  H21(r) H22(r) ' 

0 C12 ] 
ch(rP'§ c21 c22'  
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[ ~  B ' ( r ~ )  = - H21(r )K~  ' 

A E R TM is a vector of Lagrange multipliers (12), # E R m is a friction coefficient 
(12), Im is the (mx m) identity matrix, ra is the number of the rigid hypersuffaces 
(5) which describe the environment, K I = diag{k/1, ky2,. . . ,  him } and G I = 
diag{9D, 912, �9 �9 �9 9fro} are constant diagonal matrices with kfi > O, 9Ii > O, i = 
1 ,2 , . . . ,  m. Other terms have the following meaning: 

H(r) = jqT(q)g(q) jq l (q )  = [ Hll(r ) H12(r)] 

H21(r) H22(r) ' 

C(r,§ = jqTC(q , ( t ) Jq1-  jqTH(q)Jq lJqJql  = [ C,, CI2 ] 
[C21 C22 ' 

% = j q r ( q ) . r =  [TT,TT] T, g(r) = j q T  g(q) = [gT 1 (r),gT2 (r)lT, 

B(.,~,§ = J f fL~=  [BT, B~] ~, 

J P -  Op 'Or(p) Jp= [ DT(p) JTps], Jps -- Or E R (n-m)xn, 

or(p(q) ) 
Jq - Oq ' Jq = Jp(p(q))J(q), Jq, Jp c R nxn, 

J(q) is the (n x m) Jacobian matrix, L T and Dr(p) are defined by (12). 
Similar to the Property 1 from Section 4.1, it is possible to state the following: 

PROPERTY 2. The matrices M(rp), Ch(rp, rp), 9(rp), B~(rp) are linear in terms 
of a suitably selected set of robot parameters ~ i.e. 

M(rp)Zv + Ch(rp, § + g(rp) + Brm(rp)A = Y((rp, § zT, zv, A)~, (36) 

where zr, Zv are any reference values. B(#, r, § is linear in terms of the friction 
coefficient #: 

B(#, r, ~))k = g#(rp, ~p, A)#, YI~ E R nxm. (37) 

Equation (34) is the base for synthesis of the following control law: 

TT = ~ ( r ~ , ~ ' ) z ~  + dh(rp,§  ~')zT + ~(r~,  ~') + 

+ ( ~ m  - V~):~ - K ~  - N~,  
= Y((rp,~p, Zr,Zv,A)~+Y.(rp, i~p ,A)~- -GfA- -Kpep-KsS  (38) 
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and the adaptation law: 

J.. 

~E = -F~ Y~E(rp, § Zr, Zv, ~ )s, (39) 

= -r.yT( p, § (40) 

where K---p = [0 Kp] T, Kp, 1-'~, 1'/~ are constant strictly positive definite (s.p.d.) 
matrices, Ks (t) is a uniformly s.p.d, matrix, s is a measure of motion and force 
tracking defined as 

I/0 ] 
Sp I ~p q- Dep 

where D is chosen as D = K p l R  and R is any ( n - m )  x ( n - m )  s.p.d, matrix; 
ep = rp(t) - rpd(t) is the motion tracking error; rpd(t) = kV(p(qd(t))) E R n-m 
is the desired robot motion trajectory (see (35)); ef -- A(t) - Ad(t) is the force 
tracking error, ld( t )  E R m is the desired force trajectory; zr and Zv are the 
corresponding reference velocity and acceleration defined as: 

 Zr,]IS, ] [Zv,] f ] 
Z r  ----. ~ ~ ZV -~ ~ 

k ZrP  § -- Dep Zv p  l_ i:p d - -  D~p 

: [(ET, (TIT is the constant parameter set, (E is the unknown parameter set 
needed to be estimated on-line, (n  is the known parameter set. Correspondingly 
partition Y( as 

' ? '  denotes the estimate of the corresponding matrix by substituting the estimated 
[(E, ~R] and fi for the actual ~ and # respectively. 

Finally, the authors have proved [13], that for the constrained robot manip- 
ulator described by Equation (34), and if the control law (38) with update law 
(39) and (40) is used, the motion tracking error ep and the force tracking error 
ey asymptotically converge to zero, i.e. the robot follows the desired motion and 
force trajectories. 

