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Abstract. Two elements enter the choice between 2 and 3SLS for full-system estimation: statistical efficiency 
and computational cost. 2SLS always has the computational edge, but 3SLS can be more efficient, a relative 
advantage that increases with the strength of the interrelations among the error terms. A measure of these 
interrelations is thus helpful in making the choice, and, when there are only two equations, this has 
suggested using a high pairwise error correlation as an indicator of when to use 3SLS. In larger systems 
of equations, however, these pairwise correlations can remain small even though more general inter- 
relations give 3SLS the relative advantage. More general indicators are therefore needed, and this paper 
suggests three such and demonstrates their efficacy. 
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1. Introduction 

In es t imat ing  a system o f  s imul taneous  equat ions ,  the quest ion often arises whether  

to use two or  three stages o f  least  squares.  Clear ly  2SLS is compu ta t i ona l l y  cheaper ,  

and,  whereas  3SLS is k n o w n  asympto t ica l ly  to be more  efficient, this need no t  be so 

for  small  samples.  3SLS, then, becomes the es t imator  o f  choice only when (1) the 

researcher  considers  a gain in efficiency to be i m p o r t a n t  relat ive to c ompu ta t i ona l  cost  

and  (2) when the poten t ia l  for  such a gain is high. This  pape r  suggests measures  for  

this po ten t ia l  tha t  are  at  once bo th  simple and more  general  than  the previous ly  

suggested indica tor ,  high pairwise correlat ions.  

Tha t  3SLS need no t  possess greater  efficiency than  2SLS for small  samples  is readi ly  

mo t iva t ed  as follows: it  is well known  tha t  2SLS and  3SLS are  equivalent  when there 

is no c ross -equat ion  covar ia t ion  (Theil, 1971). 3SLS's  a sympto t i c  efficiency arises, 

then, f rom exploi t ing nonzero  c ross -equat ion  covar ia t ion .  In  pract ice,  o f  course,  

samples  are  finite and  this c ross -equat ion  covar ia t ion  mus t  be est imated.  Thus,  when 

the t rue (but  unknown)  c ross -equat ion  covar ia t ion  is small ,  it  can be more  efficient to 

impose  the res t r ic t ion tha t  it  is zero, which is wha t  2SLS does,  than  to use an es t imate  

o f  it, as does  3SLS. As  a result,  one would  expect  2SLS to be more  efficient when 

the c ross -equat ion  covar ia t ion  is small  and  for  3SLS to become more  wor thwhi le  as 

this covar i a t ion  becomes larger.  Indeed,  for  a two-equa t ion  s imul taneous  system, 
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Mikhail(1975) has demonstrated with Monte Carlo studies that 2SLS had the smaller 
mean square error when the between-equation correlation was ~ = .i8, but 3SLS 

became the winner when Q was .76. 
It would seem, then, that estimates of  the cross-equation correlation coefficients 

should indicate when 3SLS was likely to be worthwhile. And indeed high cross- 
equation correlations are sufficient indicators of  this condition, but they are not 
necessary. For, as we shall see, in larger systems of equations, it is quite possible for 
all cross-equation correlations to be small even though the equations' error terms are 
tightly linked through more general multiple correlations. 2SLS, of  course, continues 

to ignore these more general relations, while 3SLS does not. Hence, 3SLS can have 
greater small-sample efficiency than 2SLS even when pairwise correlations are small. 
A more general measure than pairwise correlations is therefore needed if one is to be 
apprised of when this is so, and this paper suggests several such generalizations. 

The next section demonstrates the inadequacy of pairwise correlations for indi- 
cating the presence of  more general correlations among the error terms. The subse- 
quent section presents three measures that are more appropriate indicators of the 
presence and strength of these multiple relationships. Next, Monte Carlo results are 
described which demonstrate the efficacy of these suggested measures. A concluding 
section provides speculative considerations for further research. 

2. The Inadequacy of Pairwise Correlations 

Consider the general linear model of  G simultaneous equations 

yr(t)F + xr(t)B = ur(t), (1) 

where y is a G-vector of  endogenous variables, x is a K-vector of  exogenous variables, 
and u is a G-vector of  error terms distributed with mean 0 and variance-covariance 
matrix ~. We denote by R the correlation matrix corresponding to ~ (i.e. R = Dr~D,  
where D -1 - diag ~1/2). 

