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Generating line spectra from experimental responses. 
Part II: Storage and loss functions 

N.W. Tschoegl ~ and I. Emri 2 

1California Institute of Technology, Pasadena, California, USA 
2University of Ljubljana, Ljubljana, Slovenia 

Abstract: A computer algorithm is described which allows the determination of 
a discrete distribution of relaxation times from simulated or smoothed storage 
or loss modulus data, or of retardation times from simulated or smoothed 
storage or loss compliance data. The distributions faithfully reproduce the input 
data and are suitable for data storage as well as for generating any other response 
curves. 
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Introduction 

This paper is a companion to the preceding one 
(Emri and Tschoegl, 1993a). The latter presented a 
general background, briefly reviewed other work in 
this area, and provided the general theory of our 
algorithm for the determination of respondance 
(relaxation or retardation) time distributions in linear 
viscoelastic materials. It then discussed the form of 
the algorithm suitable for obtaining a discrete distri- 
bution of relaxation times from simulated or smooth- 
ed relaxation modulus data, or of retardation times 
from simulated or smoothed creep compliance data. 
For brevity, we shall refer to this form of  the 
algorithm as the transient algorithm. This companion 
paper discusses the storage algorithm and the loss 
algorithm, i.e., the forms of  the algorithm in which it 
applies to simulated or smoothed data on the storage 
and loss functions. As in the preceding paper, we 
demonstrate the power of the algorithm here using the 
standard linear solid and liquid models, and the 
bimodal form of the Kobeko equation, there given by 
Eq. (29). Again, the use of simulated data allows us to 
avoid complications arising from the presence of ex- 
perimental error. (See the companion paper for 
details). Another paper (Emri and Tschoegl, 1993b) 
discusses the application of the algorithm in the 
presence of  scatter in experimental data. 

Theoretical 

The change from the exponential to the half-Lorent- 
zian and Lorentzian kernels, i.e., from exp ( -  t/r) to 
1/(1 + coat 2) and oor/(1 + (.o2r2), necessitates changes 
in the form of the algorithm that we described in the 
companion paper (Emri and Tschoegl, 1993a). We 
begin by discussing the modifications required when 
adapting the algorithm for use with the storage 
kernel, 1/(1 + (.o2r2), instead of  the transient kernel, 
exp ( -  t/r). Both kernels are monotone non-increas- 
ing functions of their arguments. The modifications 
to be introduced result primarily from the need to re- 
evaluate the limits of the two intervals that we have 
called the Boundary Window, or Window I, and the 
Modeling Window, or Window 2, in the companion 
paper. We recall from that paper that Window 1 
determines the maximum allowable width for the 
region from which the algorithm selects datum points 
for the calculation of  each successive spectrum line. 
The respective Windows 1 are compared in Fig. 1 
together with the two kernels. 

The kernel function is capable of modeling the 
storage modulus effectively only in the transition 
region where the first derivative is significantly larger 
than zero. As can be seen from Fig. 1, this condition 
is well satisfied in the region from about log ~oz~ = 
- 0 . 5  to 0.5 which now defines Window 1. The limits 



Tschoegl and Emri, Generating line spectra from experimental responses 323 

I 

'~.8 
I 

w 

8.5 
=..: 

' 4 "  

0 
-!.5 

Fig. 1. 

-1 -5 0 .5 1 
10g [oJ~}, 10g {l/d 

The exponential and half-Lorentzian kernels and 
Windows 1 for both kernels 

are symmetrical because the half-Lorentzian kernel is 
self-congruent (Tschoegl, 1989, p. 318). Within Win- 
dow 1 the kernel function can be well modeled by a 
straight line when plotted semilogarithmically. 

Another re-evaluation is needed for Window 2 
which demarcates the region in which the algorithm 
works most efficiently when neighboring kernels 
overlap (Emri and Tschoegl, 1993 a). The negative in- 
verse of  the logarithmic derivative of  the storage 
kernel, defined by 

Dstor (0) "C) -- 
d (. 1 2) __ 4.6050) 2~ -2 

d ln  0)r  I + O-)2"C (1 + O)2r2) 2 '  

(1) 

is plotted in Fig. 2 for three neighboring spectrum 
lines separated from each other by one half of a 
logarithmic decade. 
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Fig. 2. Three neighboring storage kernels and Windows 1 
and 2 