The method of Yao and Tomizuka has the following advantages: (i) it is based 
on a new transformed constrained dynamic model which is suitable for controller 
design and valid for friction surface; (ii) the unknown parameters are updated 
by both motion and force tracking errors; (iii) the control law can guarantee 
asymptotical motion and force tracking without persistent excitation condition; 
(iv) the proposed control is designed in the presence of parametric uncertainties 
both in the robot and surface friction coefficient; (v) the suggested control struc- 
ture possesses robustness to the bounded measurement noise in the force and 
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velocity sensors as well as bounded disturbances. The presented control algo- 
rithm have to be further investigated in two directions: (i) computer simulations 
which illustrate the stability and performance of the proposed adaptive controller 
have to be carried out; (ii) experimental analysis on laboratory equipment should 
be performed. 

4.5. ADAPTIVE METHOD OF EKALO AND VUKOBRATOVIC 

The adaptive method of Ekalo and Vukobratovic [40, 41] is presented in four 
sections: in 4.5.1 the task of controlling a robot in contact with its environment is 
formulated; in 4.5.2 a general scheme of robot adaptive control in contact tasks 
is given; in 4.5.3 a theorem which proves the stability of the proposed control 
laws is reported; and in 4.5.4 concluding discussion is given. 

4.5.1. Contact Task Setting 

In order to represent the robot control laws in a convenient way, Ekalo and 
Vukobratovic [40, 41] have written Equation (1) in the form 

T = U(q, (1, ~, F, ~), (41) 

where U is the following n-dimensional vector function 

U(q, (1, ij, F, ~) = H(q,  ~)gl + C(q, (1, ~)(1 + 9(q, ~) + jT (q ,  ~)F. 

Similarly, the real robot dynamics may be described by the vector differential 
equation 

/i = ~(q, (1, T, F, () + r(t), (42) 

where 

�9 (q,(1, T ,F,~)  = H- l (q , ( ) [ -O(q , (1 , ( ) (1  - g(q , ( )  + r - j T ( q , ( ) F ]  

is the n-dimensional vector function, r(t) represents the inadequacy of the robot 
dynamics description by the model (1), and/or the uncontrollable external per- 
turbations. Ekalo and Vukobratovic adopted the general dynamic model of the 
environment (7), written in the form solved with respect to F 

F : f (q ,  (1, q) + p(t), (43) 

where 

f (q ,  (1, ~) = (ST(q))  -I  [M(q)//+ L(q, (1)], 

f (q ,  (1, ~) and p(t) are the n-dimensional vector functions (it is assumed that m : 
n, (see (1)); p(t) represents the inadequacy of description of the environment 
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dynamics by the model (7) and/or the uncontrollable external perturbations of 
the environment. 

By eliminating the force F from the real robot dynamics (42), in accordance 
with the real environment dynamics (43), the following equation of the dynamic 
interaction of the robot with the environment is obtained 

= ~(q, q, T, ~) + D1 (q, ~)r(t) + D2(q, ()p(t), (44) 

where 

~(q, (l, 7-, ~) = -H- l  (q, ~ ) ( - C ( q ,  O, ~)(  t - g(q, () + T - N (q, ~)L(q, (l) ), 

DI (q, ~) : ~ - 1  (q, ~)H(q, ~), 

D2(q, ~) = -H -1 (q, ( ) j T  (q, ~), 

-H(q, ~) = H(q, ~) - jT(q,  ~) (sr(q)) - I  M(q), 

N(q) = jT(q,  ~)(ST(q))- l .  

The following assumptions are used: 

ASSUMPTION 1. The constraints of the robot motion q(t), 4(t), 4(t), the control 
action r(t), the interaction force F(t), and the variation of the robotic parameters 
((t) are set up in the form of the relations: 

q(t) E Vq C R n, q(t) E Vq C R n, q(t) E V 4 C R n, (45) 

T(t) E V ~ - c R  n, Vt/>t0, (46) 

F(t)  E Vp c R m, Vt >>- to, (47) 

((t) E V ( c R  l, V t ) t 0 ,  (48) 

where Vq, VO, Vq, V.~, VF, V( are the given open, constrained and simply connected 
sets in the corresponding spaces, Vr is the closure of the set Vr in R n, V( is 
the closure of the set V( in R t. 

