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Abstract. Bunching is said to occur if individuals with different characteristics 
receive the same commodity  bundle. This article analyzes bunching in a finite 
population optimal nonlinear income tax problem. Several easily-computed 
sufficient conditions for the optimality of  particular bunching patterns as well as 
a simple necessary and sufficient condition for the optimal allocation to exhibit 
no bunching are presented. In addition, a characterization of  the optimal 
allocation is provided. Is is shown that the bunching pattern obtained by S. 
Lollivier and J.-C. Rochet is a consequence of a convexity condition which is 
automatically satisfied in their continuum model but which is not generally 
satisfied in a finite model. 

I. Introduction 

Bunching is said to occur if individuals with different characteristics receive the 
same commodity  bundle. In standard nonlinear income tax models, first-best 
allocations typically result in complete separation; i.e. bunching does not occur at 
first-best optima. However, as recognized in Mirrlees' [8] pioneering article, 
bunching may well be optimal when second-best constraints are taken into account. 
In the Mirrlees problem, second-best considerations arise because the government 
has only incomplete information about  the characteristics of  each individual in 
society. Thus, incentives must be provided if consumers are to reveal their true 
characteristics. In some circumstances, the benefits to be gained f rom obtaining this 
information are outweighed by the negative impact the incentive structure has on 
the labour supply of high-skilled individuals; as a consequence, it is desirable to 
have some individuals bunched together. 

* Discussions with Steven Matthews and Dilip Mookherjee and the comments of two anonymous 
referees have been extremely helpful. The hospitality of the Center for Mathematical Studies in 
Economics and Management Science at Northwestern University and the research support of the Social 
Sciences and Humanities Research Council of Canada are gratefully acknowledged. 
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Most work to date on second-best income taxation assumes that there is a 
continuum of individuals and also assumes that these individuals differ only in a 
single characteristic (or adopts an assumption that effectively limits differences to a 
single dimension). In the Mirrlees [8] problem, this characteristic is productive 
ability. Bunching in these models is associated with corners (kinks) in the income tax 
schedule. 

The Mirrlees [8] optimal income tax problem is a particular example of a general 
class of problems containing incentive-compatibility (self-selection) constraints. In 
general, the presence of these constraints greatly complicates the analysis. However, 
in some circumstances, if a quasilinearity assumption is adopted, the original 
problem can be replaced by a relatively simple reduced-form problem involving 
only a subset of the decision variables. It appears that Mussa and Rosen [9], in their 
analysis of a monopolist setting a price schedule while possessing only imperfect 
information about the demand for the firm's product line, were the first to discover 
this phenomenon. This result has been independently established in other contexts, 
notably by Myerson [10] in his study of optimal auction design. Guesnerie and 
Laffont [3] apply similar methods to an abstract self-selection model, thereby 
synthesizing results found in a number of particular applications. Lollivier and 
Rochet [6] demonstrate that the Mirrlees tax problem with quasilinear preferences 
has the appropriate structure that permits such a simplification; in their reduced- 
form problem they optimize only the amount of the consumption good allocated to 
each individual, rather than both the amounts of consumption and labour. 

These reduced-form problems are particularly appropriate for studying bunch- 
ing, and have been used for that purpose by Baron and Myerson [1 ], Guesnerie and 
Laffont [3], Lockwood [5], Lollivier and Rochet [6], Maskin and Riley [7], Mussa 
and Rosen [9], and Myerson [10], among others, in a variety of  contexts. Mussa and 
Rosen [9], for example, develop a condition that identifies which consumers should 
be bunched together. The Mussa-Rosen condition provides an implicit characteri- 
zation of the optimal bunching pattern. However, Guesnerie and Laffont [3] argue 
that this approach is operational and they outline an algorithm designed to 
determine which sets of individuals satisfy conditions of the sort introduced by 
Mussa and Rosen. 1 

Lollivier and Rochet [6] are able to obtain more concrete conclusions 
concerning bunching in the Mirrlees income tax problem by making more re- 
strictive assumptions. Working with a continuum of individuals, they assume that 
(i) everyone has common quasilinear preferences, (ii) the social-welfare function 
is weighted utilitarianism with the weights satisfying a weak redistributive assump- 
tion, and (iii) skills are uniformly distributed. With these assumptions, Lollivier and 
Rochet demonstrate that all bunching, if any, should be with the lowest-skilled 

1 In a continuum model, Seade [12] obtains necessary conditions which must be satisfied at the 
solution to a quite general one-dimensional income tax problem, conditions which explicitly account for 
the possibility that bunching may be optimal. Seade's conditions extend the partial results available in 
Mirrlees [8]. Unfortunately, the simplest form of Seade's conditions relating to the presence of bunching 
employ the optimal values for the multipliers associated with the incentive-compatibility and production 
constraints, which makes Seade's conditions difficult to operationalize. The Mussa-Rosen [9] condition 
does not utilize any multipliers. Additional discussion of bunching in a continuum version of Mirr- 
lees' problem may be found in Seade [11]. 
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individual. More precisely, there is a skill level such that all individuals with abilities 
less than this value are bunched together and all individuals with abilities higher 
than this value receive distinct commodity bundles. 