The intersections of the derivatives define the width 
of Window 2. The lower and upper limits of the win- 
dow, 0)1, and 0)2, are obtained from 

. , ' , -  1 / r -  2 
0)  2 =  l / r k _ i T k  = 1 0  I T  k (2) 

and 

2 0)u = 1 / r k T k + l  = 10i/r/72 , (3) 

where r, the number of  preselected spectrum lines per 
decade of log 0), is given by 

1 1 
r - - (4) 

log (r  k_  1 / rk )  log ( r k / r k+  1) 

The derivation of these equations is analogous to that 
given in the companion paper (Emri and Tschoegl, 
1993a). Values for r =  1 to r =  8 for the storage 
algorithm are tabulated in Table 1. As in the case of 
the transient algorithm, for a single preselected spec- 
trum line per decade Window 1 and Window 2 coin- 
cide. 

In the transient algorithm, one is likely to en- 
counter modeling and computational problems out- 
side of  Window 1. Such problems arise when the 
numbers the computer is called to handle become ex- 
ceedingly small. Here, because of the more gradual 
decline of the kernel, these problems are less likely to 
occur. If the number of preselected spectrum lines is 
increased too much, the interval may not contain any 
datum points. In that case the width of the window 
must be increased. 

We now turn to a description of the loss algorithm. 
For the Lorentzian loss kernel the situation is a little 
more complicated than that which we have just 
discussed. This kernel is not a monotone non-increas- 
ing function of  its argument but possesses a maximum 
as shown in Fig. 3. Consequently, to be able to do its 
work, the loss algorithm needs two Windows 1 and 2, 
one on each side of the maximum. 

The left window is used in modeling the loss 
modulus to the left of  its maximum. Conversely, the 
right window is used to the right of  the peak. The two 

Table 1. Limits of Window 2 for the storage algorithm 

r log ~o l r  k log o)ur k r log a~1~ k log tour k 

1 -0.50 0.50 5 -0.10 0.10 
2 - 0.25 0.25 6 - 0.08 0.08 
3 -0.17 0.17 7 -0.07 0.07 
4 -0.13 0.12 8 -0.06 0.06 
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Fig. 3. The Lorentzian kernel at the two Windows 1 

Windows 1, as shown in Fig. 3, span the regions from 
log 092" = - 1.07 to - 0.07, and from log ~or = 0.07 to 
1.07, respectively. These endpoints, as before, limit 
the region within which the kernel function, when 
plotted semilogarithmically, can be reasonably ap- 
proximated by a straight line. In this region the first 
derivate is significantly larger than zero. 

The two Windows 2 are shown in Fig. 4 along with 
plots of  the first logarithmic derivatives of the loss 
kernel, 

Dl°ss(092")- ddln092"-- ( - 1 7 - ~  2 )2"i 

= 2.303 o92"(1 - 0922" 2) (5) 
(1 + 0922"2) 2 ' 

three neighboring spectrum lines, again separated by 
one half of a logarithmic decade. 
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Fig. 4. Three neighboring loss kernels and the two Windows 
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The lower and upper limits for Windows 2 for two 
preselected spectrum lines per logarithmic decade are 
obtained by proceeding analogously to the two previ- 
ous cases. In the present case, however, 09~ must be 
obtained from solving the equation 

A 0 9 6 + B 0 9 4 + C 0 9 2 + D  --- 0 , (6) 

a cubic equation in co 2. For the lower limit the pa- 
rameters A, B, C, and D are 

3 4 4 3 
A = 2"k-12"k--2"k-12"k (7a) 

B=r4_12"k--2rZ_12"~+22"~_12"~--2"k_,2"4 (7b) 

C 2 3 _ 1  2 2 3 = --22"k_lrk+2rk_12-k- -2-  k (7 c) 

D = r  k - r  x_l  • (7d) 

Into these we introduce the number, r, of  spectrum 
lines per decade via Eq. (4). Equation (6) then yields 
the lower limits for both Windows 2. The upper limits 
are obtained in the same way by replacing rk-1 by 
zk+ 1. The values for r = 1 to r = 8 for the right Win- 
dow 1 are tabulated in Table 2 below. Those for the 
left window are obtained by replacing the positive 
with the negative sign throughout.  

We are now ready to discuss the two algorithms 
themselves. 