ASSUMPTION 2. The inadequacy levels of the robot and environment model 
and/or of the external perturbations are constrained by 

IIT(t)ll < cr, vt/>.to, (49) 

[[p(t)]l ~ Cp, Vt/> to. (50) 



ADAPTIVE CONTROL OF SINGLE RIGID ROBOTIC MANIPULATORS 19 

ASSUMPTION 3. The vector function U (41) on the set of arguments values 
Vq x V 4 x Vii x VF x V~, and the vector function f (43) on the set of arguments 
values Vq x V4 • V~, satisfy the Lipschitz conditions with respect to each variable 

with the Lipschitz constants L ~ , L ~ , L q ,  L ~ , L ~  and Lfq,LIo,L~, for the functions 
U and f respectively. Similarly, the vector function q) (42) on the set of arguments 
values Vq x V 0 x V~- x VF x V~, and the vector function cp (44) on the set of 
arguments values Vq • V4 x V~- • V~, satisfy the Lipschitz conditions with 

T ~ T (~ T ~  respect to each variable with the Lipschitz constants Lq ~, L~ ,~_ ,  ~F, ~ and 
Lq ~, L~, L~, L~ for the functions q~ and ~ respectively. 

ASSUMPTION 4. The unknown robot parameters ~(t) belong to the known 
closed convex set V( of the constraining variation of the robotic parameters (see 
(48)). C~ is defined as 

= sup 11 11. (51) 
~V~ 

ASSUMPTION 5. The robot dynamic model (41) has the Property 1 from the 
Section 4.1" 

r ( t )  = U(q(t) ,  (1(t), ~l(t), F( t ) ,  ( ( t ) )  = G(q, (t, ii, F ) ( ( t ) ,  

G denotes a known continuous (n x l) matrix function. 

(52) 

Under these conditions, Ekalo and Vukobratovic formulated the task of control- 
ling a robot in contact with its environment in a following way. For the complete 
equations of the robot dynamics (42) and the environment (43), it is necessary 
to synthesize the admissible (i.e. satisfying the constraint (46)) control action 
T(t),  t >1 O, which, in solving the contact task, will ensure that: (i) the real robot 
motion q(t), q(t), ii(t) satisfies the constraints (45); (ii) the real force of inter- 
action of the robot and the environment F(t )  satisfies the constraint (47); (iii) 
starting from a time instant tp >1 to, the following goal conditions are satisfied: 

II (t)ll < 5, (53) 

IIx(t)ll < (54) 

where 

x( t )  = (~(t) , i l( t))  T, ~l(t) = q(t) - qp(t), #(t)  = V( t )  - Fp(t); (55) 

and 5 are given numbers which define the stabilization accuracies, I1 " 11 denotes 
the Euclidean norm, qp(t) is the programmed motion and Fp(t) is the pro- 
grammed interaction force. 
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4.5.2. General Scheme of Robot Adaptive Control in Contact Tasks 

The scheme of the adaptive control system function is based on a recurrent pro- 
cedure, in which, starting from the time instant to, a sequence of increasing time 
instants to, tl, t2 , . . . ,  t k , . . . ,  is produced. On each time interval Tk = [tk,tk+l] 
the following adaptive control law is proposed: 

zk(t) = U(~', 0,@ + F l ( 0 -  @) + F 2 ( ~ -  qp),ff,~k), (56) 

or, using (43): 

 k(t) = u(q, ,4p 

f (q, q, 4p + GI ('~ - @) + G2(~- qp) ), ~k), (57) 

where FI and F2 are constant (n x n) matrices, such that the eigenvalues of the 
(2n x 2n) matrix 

[Onxn Inxn] (58) 
F = F2 F! 

A 

have negative real parts; In• is the (n x n) identity matrix, ~', q, F are the sensors 
indications of the position, velocity and force respectively; ~k is a constant esti- 
mate on the time interval Tk; an arbitrary initial estimate vector ~0 is chosen from 
the set V~, and successive estimates ~1, ~2, ~3,... ,~k , . . . ,  are obtained using a 
special recurrent algorithm. In the text to follow this algorithm is explained. 