Our purpose in this section is simply to show that it is possible for the off-diagonal 
elements of  R (the pairwise correlations between the elements of  u) to be small even 
when there is more generally a strong multiple correlation among the elements of u 
(for example, some element of u is highly correlated with some linear combination of 
the other elements of u). This demonstration is important, of  course, to show that the 
off-diagonal elements of  R are a sufficient, but not necessary, indicator of  the potential 
for 3SLS. 

Assume, then, a perfect relation among the elements of  u, that is, some c ~ 0 such 
that var(cru) = 0. A little reflection will convince the reader that, under these 
conditions, we can minimize the largest absolute pairwise correlation among the 
elements of  u by making them all equal. This is seen for G = 3 in Figure 1 where we 
have plotted the variates u -= (Ul, u2, u3). The perfect linear relation among the u's 
is depicted by their lying in a two-dimensional space, and the pairwise correlations 
between the elements of u are depicted by the angles between them. (A little elementary 
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trigonometry will show that, if (1 and (2 are vectors representing two random variables 

with mean zero, then cor((l, (2) = cos 0, where 0 is the angle between (1 and (2.) It 
is clear that, starting from the equal-angle situation depicted, no one correlation may 
be made smaller without making another one larger. Thus, the largest absolute 
pairwise correlation here may be as small as .5 -- Jcos(2n/3)l. 

Indeed, more generally, we find for the G-vector u that it is possible for there to be 
a perfect linear relation among its elements while the largest absolute pairwise 
correlation can be as small as 1 / ( G  - 1). Thus, if there are 20 equations in the system, 
there could be perfect cross-equation covariation even though no two equation's error 
terms were absolutely correlated by more than 1/19 = ~ .05. 

This result is readily seen by noting that the equi-correlation matrix 

R*(Q) 

0 1 

0 0 1 

0 0 Q 

Q 

is (a) singular for Q = - 1 / ( G  - 1), and (b) positive definite for - 1 / ( G  - -  1) < 
< 1. Both of  these properties follow directly from the fact that the G eigenvalues 

of  R*(Q) are 1 - Q (with multiplicity G - 1) and 1 + (G - 1)Q, all of  which are 
positive for - 1 / ( G  - 1) < Q < 1 and some of  which are zero for Q = 1 and 
Q = - 1 / ( G  - 1) (Rao, 1973). 

3. Three Indicators for 3SLS. 

From the preceding, we know that small absolute pairwise correlations between the 
error terms in a simultaneous system of  equations need not indicate the adequacy of 
2SLS; more general relations may still exist among the elements of  u that could give 
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3SLS the edge. To detect these more general dependencies, a measure more general 
than pairwise correlations is needed. Three such measures are suggested here, all 
based on the error correlation matrix R: its determinant det(R), its smallest eigenvalue 
/~min, and its condition number x(R). 

det(R). Clearly, det(R) = 0 if and only if there is some e 4 = 0 such that var(eru) = 0. 
This situation defines quite generally what we have loosely been calling a perfect linear 
relation among the elements of  u. Also we note that det(R) = 1 when there is no 
correlation of any sort among the elements of  u, for here R = I. In general, 
0 ~< det(R) ~< 1. The first inequality follows simply from R's being positive definite. 

The second follows since det(R) = 1-Ii2 i and tr(R) = Zi2~ = G, where the 2e are the 
eigenvalues of R. It is straightforward to show that the maximum of a product of 
nonnegative magnitudes whose sum is constant occurs when their values are equal, 
and, in this instance, this means each 2i = 1. det(R), then, is an index of general 
multiple correlation. The closer is det(R) to zero, the tighter the existence of some 
general correlation among the elements of  u. The closer is det(R) to unity, the smaller 
any such general level of correlation. 