The storage algorithm 

Our starting point is the equation 

i=N 1 
G ' ( 0 9 ) =  G g -  ~ G i -  

i= 1 1 + 092T2 

i = N 09 2 2-~ 
={Ge/+i=lE Gi)  +0922-2 , (8) 

where 2- i=~i /Gi ,  and G i and r/i represent the 
modulus and the viscosity, respectively, of the ith 
Maxwell unit. Gg is the glassy, and G e is the 
equilibrium modulus. The braces signify that 

Table 2. Limits of right Window 2 for the loss algorithm 

n log cofr k log tour k n log colt k log tour k 

1 0.07 i .07 5 0.29 0.49 
2 0.18 0.68 6 0.31 0.47 
3 0.24 0.57 7 0.32 0.46 
4 0.27 0.52 8 0.32 0.45 
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{Ge} = G e when the modulus describes an 
arrheodictic 1) material, and that [Ge} = 0 when the 
material is rheodictic 1). We will use the form having 
the kernel 1/(1 + ~2r2)  because its general character- 
istics parallel those of the exponential kernel, 
exp ( - t /z) .  

Normalizing by the difference Gg-{Ge} leads to 

i = N  1 
g'(o~) = gg-  ~ gi - -  , (9) 

i= 1 1 + (,02T 2 

where g ' (a))  and gg are the normalized storage and 
glassy modulus, respectively, and the gi's may be 
seen to represent the strengths of  the delta functions 
in the normalized discrete relaxation spectrum 

i = N  
h ( z ) =  ~ giTJi(~('C--'Ci). (10) 

i=1 

The source data are assumed to be available as a 
discrete set of  M datum points {G'(coj)} where j = 
1,2 . . . . .  M. Each of  these datum points can be nor- 
malized by the difference between the largest point, 
G'M, and the smallest point, G~, to yield the set 
{~'(coj)}. G~ replaces Gg, and G ~  replaces {Gel. The 
modulus can then be expressed alternatively by a 
discrete set of (normalized) spectrum lines, {~i}. In 
terms of  these each datum point becomes 

i = N  1 
g'(co:) =~'(coM)- ~ ~ i - -  2 2 " i = l  1+00j72i  

(11) 

We intend to determine, f rom the set of  source 
data, [~(coj)}, a set of spectrum lines, [~il, which will 
faithfully reproduce the modulus, G'(co). We split the 
sum in Eq. (11) into three parts and write 

i=k-1 1 1 
g'(~°s)=g'(c°M)- ~ g~ 2~ & 2~ 

i=1 l + (-O j "C i l + (-O j "C i 

i = N  1 
-- 2 gi 2 - " - ' ' " ~  + Z~ j , (12) 

i = k + l  l '[-( .OjTi 

where we have separated out the k th line, and added 
the term Aj = A ~ + A ] to allow us to account for the 
experimental error in the source data, A~, and the 
approximation error, A]. The latter must be con- 

2) The term rheodictic refers to a material showing 
steady-state flow. Arrheodictic then denotes a material 
which does not (Tschoegl, 1989, p. 93). 

sidered because the calculated spectral distribution is 
at best an approximation to the true spectrum. 

We may reduce the effort  (Emri and Tschoegl, 
1993 a) required to calculate ~'(coj) by beginning the 
first summation in Eq. (12) with l_<m = k - 4 n - 1 .  
This yields 

i=k-1 1 1 
g '  ((Dj) = g '  (('OM) -- 2 gi 2 ~  gk 2 ~  

i=m l +(Dj72i 1 + O ) j T i  

i = N  1 
-- 2 gi 2--~2~-Aj • (13) 

i = k + l  l q-(-OjTi 

We take four times the number of spectrum lines per 
decade, n, to cut off  contributions from lines four 
decades downscale where their contribution has 
decreased to 10 -s. This value for rn has been chosen 
for convenience. If it is considered to be too large, the 
value of m should be lowered. 