Determining whether it is optimal to have bunching is formally related to the 
problem of whether it is desirable to have a binding nonnegativity constraint on 
consumption for some individual. The main purpose of this article is to provide a 
detailed discussion of both of these phenomena in a finite population optimal 
nonlinear income tax problem. A secondary purpose of this article is to demonstrate 
that an explicit solution to the optimal income tax problem studied here can be 
obtained by utilizing a finite version of a technique developed by Myerson [10] in 
his study of optimal auction design. As maintained hypotheses, the assumptions 
employed by Lollivier and Rochet [6] to study bunching with a continuum of 
consumers are adopted. In sharp contrast to their result, for a finite population 
these assumptions are compatible with any conceivable pattern of bunching that 
does not involve the highest-skilled individual. 

In Sect. 2, the model is introduced and background results from Weymark [13] 
are presented. In that section, a vector of adjusted wage rates is defined; the 
adjustments reflect the externalities which result from the information asymmetry. 
In Sect. 3, it is shown that a number of results concerning bunching follow directly 
from the sign and monotonicity properties of this vector, including a necessary and 
sufficient condition for the optimal allocation to exhibit no bunching. In Sect. 4, 
these adjusted wage rates are used to provide a characterization of the optimal 
allocation, and thus a characterization of the optimal bunching pattern. In Sect. 5, it 
is shown that if the vector of adjusted wage rates satisfies a certain convexity 
condition, then any bunching which is optimal must be at the bottom of the skill 
distribution. Furthermore, it is shown that this convexity condition is satisfied if the 
difference in wage rates between adjacent individuals is a constant. This property of 
the skill distribution is automatically satisfied with a uniform skill distribution in 
the continuum, which accounts for the simplicity of the bunching pattern observed 
by Lollivier and Rochet [6]. In Sect. 6, the consequences of dropping the 
assumption that skills are uniformly distributed is briefly considered. A few 
concluding remarks appear in Sect. 7. All proofs appear in the Appendix. 

2. The Model and Background Results 

The model considered here is a finite population version of the one introduced by 
Mirrlees [8] with the additional restriction that preferences are quasilinear. In the 
Mirrlees model, consumers have identical preferences but differ in ability. 

There are a fixed finite number of consumers, indexed by i = 1 . . . .  , N where 
N >  2, and two commodities, consumption and labour. Person i's consumption and 
labour supply are denoted by ci and li, respectively. Differences in ability are 
reflected in the wage rates wi. The economy has a constant-returns-to-scale 
technology, so the wage rates are fixed. Following Lollivier and Rochet [6], skills 
are assumed to be positive and uniformly distributed. Without loss of generality, it 
is assumed that all consumers receive a distinct wage rate. Individuals are indexed in 
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terms of  the wage they receive, so 

0 < w l < . . .  < w N  • (1) 

Person i 's (before-tax) income is 

yi:=wili i = 1  . . . . .  N (2) 

which is also i 's l abour  supply in efficiency units. A commodity  bundle for  person  i is 
a vector  (Yi, c i ) e R  x R+ .2 

Individuals have c o m m o n  preferences given by the quasil inear utility funct ion 
u: R x R + ~ R  where 

u(l , ,  c,) : = v ( c , ) -  ~l~ (3) 

It is assumed that  v is a cont inuously  differentiable, strictly increasing, strictly 
concave funct ion with v(O)= O, v ' (O)= 0% and lim v ' (r)= O. The pa rame te r  y is 
assumed to be positive, r-.oo 

Substi tuting (2) into (3) yields the utility funct ion ~ i : R  x R+ ~ R  defined in 
terms of  income and consumpt ion  where 

U'(yi ,  ci): = v (ci) -?yi,/wi i = 1 , . . . ,  N . (4) 

While the utility funct ions defined in (4) are the appropr ia te  cardinalizat ions for  
making  interpersonal  compar isons ,  it is more  convenient  to work  with m o n o t o n e  
t ransforms o f  these functions,  U * : R x R+ -~R where 

ui(yi, ci):= wiv(ci) -}'Yi i=  1 , . . . ,  N . (5) 

Thus,  in terms of  income and consumpt ion ,  the preferences of  different individuals 
vary  in a systematic fashion;  higher ability individuals have flatter indifference 
curves. As a consequence,  the indifference curves in income-consumpt ion  space of  
different individuals intersect only once. This p roper ty  of  preferences is known  in 
the self-selection li terature as the single-crossino property. 

An allocation is a vector  a : = (y, c) where y : = (Yl,.  • . ,  YN) is an income vector 
and c := (Cl  . . . . .  eN) is a consumption vector. The social welfare function W :  
R ~ x Ru+ ~ R  is o f  the weighted uti l i tarian form, 

W(a)" = ~,u, U~(y~, c,) (6) 

or, equivalently, 

W(a)  = r.Si)b, U ~ (y,,  ci) (7) 

where 

~.i : =  t.ti/w~ i= 1 , . . . ,  N . (8) 

z Neither Guesnerie and Laffont [3] nor Lollivier and Rochet [6] consider a binding constraint on the 
sign or magnitude of y~. Ignoring these constraints simplifies the discussion. Seade [11 ] considers this 
issue in detail using a continuum of abilities. An important feature of Seade's model is that the lowest- 
skilled individual receives a zero wage. 
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The vector of skill-normalized welfare weights 2 : = (21,. • . ,  2N) is assumed to be 
strictly positive and monotone decreasing, 

0 < 2 N < .  .. <21 , (9) 

and is normalized to sum to N, 

~ i 2 i = N  . (10) 

Condition (9) is a weak redistribution assumption which, for example, is satisfied if 
(6) is the utilitarian social welfare function. 