The auxiliary function ~k(t) described by the relation: 
A A 

gk(t) = U(0", q, 4, F,  (k) (59) 

is introduced. For t/> tk, the system of inequalities in the form 

Ilrk(t) - ~k(t)l I < h, (60) 

where h > 0 is the control scheme parameter, is considered, and the first time 
instant t~/> tk at which the inequality (60) is violated is determined. So t~/> tk 
is the first time instant when 

Ilrk(tL) --~(t~)ll/> h. (61) 

Then 

~k+, = A(~k, t~) (62) 

is an algorithm for correcting the estimates of the parameters, i.e. an algorithm for 
determining the estimate ~k+l of the current values of the unknown parameters 
~(t) at the time instant t~, such that ~tr E V~. For example, the following 
algorithm for the correction of the parameters estimates may be considered: 

GT(t~)(rk(t~) -- ~k(t~)) (63) 
~k+l  = P--vv( ~k + i la(@ll 2 , 
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where 

G(t~) G(0"(t~), ~" ' ~ ' = q(tk) ,q( tk) ,F(t~)  ) (64) 

for the case of applying the control law (56), and 

^ t ;  -v. tl ~ t ;  a(t'k) = G(~(t;) ,q(t 'k) ,~(t 'k) , f (q(  k),q( k ) , q (k ) ) )  (65) 

for the control law (57). Here P-fvr is the orthogonal projection operator onto the 

set V(, G is (n x l) matrix function defined by (52). 
The time instant tk+l which follows the time sequence to, tl,  t 2 , . . . ,  tk, is 

determined by 

tk+l = t~ + 0, (66) 

where 0 is the time necessary for calculation of a new parameters estimate ~k+l 
according to the algorithm (62). The value 0 plays the role of a parameter in the 
control scheme characterizing the workspeed of the adaptive algorithm. 

By determining the time instant tk+l and the estimate ~k+t the recurrence 
of the adaptive control scheme is completed. The algorithm for correction of 
the parameters estimates (62), together with the procedure of determining the 
time instants t~ violating the inequality (60) represents itself the essence of the 
adaptation algorithm used in forming the adaptive control laws (56) and (57). 

4.5.3. Stability of the Adaptive Control Laws Proposed by Ekalo and 
Vukobratovic 

The authors [40, 41], have proved the stability of the adaptive control laws (56), 
(57) by establishing one main theorem which proof, due to the lack of the space, 
here will be omitted. The following definitions are used [40, 41]: 

DEFINITION 1. Under the c~-narrowing of open set A in R n is understood its 
non-empty subset A c~, such that 

A = ~.J B~(x),  (67) 
x E A  c* 

where B~(x)  is an open sphere in R n with the center at the point x and the 
radius c~ > 0. 

DEFINITION 2. Variation of the real function 9(t) on the segment [a, b] is 
described as 

N 

Vat(9) = Sup ~ lg(tk) - 9(tk-l)[,  (68) 
[a,b] k =  1 

where the supremum is taken over all divisions a = to < to < tl < �9 �9 �9 < tN = b 
of the segment [a, b]. If there exists a constant M, such that Var[a,b] (g) <~ M,  the 
function g is called the function of bounded variation on the segment [a, b]. 
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DEFINITION 3. The function g: [to, co] -+ R is called the function of uniformly 
bounded variation of the order p > 0 if on an arbitrary segment [a, b] C [to, co] 
of the length p, the function 9 is the function of bounded variation with the one 
and the same constant M(p). 

The following notations are used: 

C~ ) = SuplIG(q,O,~,F)II, (69) 

C(~ ) = Sup G(q, (t, q, f(q, q, q)) , (70) 

where G is defined by (52) and the two suprema are taken over all points q E 
Vq, 4 E V( D q E Vi~, F C VF. 

Taking into account the a priori given set VF, the authors established the follow- 
ing: 

THEOREM. Let us suppose that the following conditions are satisfied [40, 41]: 

CONDITION 1. The components ( j ( t ) , j  = 1 , . . . , l  of the robot parameters 
function ~(t) are the functions of uniformly bounded variations of the order 
p > 0 with the constants Mj (p) (see Definition 2 and Definition 3). 