The sum of  squares of dj within Window 2 is given 
by 

J=Sk, u 
E k =  2 A 2 ,  (14) 

J = Sk, l 

where sk, l and Sk, u are the first and the last discrete 
points in the window that belong to the k th spectrum 
line. Minimizing the error according to 8Ek/O~k = 0, 
leads to 

j = Sk'u 1 
E ~ ' ( C O j ) - -  

j=sk,  l 1 2 2 -{- (.D j T k 

g k = j = s k ' u l l ; ) 2 ' 2  ~ (15) 

j=sg,/  l + o ) j Z  

where 

¢ '  (coi) = g' (coM) - g' (coj) - 
i = k - I  1 

2 2 
i=m l q- (DjTi  

i = N  1 
- E ~i 2 ~ "  

i = k + l  I + ( D j T i  
(16) 

Equation (15) is the expression from which the 
strength of  the k th spectrum line is to be obtained. 

We start the computation with the Nth ,  i.e., the 
farthest right, spectrum line, gN, because in this way 
the first sum in Eq. (16) vanishes. The gi, (i = m . . . . .  
k -  1), are set to zero in the first pass over the source 
data. In succeeding sweeps, we then substitute any 
newly found non-negative value for the correspond- 
ing previous one and set any negative value again to 
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zero. The iteration is broken off when the difference 
between the previously found and the newly com- 
puted spectrum lines is smaller than a preset error. 

The algorithm remains the same for the storage 
compliance, 

i = N  1 
J'(cg) = Jg+ ~ Ji 1 ' (17) 

i = l  +(-0 22-2 

since its kernel is identical with that in Eq. (1). For the 
I I normalization, we now use J~ -  J i .  

The loss algorithm 

The algorithm to be applied to the loss modulus, 

i = N  

i= 1 1 + O)2r 2 ' (18) 

is similar. Equations (10) and (14) remain the same. 
Equations (9) and (11) become 

i = N  (1) 72 i 
gt'(a~)= ~ g i - -  (19) 

i = l  1 + (D2"L'i 2 

and 

i = N O.)j Ti 
g"(( ,Oj)  = E gi 2 2 ' 

i=1 l + f o j Z i  
(20) 

the normalization factor now being Gmax= 
max [G"(o~)]. For Eqs. (12) and (13), we now have 

i = k - 1  (.0,7~ i (.D, Ti 
g "  ((.O,) = E gi 2"--"""""-~ -~ gk 2 ~  

i=1 l + o o j t i  l + 0 9 j Z i  

i = N  
+ ~ g¢l o~,ri 2 2 I - A j  , (21) 

i = k + l  f fCOj~' i  

and Eq. (15) becomes 

J = Sk, u q,"(oJj) °~sr~ 
j = Sk,l 1 2 2 + coj  z k 

( 2 , 
2 2  

j=sk ,  l 1 + Ogj T i /  

where 

i= k - 1  (_Oj.(i 
~"(o~,)=g"(o~j)-  ~ gi 2 z 

i = l  l + o o j t i  

(22) 
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Fig. 5. log G'(og), log G"(co), log HB(r), and the line spec- 
trum obtained from the moduli 

i = N  
+ ~ gi coj% (23) 

2 2 " 
i = k + l  l + ( -o j ' ( i  

Here, too, we start  the computation with the N th 
spectrum line. 

For the loss compliance, we apply the algorithm to 

i = N  69T 
J " ( f O ) - { O f / C O } =  ~ J i - - ,  (24) 

i=1 1 + ¢ 0 2 r  2 

where Of is the steady-state fluidity (the reciprocal of 
the steady-state viscosity), and the braces signify that 
the term is present when J"(aO describes a rheodictic 
material, and is absent otherwise. 

The normalization is carried out with respect to 
I t  Jmax = max [J" (co)]. 

Results 

To demonstrate the applicability of these algo- 
rithms, we made use of the same line spectrum 

H(r)  = Girit~('ci-r) i=  1,2 . . . .  32 (25) 

that we have used in the preceding paper (Emri and 
Tschoegl, 1993a). From this spectrum we obtained 
G'(a)) and G"(aO using Eqs. (8) and (18). The curves 
are plotted in Fig. 5. We then applied the algorithm to 
both moduli. The line spectra obtained in both cases 
were virtually identical with one another, with the 
spectrum obtained in the preceding paper (Emri and 
Tschoegl, 1993a) from G(t), and with the "original" 
spectrum H(z). The latter is demonstrated by the fact 
that HB('C), from which H(r) was derived (Emri and 
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Tschoegl, 1993 a), envelops the line spectrum. This is 
shown in Fig. 5. 

We conclude that our algorithm works just as well 
with the storage and loss functions as it does with the 
relaxation modulus and the creep compliance. 
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