In this model, there is no loss of generality in considering only an aggregate 
production constraint, which also serves as the materials balance constraint in the 
model. The technology exhibits constant returns to scale, 

pZici<_Z~yi with Sici>_O , (11) 

where p > O. Letting income be the numeraire, p is the price of the consumption 
good. 

The government knows the distribution of wages (skills) and the functional form 
of the utility function; it can also observe the actual pretax income of each 
individual but is not able to observe the wage or hours worked of any particular 
individual. The government's role is limited to setting an anonymous tax schedule. 
The set of allocations which can be generated by anonymous tax schedules when 
consumers optimize over the corresponding budget set is equivalent to the set of 
allocations which satisfy the self-selection constraints, 

Ui(y~,c~)>_ U~(yj, cj) for all i , j  . (12) 

Thus, the optimal nonlinear income tax problem can be stated in the following 
direct form. 

Problem I. Choose an allocation a ERNx RN+ to maximize the social welfare 
function (7) subject to the allocation satisfying the production constraint (11) and 
the self-selection constraints (12). 

Because preferences satisfy the single-crossing property, any allocation which 
satisfies the self-selection constraints must have both consumption and income 
nondecreasing in ability. This result is well-known in the literature, see Cooper [2] 
for example, so it is stated here without proof. 

Proposition 1. A necessary condition for  an allocation a ~ R N x RU+ to satisfy the self- 
selection constraints is 

(Yl,  cl) < (Y2, c2) < . . .  <- (YN, CN) (13) 

with 

( Y i - l , c i - 1 ) ~ ( Y l ,  Ci) i f  (yi_l ,Ci_t)4=(yi,  ci) i>_2. (14) 

The main result in Weymark [13] establishes the equivalence of Problem I with a 
reduced-form problem which has only the consumption vector c as a variable. By 
Proposition 1, if an allocation a satisfies the self-selection constraints, the 
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consumption vector c must be in 

C : = { c e R N l c i > _ c i _ l , i = l , . . . , N }  , (15) 

where 

Co: =0  . (16) 

Define 

[3i'=wi+ 2h ( w i + l - w O ,  (17) 

where wN + 1 is an arbitrary number. Le t / / :  = ([31 . . . . .  /~N)- It is natural to call/~i an 
adjusted wage rate. In view of the normalization rule,/?N = WN. Because the welfare 
weights ~.~ are positive and declining in ability,/?i < w~ for all i + N. Using these new 
variables, define ~ :  C ~ R  by 

~K (c) : = ~ifliv (ci) - TpSi ci • (18) 

A detailed economic interpretation of (18) may be found in Weymark [13]. The 
reduced-form optimal nonlinear income tax problem is Problem II. 

Problem II. Choose a consumption vector c e C to maximize (18). 

The main results in Weymark [13] are summarized in Theorem 1. 

Theorem 1. I f  a* = (y*, c*) is a solution to Problem I, then c* is a solution to Problem 
IL I f  c* is a solution to Problem II, then (g (c*), c*) is a solution to Problem I where 
g : C--,R N is given by 

gl(c):=lv -~ h=2 

and 
i 

g,(c):=gl(c) +1 2 Wh[V(Ch)--V(Ch-a)] i = 2  . . . . .  N .  (20) 
7' h=2  

I f  a* is a solution to Problem L (i) it is production efficient, i.e. satisfies (11) with 
equality, and (ii) all the adjacent downward incentive constraints are binding, i.e. 

Ui(yi ,ei)=Ui(yi_t ,c~_l) i = 2  . . . . .  N . (21) 

From a computational perspective, the reduced-form problem has many 
attractive features, The vector fl which appears in the objective function can be 
calculated using simple arithmetic operations. Similarly, only simple computations 
are required to calculate the optimal income vector g(c*) once the optimal 
consumption vector c* has been determined. The results presented in subsequent 
sections suggest that practical procedures are available for the computation of c*. 

Bunching occurs if two consumers with different characteristics receive the same 
commodity bundle. Here, the only characteristic that distinguishes individuals is the 
wage rate and, by assumption, all individuals have distinct wage rates. To analyze 
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the optimal bunching pattern it is only necessary to consider the reduced-form 
problem, as Proposition 1 implies that individuals i an d j  ( i+j)  are bunched i f  and 
only i f  ci = cj. Furthermore, because c must be monotone nondecreasing, i and j 
(j > i + 1) are bunched if and only if they are bunched with all k ~ {i + 1 . . . .  , j  - 1 }. 
Consequently, the problem of determining the optimal bunching pattern reduces to 
the problem of determining which, if any, of  the constraints defining C are binding 
at the solution to Problem II. Thus, a consumption vector is in C °, the interior of  C, 
if and only if there is no bunching and all individuals have a positive level of 
consumption. Henceforth, the first constraint in (15) is referred to as the 
nonnegativity constraint and the remaining constraints in (15) are referred to as the 
monotonicity constraints. 