CONDITION 2. The class of programmed motion {qp(t)} is determined with 
the aid of the inclusions (see Definition 1): 

qp(t) E V f  rllx(t[')ll+a+~q+~'', qv(t) E V crllx(t'')ll+a+5~+~~ 
(71) 

qp(t) ~ V Crllx(t~ Vt >1 to, 

where Or -- V2-~IITIIII T-~ II, T is the non-singular transformation matrix con- 
verting the (2n x 2n) matrix T (58) into its diagonal form 

T - I F T  = diag(Ai, A2, �9 �9 �9 AZn), 

Ai, i = 1 , 2 . . . ,  2n are the eigenvalues of the matrix F, n is the number of the 
robot degrees of freedom, ]]x(to)H is the initial perturbation (see (55)); 

a = 5 +  L~-Cr)~-lh+CK p O, 

where 5 = Cr(5 4 + IIr'11154 + IIr2115q)~ -~, ~ = - m a x i  hi, 5q and 5 4 determine 
the sensors errors 

IIAq(t)ll < 5q, IIA4(t)ll < a 4, Vt/> to, 
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where 

Aq(t) = ~'(t) - q(t), A0(t ) = ~(t) - 0(t), Vt/> to, 

are the error functions of the sensors, ~" and q are the sensors indications of the 
position and velocity, respectively, F1 and F2 are defined by (58); Lr = L~ for 
the control law (56), and Lr = L~ for the control law (57), where L~ and L~ 
are the Lipschitz constants (see Assumption 3 from Section 4.5.1). 

C = Cr(2C O. + 2~ 0 + d l C r  n c" d2ep -}-IIr, 1160 + IIr21)6q), 
where 

Co = Supll (q,O,'r, )ll, over all Vq x V o x V ,  x 

5// determines the sensor error 

IlAo(t)ll ~ 64, Vt >. to, 

where A0(t ) = q - / i  denotes the deviation of the estimated value of the second 
derivative of the robot motion q from its real value {. The estimate ~ can be 
obtained by sensors (accelerators) or by numerical differentiation of the estimate 
q. 

dl = Supl]Dl(q,~)ll, d2 = Supl[D2(q,~)] ], at (q,~) ~ Vq X Vr 

D1 (q, ~) and Dz(q, ~) are defined by (44), Cr is defined by (49), Cp is defined 
by (50). 

The quantity K ( ~ } = 1 M j ( p ) )  is defined 
% 

by 

K Mj(p) = hhoC~2 , 
j = l  

where diam(Vr is the diameter of the set Vr other terms have the following 
meaning: 

{ C(~ ), for control law (56) 

CG = C (2) for control law (57) ' 
c , (72) 

h - 2hi,  for control law (56) 

ho = h - 2h2, for control law (57) ' 

where C(~ ) and C g  ) are defined by (69) and (70), respectively; h > 0 (60), is the 
parameter of the adaptation scheme, chosen such that the quantity ho is positive; 
hi and h2 are defined by 

h, = rqSq + re5 4 + Ca(5 O + Cr) + L~SF < h, 

h2 = rq~q + Lq54 + Lq(~ O + Cr) + LUF(Llq(~q + LI(S4 + Lfo5 O + Cp) < h. 
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In the above equations L~,Lq, L~,LUF, L~ and LIq,L f L f q' 4' are the Lipschitz 
constants for the functions U (41), and f (43), respectively, (see Assumption 3 
from Section 4.5.1); 60 is a suitably small fixed number, and the algorithm scheme 
parameter 0 is defined by (66). 

CONDITION 3. The class of the programmed interaction force {Fp(t)} is deter- 
mined with the aid of the inclusion 

Fp(t) E V L(CHIx(t~176 Vt >>. to, 

where 

L~, L I L I 4' 4 are the Lipschitz constants (see Assumption 3 from Section 4.5.1); 
6F denotes the sensor error 

IIAF(t)I I ~< 5F, 

where A g ( t )  = _F(t) - F(t)  is the error function of the force sensor,/w(t) is the 
force sensor indication. 