'~,i,. A second indicator arises from the recognition that a tight correlation among 
the elements of u occurs if there exists a unit-vector e such that var(eru) is small. 
Without normalization, however, this notion has a major drawback: for a given e, 
without changing any of  the angles (pairwise correlations) among the elements of u, 
we can make var(eru) as small or as large as we wish merely by rescaling these u:s. 
To normalize the problem, we consider var(er~/) of  the standardized variables 

= - u2l , u31 }. 
Our interest is in examining when the minimum of  

var(erq) = crRe (2) 

is small subject to ere = 1. The solution to this problem is a familiar result for 
eigenvalues of real symmetric matrices, namely that the minimum of  (2) subject to 
eve = 1 is )~mi., the minimum eigenvalue of R (Rao, 1973). Thus, a tight correlation 
exists among the elements of  u when 2mi n is close to zero. Furthermore, it is readily 
shown that ~ i ,  ~< 1 and that it assumes this upper bound of 1 if and only i fR = I, that 
is, if and only if there is an absence of any correlation. This first result follows from the 
facts that tr(R) = E~2i = G and that 2i > 0 for all i; the second reflects the necessary 
existence of an orthogonal matrix C giving CrRC = A =-- diag(~l, . . . , 2~). Thus, 
2min also behaves like a measure of general correlation, ranging between zero and unity, 
with the extremes determining perfect correlation and noncorrelation, respectively. 

r(R). A third measure of general correlation, related to 2mi n, is the condition 
number (Belsley, Kuh, and Welseh, 1980) of R 

~max ~c(R) - 1> 1. (3) 
/~min 

The motivation of r(R) is similar to that given 2min above except here we accept the 
presence of  a general multiple correlation among the elements of u (equivalently 1/) if 
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there are two unit-vectors cl and c2 such that var(e/q) << var(efq). We already know 

that (2) is minimized at 2rain, and it is similarly shown that (2) is maximized at 2m,x. 
Hence, a strong multiple correlation among the elements of  u occurs when •(R) is 
large.* Further, it is clear that ~(R) assumes its minimum value 1 when R = I. (No 
simple transformation of  to(R) provides a meaningful correlation-like behavior. One 
might try to base such a transform on a single-parameter matrix like R*(Q) defined in 
the previous section. Recalling that the roots of  R*(~) are 1 - ~ with a multiplicity 

G - 1 and 1 + (G - 1)Q, for 0 > 0 we have ~(R*(~)) = (1 + (G - 1)Q)/(1 - if), 
while for ~ < 0, tc(R*(~)) = (1 - ~)/(1 + (G - 1)Q). Only for G = 2 is R*(Q) 
always the actual correlation matrix R and does a symmetric relation exist between 

k(R) and ~, namely K(R) = (1 + [~[)/(1 -- I~1) or a = 0c(R) - 1)/(~c(R) + 1).) 
The detailed behavior of these three indicators in differing situations is a matter of  

empirical research that is beyond the scope of  this paper. Some specifics are, however, 
clear. /~min necessarily provides the least information since it is based only on one of 
R's eigenvalues, det(R), by contrast, is the product of all R's eigenvalues, and this 
measure can become very small through the joint presence of several modest eigen- 
values, no one of which need be very small. Likewise, ~(R) must necessarily tell 
different stories about situations that would be treated the same by 2rain- Using the 

same information that showed ~min ~ l, we can show that ~max ~ G. For a given 2m~n, 
then, to(R) must be greater the fewer are the number of other small 2's, that is, the 
smaller the number of  different multiple correlations that coexist among the elements 
ofu .  

In any event, it is reasonable to suppose that these several measures, based as they 
are on the correlation matrix R of the error structure of the system (1), are more 
general indicators of  the potential for gains in efficiency through using 3SLS. Pre- 
sumably, the closer is any one of them toward indicating a strong general correlation 
among the u's, the greater is this potential, and this regardless of  the absolute 
magnitudes of the pairwise correlations. 

4. A Monte Carlo Experiment 

In this section a Monte Carlo experiment is conducted to demonstrate the previously 
described phenomena, namely, (1) that 3SLS can have greater small-sample efficiency 
than 2SLS despite low cross-equation correlations so long as a strong, more general 
correlation exists, and (2) that this situation can be effectively assessed by the indi- 
cators suggested above. No attempt at completeness is made here. It is the purpose 
of this study only to demonstrate these phenomena and to suggest tentative conclusions. 

* Readers familiar with Belsley, Kuh, and Welsch (1980) (BKW) will recognize the parallel between the 
development here and that in chapter 3 of BKW. The standardization to the qi's employed above is exactly 
analogous to the column equilibration used there. Indeed, the argument of Appendix 3C of BKW can be 
used directly to show that, among all the possible scalings of the ui's, that which produces the correlation 
matrix R is the one that is guaranteed to produce a condition number that is nearly minimum, and therefore 
most meaningful for our current needs. More generally, the dualism that exists between a variable space 
like that used here and an observation space like that used in BKW is examined in Dempster (1969). 
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A final section for speculative considerations,  however,  suggests those areas where 
further research will be most  fruitful. 