3. Bunching and the Sign and Monotonicity Properties of the Adjusted Wage Rates 

If the objective function ~K in Problem II is maximized subject only to the constraint 
that consumption is nonnegative, i. e. the monotonicity constraints on consumption 
are ignored, the solution is ~ :=  ( c l , - . . ,  CN) where 

{ ; ' -  1 (~)v//3i) if /~i>0 
if /~i-< 0 i=  1 . . . . .  N . (22) 

Obviously, if ~ is monotone nondecreasing, ~ is also the solution to Problem II. 
Because v is strictly concave, the monotonicity properties of  ~ are closely related to 
the monotonicity properties of/3. Provided both/~i and/~j are positive, ci > ~ if and 
only if/3~ >/~j. Furthermore, ~-= 0 if and only if j?~ is nonpositive. Thus, there is no 
bunching and everyone receives positive consumption if the adjusted wage rates 
are positive and strictly increasing in ability. The main theorem in this section 
demonstrates that these restrictions on /~ are also necessary for the optimal 
consumption vector to be in C °. In this section it is also shown that a number of  
other easily-verifiable restrictions on the sign and monotonicity properties of/~ 
partially characterize the optimal bunching pattern. These results are used in the 
next section to provide a complete characterization of the solution to Problem II. 

If fll -< 0, then 0~1 r (c)/6ei =/~i v'(ci) -TP < 0.3 Consequently, if/~ < 0 it is optimal 
for person i to bunch with person i - 1  (or receive zero consumption if i=  1). 

Proposition 2. I f  e* is a solution to Problem H and if  fli<_O, then c*=c*-l .  

Turning to the monotonicity properties of/~, suppose/3~_, and/?i are positive 
with /~-1->/~i. From (22), ci-~ >ci  which suggests that it is optimal for these 
individuals to be bunched together. Intuitively, if/3~ _ t > 0,/3~ > 0, and/~_ 1 ->/~i, it is 
desirable to transfer consumption from i to i - 1 if c~ > c~_ ~ since i - 1 receives a 
higher weight in the reduced-form objective function than i. 4 

3 ~ is strictly concave if and only if fll > 0 for all i. Lollivier and Rochet [6] adopt assumptions on the 
distribution of skills that ensure that the adjusted wage rates in their reduced-form problem are all 
positive. 
4 The proof of Proposition 3 is omitted as Proposition 3 is a special case of a more general result 
established in the next section. 



220 J.A. Weymark 

Proposition 3. I f  c* & a solution to Problem H and i f  fli- 1 >- fl~ > 0 with i + 1, then 
e* =c*-1. 

In a more general model, Guesnerie and Seade [4] establish that the highest- 
skilled individual should not be bunched with anyone. In the model considered here, 
their result can be generalized. Proposition 4 presents sufficient conditions for the 
individuals at the upper end of the skill distribution not to be bunched with anyone 
and for these individuals to receive positive consumption at a solution to Problem 
II. These conditions state that the adjusted wage rates of these individuals should be 
positive and increasing in ability and, in addition, that no one in the rest of the 
population should have a higher adjusted wage than any of these high-skilled 
individuals. Furthermore, if i is such an individual, then ~ defined in (22) is i's 
optimal consumption. 

Proposition 4. I f  c* is a solution to Problem II, i f  either k = N  or 

0 < / ~ k < . . .  </~N , 

and i f  either k = 1 or 

flk>fli for  all i~{1 . . . .  , k - l }  , 

(23) 

(24) 

then 

c*-l <e* for  all i ~ { k  . . . . .  N}  (25) 

and 

e*=ci>O for  all i E { k  . . . . .  N}  . (26) 

The hypotheses of Proposition 4 are automatically satisfied if k = N  since 
wN = fin > flj for all j ~ N. Thus Guesnerie and Seade's [4] result that the highest- 
skilled individual should not be bunched with anyone is a special case of Proposition 
4. 

Corollary 1. I f  c* is a solution to Problem II, then cN* > cN* - 1 and c* = cN. 

The hypotheses of Proposition 4 are also satisfied if fli is strictly increasing in 
ability. While in general Proposition 4 is consistent with quite complicated 
bunching patterns at the lower end of the skill distribution, if the fli are strictly 
increasing, all bunching, if any, should be with the lowest-skilled individual and all 
individuals who are bunched together should receive zero consumption. 

Corollary 2. I f  fl is strictly increasing, the solution to Problem Hi s  ~ defined in (22), so 
all i with fli < 0 receive zero consumption and all i with fli > 0 are not bunched with 
anyone. 

Some insight into Proposition 4 may be gained by noting that if(23) and (24) are 
satisfied, then 0 < ci for all i~ {k , . . . ,  N} and ck > ci for all i¢ {k . . . . .  N} .  Thus 

satisfies the ith constraint in (15) with a strict inequality for i > k. The additive 
separability of ~¢U guarantees that {~k . . . . .  ~N} are also the optimal values for these 
variables when the monotonicity constraints are imposed. 
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Combining Proposition 2, 3, and 4 yields necessary and sufficient conditions (a) 
for there are to be no bunching at an optimum and (b) for none of the constraints in 
(15) to bind, i.e. for the optimal solution to be in C °. 

Theorem 2. I f  c* is a solution to Problem II, then (a) c* exhibits no bunching if and 
only i f  

f l l < . . .  <flN with f12>0 (27) 

and(b) c* ~ C O if  and only i f  

0<fl~ < . . .  <fin • (28) 

I f  (27) or (28) is satisfied, then c*= ~ where ~ is defined in (22). 