CONDITION 4. The levels of the initial perturbation llx(t0)ll, of the external 
perturbations Cr and Cp, of the sensors errors 5q,60,34 and 6F, and of the 
adaptation algorithm scheme parameters h and 0 are such that these classes are 
non-empty, a < [Ix(to)I[ and the quantity h0 defined by (72) is positive. 

CONDITION 5. The stabilization accuracies 6 (53) and ~ (54) are given numbers 
which satisfy the inequalities 

a < ~, La + Cp < 6. (73) 

CONDITION 6. The order p satisfies the inequality 

p >1 max{pl,p2,p3}, 

where 

_1 Crllz(to)ll l lnCr-IIx---(t~ P3 l lnLCrllx(t~ 
P l  = Aln = , = I[~(to)H --- a '  P2 -~ ~ - a -~ 6 - La - Cp" 

If the conditions (1)-(6) are satisfied, then for all t /> to, the following statements 
will hold [40, 41]: 

Statement 1. For the transient processes determined by the adaptive control laws 
(56) and (57), the estimates 

IIx(t)ll < Crllx(to)ll + a, Illz(t)ll < L(Crllx(to)ll + a) + Cp 
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are fulfilled. 

Statement 2. The real robot motion q(t), O(t) will satisfy the constraints (45). 

Statement 3. The control T(t) will be admissible, that is, the constraint (46) will 
be fulfilled. 

Statement 4. The real force of interaction of the robot with the environment F(t)  
will satisfy the constraint (47). 

Statement 5. The goal condition (54) will be fulfilled not later than the time 
instant: 

~P2 ~ / 

Statement 6. 
instant: 

~P3 = { 

to +P2, if Crllx(to)ll + a >1 e 

to, in opposite case 

The goal condition (53) will be fulfilled not later than the time 

to+P3,  if LCGllx(to)ll + La + Cr >1 

to, in opposite case 

4.5.4. Concluding Discussion 

Ekalo and Vukobratovic [40, 41], proposed a general approach to the synthesis 
of adaptive control laws solving the task of simultaneous stabilization of motion 
and interaction force of the robot with the environment for the case when the 
robot parameters may vary with time in an unknown way. This approach is 
based on the unified approach to control laws synthesis for robotic manipulators 
in contact with dynamic environment proposed by Vukobratovic and Ekalo in 
[67-69]. Their approach, differing from the impedance control (Hogan [17]), and 
the hybrid control (Raibert and Craig [70]), is based on the general dynamics 
equation of the environment (7), and is solving simultaneously both the stabi- 
lization tasks of position and interaction force with the environment. The unified 
approach proposed by Vukobratovic and Ekalo is aimed at direct realization of 
a desired robot motion and desired interaction force, which, as a pair of time- 
functions, satisfy the nonlinear differential equation of the environment dynamics 
model (7). In the adaptive case, this goal is achieved by designing a special adap- 
tive control scheme (Section 4.5.2) and using the finite-convergence adaptation 
algorithms, [71 ]. 

Ekalo and Vukobratovic have established the dependencies of the classes of 
stabilized motion and forces, and their stabilization accuracies, on the levels of 
initial and external perturbations of the robot and environment dynamics, as well 
as of the sensors errors, workspeed of the adaptation algorithm, and of other 
parameters of the adaptive control scheme. The degree of parameter drift and 
the degree of inadequacy of the robot model are determined by the class of 
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functions of uniformly bounded variation. Ekalo and Vukobratovic assumed that 
the function of variation of robotic parameters is not apriori known, and only 
the constrained, closed set V~ C R l of possible values of the robot parame- 
ters has been given. The adaptive scheme is based on recurrent procedure, in 
which a sequence of increasing time instants to, tl, t 2 , . . . ,  tk , . . . ,  is produced. 
On each time interval Tk = [tk, tk+l], either the adaptive control law (56) or 
(57) is utilized, in which the robot parameter estimate ~'(t) is replaced by the 
constant estimate ~(t). At this, an arbitrary vector from the set V~ is chosen as 
the initial estimate ~0, and successive estimates ~1, & , - - - , ~ k , . . . ,  are obtained 
using a special recurrent algorithm (62). So, Ekalo and Vukobratovic proposed 
the algorithm for correction of the parameter estimates (62) and a system of 
inequalities (60) on the basis of which the procedure of adaptation algorithm is 
actually functioning. The algorithm for parameter correction (62) and the system 
of inequalities (60) represent the essence of the adaptation algorithm used in 
forming the adaptive control laws (56), or (57). 