THE MODEL 

The following six-equation model  is employed in the Monte  Carlo experiment: 

Yl = 5 + 0.3y2 + 0.5y 6 - 0.6x 1 q- 1.0x 2 q-- ut, 

Y2 = 10 + 0.5yl - 0.3x3 + 0.7x4 + u2, 

Y3 = - - 6  - 0.4yl + 0.2y4 + 1.0x5 + 0.5x6 + u3, 
(4) 

Y4 = 40 + 0.5y 3 -- 2.0x2 + 0.6x3 + u4, 

Y5 = - -9  + 0.4y 3 - 0.3y6 + 0.6x4 + 0.3xs + us, 

Y6 = 15 + 0.2y 5 + 0.7x t -{- 0.2x 6 q- u6, 

with u ~ N6(0, E). 

This model  was chosen to be large enough (G = 6) to be interesting, to insure each 

equat ion to be overidentified, and to be close to a model  that  could occur in c o m m o n  

econometr ic  practice. 

THE EXPERIMENT 

The equi-correlation matrix introduced above, 

R*(Q) = (1 - 0)I  + ~ , ,~ ,  (5) 

affords an excellent test environment  for this study, for we can move smoothly f rom 

a situation where the u's are completely independent  when 0 = 0 to one where they 
possess a single perfect multiple correlat ion as Q goes to - 1/(G - 1) = - .2, recall- 

ing here that  G = 6. Thus,  the largest absolute pairwise correlat ion never exceeds .2 

while all the other indicators at tain their extreme values: ~'min --* 0, det(R*(Q)) ~ 0, 
and ~:(R*(Q)) --* oo. In the experiment to follow, then, nine values o f  Q are chosen to 

span this range: 0 = 0, - .02, - .05, - .07, - .  10, - .  125, - . 1 5 ,  - .  19 and - . 1 9 9 .  
Fo r  each value o f  0, a run o f  100 replications is made.  Each replication consists o f  

40 observations whose y ' s  are generated subject to (4) for a fixed set o f x ' s  and whose 

u's are generated according to N6(0, l~). ~ is determined to have a corresponding 
correlat ion matrix (5) and to have variances that  produce  a signal-to-noise o f  20 for 

the structural equat ions (4). This value is chosen to mimic good-qual i ty  economic 
data  providing R 2,s in the ne ighborhood  o f  .9 for the estimated structural equations. 

Fol lowing Mikhail  (1975), the x 's  are chosen randomly  f rom uniform distributions o f  
differing ranges. In  particular, the xi's are chosen, respectively, f rom uniforms 5-10,  
0.5-5.0,  15-30, 2-8, 8-22, and 10-14. 
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The data for each replication are used to estimate (4) by both 2SLS and 3SLS, 

providing for each ~ 100 estimates of each of the 27 parameters by each estimator. 

THE RESULTS 

Figures 2-4 summarize the results. For each p, a root-mean-square-error (RMSE) 
about the true parameter value is calculated for each parameter and each estimator. 

A relative RMSE is then calculated as RRMSE - RMSE2sLs/RMSE3sLs. Clearly, a 
RRMSE > 1 favors 3SLS, while RRMSE < 1 favors 2SLS. 

Figure 2 shows for each Q the number of coefficients out of the 27 for which 3SLS 
proved superior (RRMSE > 1). A line between 13 and 14 is drawn to denote the 
half-way point. Figure 3 shows for each Q the mean relative RMSE (across the 27 
parameters) as well as the largest and smallest relative RMSE. A line is drawn at 1.0; 
mean relative RMSE's above this line denote when, on the average, 3SLS outperforms 
2SLS and inversely. 
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Both of these summary figures show that 3SLS breaks even with 2SLS for Q 
somewhere between - . 1  and - .125 and is wholly in the lead by the time ¢ approaches 
- . 2 .  It is clear that this situation could not be assessed solely from examination of 
the low magnitude of ~. Examination of Figure 4, however, shows that all three of the 
suggested general indicators point to this outcome. Taking very conservative values, 
for example, we note that 3SLS is certainly dominant by the time 2rain has dropped to 
.05, det(R*) has dropped to .12, and ~:(R*) has exceeded 23. These values are all 
extremes in their respective ranges, while they correspond to an absolute p of only.  19, 
a value most would consider small indeed. 