It is trivial to determine whether the hypotheses of the propositions presented in 
this section are satisfied given the vector of adjusted wage rates fl, and calculating/3 
only requires simple arithmetic operations. In particular, if it is optimal to have no 
bunching, this fact will be immediately apparent from the vector ft. Furthermore, 
when there is no bunching, it is optimal to set ci equal to cl and it is a straightforward 
exercise to determine ci. For example, if v (e0 = 2 c~/z and (28) is satisfied, person i's 
optimal consumption is 7P/fl~. Once the optimal consumption vector has been 
determined, again only simple arithmetic operations are required to determine the 
optimal income vector; the relevant formulae are given in (19) and (20). s 

4. Characterizing the Optimal Consumption Vector 

In this section a method is presented for determining the optimal consumption 
vector and, thus, for completely characterizing the optimal pattern of bunching. 
Propositions 2 and 3 provide sufficient conditions for it to be optimal for a pair of 
individuals to be bunched together. Before stating the characterization theorem, it is 
useful to generalize these two propositions by providing sufficient conditions for it 
to be optimal for groups of individuals to be bunched together. 

Proposition 5. I f  c* is a solution to Problem H and if  there exist j, k ~ { 1 , . . . ,  N}  with 
j < k  such that 

k 

Z fl,<O for all h ~ { j  . . . .  ,k}  , (29) 
i = h  

then 

c*=c*_l for all i e { j , . . . , k }  . (30) 

Proposition 5 generalizes Proposition 2. Starting with person k and working 
down the skill distribution to person j, if the cumulative sums of the adjusted wage 

5 In the absence of bunching, (19), (20), and (22) provide explicit formulae for the optimal allocation. 
In Weymark [14] these expressions are used to develop some comparative static properties of the optimal 
allocation with respect to variations in the exogenous parameters y, p, and 2. 
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rates are all nonpositive, all o f  these individuals should be bunched together with 
pe r son j  - 1 (or receive zero consumpt ion  i f j  = 1). Thus, for  example, if fl~ + 1 < 0 and 
fl~ + fit + 1 -< 0, it is optimal for  i - 1, i, and i + 1 to bunch together even if fit > 0; the 
negative value for fl~+i outweighs the moderat ing influence associated with a 
positive value for fli. 

Proposi t ion 3 states that  it is optimal for  i to bunch with i - 1 if fl,_ 1 >- fl, > 0. If  
this condit ion is satisfied, it is also true that  flz_ 1 is at least as large as the average 
adjusted wage of  these two individuals, (fl~_ 1 + fli)/2. This observat ion leads to the 
following generalization of  Proposi t ion 3. 

Proposition 6. I f  c* is a solution to Problem H a n d  i f  there exist j ,  k e { 1 . . . .  , N }  with 
j < k such that 

h k 

i=j > i=j 0 for  all h e { j ,  , k )  (31) 
(h + l _ j )  - (k + l _ j )  > " "  , 

then 

c*=c*  fo r  all i e { j , . . . , k }  . (32) 

Starting with p e r s o n j  and working up the skill distribution to person k, if the 
cumulative averages of  the adjusted wage rates are all positive and at least as large as 
the average adjusted wage of  the whole group, then all of  these individuals should be 
bunched together.  

For  a vector ~ = (~i . . . . .  IN), define the function f~ : [0, N ] ~ R  by setting 

f ~ ( r ) : = ~ i - i + ( r + l - i ) ( ~ i - ~ i - i )  for  all r e [ i - l , i ]  , 

i = l , . . . , N  , (33) 

where, as a convent ion ~o is set equal to zero. With a slight abuse of  terminology,  f~ 
is called the graph of  4. Informally,  f~ is obtained by plotting (0, 0) and (i, ~) for 
i = 1 . . . . .  N and connecting consecutive points by straight-line segments. 

Let z : = (za,. • . ,  zs) where 

i 

z~:= ~, fli i--1 . . . . .  N ; (34) 
h=l  

q is the cumulated total adjusted wage of  the first i individuals. The graph of  z,f~, is 
used to determine the solution to the reduced-form income tax problem. Let  
j~ : [ 0 , N ] ~ R  be the convex hull o f f¢ ,  

Z( r ) :  = Min {(f,(ri)  + (1 - ()f~(r2)]( E [0, 1], r l ,  r2 e [0, N], 

and ( r i + ( 1 - ( ) r 2 = r }  . (35) 

The function j~ is the highest convex function which lies nowhere  above f¢. It is clear 
that  

fl~ =f¢(i) - f¢ ( i  - 1) i =  1 . . . .  , N . (36) 



Nonlinear Income Taxes 223 

By analogy, f~ can be used to define a new vector fl by setting 

/7i : =f~(i) -J~(i - 1) i=  ~1 . . . .  , N . (37) 

Since f~ is a convex function, fl is nondecreasing. Letting ~ be the vector of 
cumulated adjusted wages corresponding to/7, it is easy to verify that f~ =f~ and 

f~=f~. 

T h e o r e m  3. 6 There exists a unique solution c* to Problem II given by 

{ ; ' - l ( yp,l fil ) if  fii > O 
e* :=  if  fii< 0 i = l , . . . , U  (38) 

where fi is defined in (3 7). 

An important implication of Theorem 3 is that the optimal bunching pattern 
depends only on the vector/~, which in turn depends on the vector of welfare weights 
2 and the vector of ability levels w. Given the maintained hypotheses that 
preferences are quasilinear and the technology exhibits constant returns to scale, the 
values of the parameters 7 andp and the functional form ofv influence the optimal 
allocation but not the optimal bunching pattern. 