This approach ensures: (i) solution of the contact tasks for robots with both 
stationary and nonstationary dynamics; this method is practically the first with this 
characteristic; (ii) direct realization of a desired robot motion and desired interac- 
tion force which, as a pair of time functions, satisfy the general nonlinear second- 
order differential equation of the environment dynamics model (7); (iii) adapta- 
tion to any unknown deviation from the class of functions of uniformly bounded 
variation; (iv) stabilization of the proposed control laws to the initial and external 
perturbations as well as the measuring sensors errors; (v) adaptation to the essen- 
tially inadequate description of the robot dynamics by its mathematical model. 

5. Conclusion 

During the past several years, adaptive constrained robot control has emerged as 
one of the most attractive and fruitful research areas in robotics. The adaptive 
control of constrained motion of robots is a challenging research area whose suc- 
cessful solution will considerably affect further application of robots in industry 
and increase their efficiency and productivity. 

The adaptive control is often necessary in the constrained motion tasks because 
the modeling of the robot and environment is often imprecise and the parameter 
uncertainties in the robot and environment model always exist. Therefore, in order 
to successfully solve the contact control task, the adaptive control methods which 
allow the manipulator to identify its own dynamic model, or the environment 
model, and to adjust to changes in the manipulator or environment dynamics, are 
introduced. 

In this paper we have attempted to present an overview of the state of the 
art in adaptive contact control concepts in manipulation robotics on the base of 
the work reported in the open literature. First, a complete mathematical model 
of a rigid robot manipulator in contact with dynamic environment is presented 
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together with several different environment models. In the general case of treating 
the contact tasks, the complete real environment dynamic model which has been 
neglected in the papers up to now, must be taken into account because the 
dynamic environment has a significant influence on the robot stability and the 
contact task performances. However, uncertainties, particularly in the dynamic 
model of the environment, represent one of the main problems in a synthesis of 
control laws. Thus, for this type of control tasks the practical stability appears to 
be more appropriate than the asymptotic (exponential) stability since it enables 
to consider effects of uncertainties in the control laws which cannot guarantee 
asymptotic stability at all, but can fulfill practical stability conditions [72]. 

A classification of the adaptive contact control concepts in manipulation robot- 
ics is presented. Certainly there are other schemes which may not fit well into 
this classification. The main characteristics of the several most important adap- 
tive strategies in constrained manipulation are presented. The advantages and the 
drawbacks of the presented methods are emphasized. It may be concluded that the 
method of Yao and Tomizuka (Section 4.4) and especially the method of Ekalo 
and Vukobratovic (Section 4.5) has several significant advantages over the other 
methods. First of all, the method of Yao and Tomizuka and the method of Ekalo and 
Vukobratovic take into account the dynamics environment: the first one is based on 
a new transformed constrained dynamic model which is valid for friction surface, 
and the second one assumes that the environment dynamics model is described by 
the general nonlinear second-order differential equation (7). 

The method of Ekalo and Vukobratovic is the first one which gives solution 
of the contact tasks of robots with both stationary and nonstationary dynamics; 
it is also the first one which ensures direct realization of a desired robot motion 
and desired interaction force which satisfy the general nonlinear second-order dif- 
ferential equation of the environment dynamics model; the proposed control laws 
are adaptive to any unknown deviation from the class of functions of uniformly 
bounded variation and stable to the initial and external perturbations as well as 
the measuring sensors errors. The theorem which proves the stability of the adap- 
tive control laws proposed by Ekalo and Vukobratovic is reported in this paper. 
More appropriate stability investigation of the adaptive control has to be a very 
challenging topic in robotic contact tasks. 

All the results have the following general drawback: they have not been exper- 
imentally evaluated and implemented in real robot control. So the next step in the 
adaptive contact control synthesis is direct practical application of the proposed 
strategies and verification of their effectiveness. 
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