5. C o n c l u s i o n s  and S p e c u l a t i v e  C o n s i d e r a t i o n s  

Consonant with expectations, an indicator more general than pairwise correlations 
among the errors of a system of equations is necessary to determine when 3SLS is 
likely to posses greater small-sample efficiency than 2SLS and, thus, when the added 
computational cost of 3SLS is likely to be worthwhile. For larger systems of equations, 
the presence of strong multiple correlations among these error terms can give the edge 
to 3SLS even when the largest absolute pairwise correlation is small. 

Any of the three suggested general indicators,/~min~ det(R), or •(R), would seem to 
provide this more appropriate information. While it is beyond the present study to 
provide a detailed comparison of these three measures or interpretation of their 
values, it would seem safe to say that 3SLS would possess good small-sample relative 
efficiency for values of)~mi n and det(R) in the neighborhood of.  1 and for values of ~(R) 
above 20-30. This latter magnitude is wholly consistent with values found in BKW 
(1980) to denote the presence of strong collinear dependencies among columns of a 
data matrix in linear regression. 
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It should be emphasized that the experimental situation employed in this study is 
narrow by design, serving only to demonstrate that pairwise correlations cannot 
adequately indicate when the added computation of 3SLS becomes worthwhile 
whereas the three suggested general indicators can. In this it succeeds, but it is not 
intended, and does not pretend, to provide definitive information about comparing 
and interpreting these three indicators in more general contexts. Such a necessarily 
substantial study would have to address the following issues: 

(1) What are the general rules for how small 2mi n and det(R) must be and how large 
~(R) must be before 3SLS has greater small-sample efficiency than 2SLS? 

(2) How do these rules depend on 
(a) the number of equations, G? 
(b) the number of coexisting multiple correlations within u? and additionally, 

on  

(c) sample size? and 
(d) degree of overidentification? 

(3) Does the information from one of these indicators dominate that of another? 
or are there differing situations favoring specific indicators? 

(4) Are there wide classes of econometric situations in which simple rules of 
interpretation can be effective? 

Some speculation on these questions is in order. Issues 2c and 2d arise since it is well 
known that the performance of 3SLS always bests that of 2SLS as the sample size 
increases indefinitely, but that the two are equivalent as the degree of overidentification 
goes to zero. One could conjecture, then, that a stronger degree of intercorrelation 
among the errors would increase the attractiveness of 3SLS the smaller the sample size 
and the greater the degree of overidentification. 

Issues 2a and 2b are of central interest. We can see from the eigenvalues of R*(Q) 
that all three indicators depend on G. Different rules or thresholds may be needed, 
therefore, for different system sizes. It would obviously be nicer if single thresholds 
would apply (at least over a wide range of practical values for G). 

In the example presented above, there was only one multiple correlation among the 
elements of u as ~ ~ - . 2  (since only one of the G eigenvalues of R*(~) goes to zero). 
In typical econometric situations there could be coexisting multiple correlations. It is 
to be supposed that the more such relations, the greater the relative advantage for 
3SLS. The three indicators, however, differ in their ability to assess such distinctions. 
Thus ,  •min can easily remain unchanged as the number of such multiple correlations 
increases while both det(R) and ~c(R) will respond to such alterations. For this reason, 
it is to be expected that these later two indicators will be more generally useful. Indeed, 
one can further bolster the value of ~c(R) in this regard by considering a full set of 
condition indexes for R fi la BKW (1980) rather than the condition number ~c(R) 
alone. 



30 DAVID A. BELSLEY 

References 

Belsley, D. A., Kuh, Ed. and Welsch, R. E. (1980) Regression Diagnostics: Identifying Influential Obser- 
vations and Sources of Collinearityo John Wiley, New York. 

Dempster, A. P. (1969) Elements of Continuous Multivariate Analysis, Addison Wesley, Reading, Mass. 
Mikhail, W. M. (1975) A comparative Monte Carlo study of the properties of econometric estimators, J. 

Am. Statistical Assoc. 70, 94-104. 
Rao, C. R. (1973) Linear Statistical Inference and Its Applications, 2nd Edn, John Wiley, New York. 
Theil, H. (1971) Principles of Econometrics, John Wiley, New York. 