While Theorem 3 presents an explicit solution to the reduced-form optimal 
nonlinear income tax problem, the computation of this solution requires the 
computation of the vector/7. While, in general, there is no simple formula to 
determine fi from// ,  it is not difficult to devise algorithms which can compute/7. 
Consequently, it is not unrealistic to calculate the solution to an optimal nonlinear 
tax problem of the sort considered here, provided N is not so large that running the 
algorithm to determine/7 becomes prohibitively expensive. 

If ~ is nondecreasing, then f ,  is a convex function and/~ =/7. This observation 
and Theorem 3 imply that the optimal solution to the reduced-form income tax 
problem is the consumption vector ~ defined in (22) i f / / i s  nondecreasing. In 
Corollary 2,/~ is assumed to be strictly increasing, so the special bunching properties 
identified there can be interpreted as resulting from the convexity of the 
corresponding function f~. 

To illustrate how Theorem 3 can be used to study bunching, it is useful to 
consider an example. Le t / /=  (2, - 6, 3, - 1, 6, - 1, 1, 7). For this/~, r = (2, - 4, - 1, 
- 2 ,  4, 3, 4, 11) and/7= ( - 2 ,  - 2 ,  1, 1, 2, 2, 2, 7). The graph of r and its convex hull 
are shown in Fig. 1. Thus it is optimal for (a) individuals 1 and 2 to be bunched 
together and receive zero consumption, (b) individuals 3 and 4 to be bunched 
together, (c) individuals 5, 6, and 7 to be bunched together, and (d) individual 8 to be 
separated from everybody else. 

The average adjusted wage of all individuals in {h . . . .  , i} where h < i is given by 
the slope of a line joining the point ( h - l ,  ~h-1) to (i, ~). Consequently, if/7~ is 
positive,/~i is the average adjusted wage of all individuals who should be bunched 
with person i. Furthermore,/71 can be thought of as a social shadow wage rate. If 
person i chooses consumption and labour supply to maximize the utility function (3) 
subject to the budget constraint pci </Tfl~, the optimal consumption is c* given by 
(38). 

6 The inspiration for Theorem 3 comes from Myerson [10] and Baron and Myerson [1]. 
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5. Convexity of the Adjusted Wage Distribution 

All of the results presented here employ three maintained assumptions: (i) all 
individuals have common quasilinear preferences, (ii) the skill-normalized welfare 
weights are declining in ability, and (iii) there are an equal number of people with 
each skill level, where for convenience this number has been set equal to one. 
Working with a continuum of skills, Lollivier and Rochet [6] demonstrate that with 
these assumptions all bunching, if any, should be with the lowest-skilled individual. 
The results presented in the previous sections show that this conclusion is not valid 
with a finite population. 

Corollary 2 presents one sufficient condition, namely that /~ be strictly 
increasing, for all bunching, if any, to be with the lowest-skilled individual. In this 
section it is shown that this pattern of bunching is also optimal if the graph of 13, i. e. 
f~, is a convex function on [1, N]. Furthermore, if the gaps between consecutive 
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wage levels are evenly-spaced, this convexity condit ion is satisfied. This spacing 
p rope r ty  is automatical ly satisfied by a cont inuum of  skill levels, which accounts for  
Lollivier and Rochet ' s  findings. 

It is natural  to  call an N-vector  i c o n v e x  if and only if the corresponding graph f~ 
is a convex funct ion on [1, N]. Convexity of  i is equivalent to requiring the vector 
(42 - I1 . . . . .  IN -- IN - t) to be nondecreasing. If  ~N > ~j for  a l l j  4= N, as is the case for 
/3, and if ~ is convex, then there exists an integer i~ e { 2 , . . . ,  N -  1} such that  

~i_<~i_l for  all i < i ¢  , i > 2  

and (39) 

i~ > i i -  1 for all i > i¢ . 

If  ~ is strictly increasing, ~ is convex with i¢ = 2. 
Define the vector  ~ : = (~a . . . . .  aN) by setting 

~i  : = q / i  

i 

=- Z /3h/i 
h = l  

i =  1 . . . . .  N . (40) 

Thus c~i is the average adjusted wage of  all individuals with wage rates less than or 
equal to wi. The fact that/3N >/3j for  a l l j  4= Nimplies  that  aN > ej for  a l l j  =# N as well. 

Lemma 1. I f / 3  is c o n v e x ,  ~ is a lso  c o n v e x  w i th  i~ > i~. 

Lemma I is analogous to a result in the theory of  the firm; if a firm's marginal  
cost curve is convex, then so is its average cost curve. If, fur thermore,  the marginal  
cost curve is u-shaped,  so is the average cost curve and the output  for  which 
minimum average cost is at tained exceeds the output  for which marginal  cost is 
minimized. I f  marginal  cost is always increasing, so is average cost, which 
corresponds to having i~ = i~ = 2. 

Let io be the lowest-skilled individual such that  the weights ( f l io , . . . ,  fiN) are 
positive and strictly increasing and such that/3io is larger than the average adjusted 
wage of  all lower-skilled individuals. Formally,  io is the solution to : 

Min i 

subject to (i) i e { 2 , . . . , N }  (41) 

(ii) 0 < f l i < f l i + ~ < . . . < f l s  , 

(iii) fl~ > c~i- 1 • 

Since fin > 0 and fiN > flj for  all j  4= N, the constraints in (41) are satisfied with i = N, so 
io is well-defined. If/3 is convex, it is easy to verify that  o f  all i >  i,, io is the lowest- 
skilled individual with/31 > O. 

Proposi t ion 7 demonstra tes  that  if/3 is convex, any bunching which is optimal 
must  involve the lowest-skilled individual. More  precisely, if/3 is convex, (i) it is 
optimal to have all i < io bunched with the lowest-skilled individual and (ii) it is 
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optimal for all i > io not to be bunched with anyone. Thus, if io = 2, bunching is not 
desirable. In contrast to Corollary 2, individuals bunched together may receive a 
positive amount of the consumption good. 

Proposition 7. I f  c* is the solution to Problem H and i f  fl is convex, then 

c* = ci > 0 for all i > io (42) 

and 

c*=~ for all i<io (43) 

where 

~ . = { ;  ' - l (?p/~i°-0 /f  ~ ° - 1 > 0 .  if  ~o-1 <0  (44) 

and where ci is defined in (22) and io is defined in (41). 

From a computational perspective, two features of Proposition 7 are worth 
noting. First, it is very simple to determine iffl is convex. Second, iffl is convex, the 
integer io, i.e. the lowest-skilled individual not bunched with person one, is easy to 
identify. 

If fl is convex, ci is the optimal consumption for each i >_ io, i.e. these individuals 
should receive the consumption that is optimal for them at an unconstrained 
maximum of ~/~. A striking feature of this result is that this conclusion is compatible 
with having ~j > Cio for some j <  io. At first glance, this last inequality would suggest 
that it is optimal for io to bunch withj. However, the convexity properties offl and 
the definition of io guarantee that the fl~ are nonincreasing for i e {j . . . .  , io - 1}, 
pushing the average of the fli's for this group sufficiently below flj that c* is lower 
than Cio- 

The definition of the adjusted wage fli contains a term involving the difference in 
wages received by consecutive individuals in the skill distribution. The skill 
distribution is defined to be evenly-spaced if and only if there exists a A such that 
w l - w i - 1  = A for all i~ {2 . . . . .  N}. Evenly-spaced wage distributions result in fl 
being convex. 

Lemma 2. I f  the skill distribution is evenly-spaced, fl is convex. 

An immediate implication of Lemma 2 and Proposition 7 is Theorem 4. 

Theorem 4. I f  the skill distribution is evenly-spaced, at the solution to Problem H there 
is a wage ff~ such that it is optimal for all individuals receiving a wage less than ff~ to be 
bunched together and it is optimal for all individuals receiving a wage greater than 
not to be bunched with anyone. 

Theorem 4 accounts for the special bunching pattern observed by Lollivier and 
Rochet [6]. With a continuum of abilities, skills are automatically evenly-spaced. 
Thus, with a uniform distribution, the bunching pattern described in Theorem 4 
must result. Consequently, it appears that much of the complexity of the finite case 
(with a uniform distribution) is due to the fact that skills need not be evenly-spaced. 
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6. Nonuniform Skill Distributions 

A further complication is introduced if the assumption that each person has a 
different skill level is dropped. Assuming that consumers with the same skill level 
have the same welfare weight, in Weymark [13] it is shown that it is optimal for all 
consumers with a given skill level to receive the same commodity bundle. 
Consequently, the analysis can proceed by either indexing each individual in society 
or by indexing the skill levels. 

If the former approach is adopted and individuals are indexed in increasing 
order of ability with ties broken arbitrarily, Problem II remains the appropriate 
reduced-form income tax problem and the characterization of its solution presented 
in Theorem 3 continues to apply. With the possibility of multiple consumers with 
the same skill level, the results presented in the previous sections can be interpreted 
to be theorems concerning the desirability of having distinct individuals receive the 
same commodity bundle rather than results directly concerned with bunching, i.e. 
having individuals with distinct characteristics receive the same commodity bundle. 
With this interpretation, however, a number of the theorems are vacuous (in 
particular, the propositions in Sect. 5), because the vector fl cannot be strictly 
increasing nor can it be convex (unless the only skill level with multiple consumers is 
the lowest). 

To study bunching, it is more natural to index skill levels rather than individuals. 
The corresponding reduced-form problem may be found in Weymark [13]. The 
results in Sect. 3 and Propositions 5 and 6 in Sect. 4 have straightforward analogues 
in this formulation of the problem. However, to compute the optimal solution, it is 
still necessary to compute the convex hull of the graph of/~ with each individual 
indexed separately, so, for this purpose, working with the skill levels only 
complicates the analysis. The results in Sect. 5, when reinterpreted in terms of skill 
levels, do not generalize to nonuniform skill distributions. 

7. Concluding Remarks 

A few general conclusions concerning the bunching properties of the solution to a 
finite population optimal nonlinear income tax problem satisfying the maintained 
assumptions adopted here emerge from the previous sections. First, in contrast to 
the continuum result obtained by Lollivier and Rochet [6], all bunching need not be 
at the bottom of the skill distribution. Second, the continuum bunching pattern is 
obtained with a finite population if skills are evenly-spaced, a property that is 
necessarily satisfied by a uniform distribution in the continuum, or, more generally, 
if the vector of adjusted wage rates is convex. Third, the optimal bunching pattern 
depends only on the vector of adjusted wage rates/~ (and, hence, on the welfare 
weights 2 and the skill levels w), and not on the other parameters of the model. In 
particular, many features of the optimal bunching pattern are directly related to the 
sign and monotonicity properties of ft. Fourth, it is possible to present an explicit, 
albeit indirect, characterization of the solution to the optimal income tax problem. 
Taken together, these results suggest that if individuals' preferences are not too 
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dissimilar and if income effects are not too strong, much can be determined about 
the bunching properties of the allocations that result when nonlinear income taxes 
are set optimally. 

Appendix 

Proof of Proposition 4. Recall that fin > 0 and fin >/~ for all i :I: N. First, it is shown 
that c* _< cN for all i. On the contrary, suppose there exists an i such that e* > CAN. Let j  
be the smallest such i. By construction, e* > c*_ 1, so it is feasible to marginally 
decrease cj. But 

~ (c*)/~cj = [3 f (c*) -~ ,p  

<-I~N~'(c*) - w  

(since flj < wj < wN =/~u if j :I: N) 

</~N v'(~N) -- W 

(since e* > cN) 

= 0  

by (22). Thus, a marginal decrease in ej increases ~ ,  a contradiction. 
, ^ 

If cN < on, then 

~ (c*) /~cN = f lNv ' (c* )  - ~'p > 0 

from (22) and the assumption that c* < ON. Again, this conclusion contradicts the 
, ^ 

optimality of e*, so cN = oN. 
To show that person N is not bunched with anyone, suppose the contrary. Le t j  

be the lowest-skilled individual bunched with person N. By construction, c* > c*_ 1 
and it is feasible to marginally decrease ej. But 

O ~  (c*),/~cj = ~jv ' (c*)  - ~,p < o 

since/?j </?N, e* = c* = cN, and ~NV'(~N) --~iV = 0. Hence, marginally decreasing cj 
increases ~K, a contradiction. This argument establishes Proposition 3 if k = N. 

If k < N, the proof  proceeds by induction. Suppose h e { k , . . . ,  N -  1} and (25) 
and (26) hold for all i>  h. A straightforward adaptation of the above argument 
establishes first that c* _< c* for all i < h, second that c~ = Oh, and third that c* > e* for 
all i<h. 

Proof of Proposition 5. Suppose h e { j , . . . , k }  and c*=c~ for all ie{h . . . . .  k}. 
Contrary to the theorem, suppose c* > c~'_ 1. It is feasible to change the consumption 
of all i e {h , . . . ,  k} by a common infinitesimal amount 6 < 0. The resulting change in 
the value of ~#/" is 

k 

which is positive since 6 < 0, k_> h, and (29) is satisfied, contradicting the optimality 
of c*. 
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Proof of Proposition 6. From (31), for all h e { j + l  . . . .  ,k} 

h - 1  k 

(k + 1 - j )  ~ fii-> (h - j )  ~, fii , 
i = j  i = j  

SO 

h - 1  k 

( k + l - h )  ~ i l l - ( h - j )  ~ fli>-O. (A.I) 
i = j  i=h 

Suppose c*=c* for all i~{h . . . . .  k} where h ~ { j + l , . . . , k }  but c~>c*-l. If 
fih -< 0, by Proposition 2, there is a contradiction, so suppose flh > 0. It is feasible to 
marginally decrease ci by 6 / ( k + l - h )  for all i~{h . . . .  ,k} and to marginally 
increase ci by 6/(h - j )  for all i ~ {j . . . .  , h - 1 } where 6 > 0. Such a change keeps total 
consumption constant. The resulting change in ~/U is 

h-1 ~ k 

fly(e*) ( k + l - h )  i=n i=Y, Y, fliv'(e*) 
( h - j )  

- fil (k+ 1 - h )  fii • (A.2) ( h - j )  i=j i=h 

To verify this inequality, first note that the second terms on each side of the 
inequality are identical because of the assumption that c* = c* for all i e {h , . . . ,  k}. 
If fil > 0 for all i e { j , . . . ,  h - 1}, the inequality then follows from the concavity of 

h - 1  

v and the monotonicity of c*. From (31) it follows that flj>O and ~ fii>0, 
i = j  

so Proposition 2 can be used to establish this inequality if fig_<0 for some 
i {j+l . . . .  , h - l } .  k 

The first term on the right-hand-side of (A.2) is strictly positive. If ~, fli <- O, the 
i=h 

last term is nonpositive, which makes the overall change in ~¢# positive, a 
k 

contradiction If  ~ fig > 0, since v is concave and c~ > c*-1 the right-hand-side of 
i=h 

(A.2) is strictly larger than 

(k + 1 - h )  ' 

which is positive by (31), a contradiction. Thus, if c* = c~' for all i ~ {h . . . .  , k} where 
h c {j + 1 . . . .  , k }, then Ch* ---- Ch*- 1. Since the antecedent in this statement is trivially 
valid if h =k,  the proposition is established. 

Proof of Theorem 3. By Corollary 1, any solution to Problem II must be contained in 
C : =  {c ~ C[CN = CN}, which is a compact set. As ¢U is continuous, the Weierstrass 
Theorem implies that a solution to Problem II exists. 

Since f~ is a convex function, by construction figs nondecreasing and, thus, the c* 
given by (38) satisfies the nonnegativity and monotonicity constraints on c. Since/7 
is nondecreasing, the set of individuals sharing a common value for/7i are indexed by 
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consecutive integers. Suppose {j . . . .  , k} is such a set of individuals, i.e. fli = fly, for 
all i, i' ~ {j . . . . .  k} and fl-~ + fl-v i f / e  { j , . . . ,  k} and i' q~ {j . . . . .  k}. Sincej~ is the highest 
convex function which lies nowhere above f~, by construction 

h k 

ZB, 
i=j > ~=i --flh for all h e { j , . . . , k )  . (A.3) 

(h+l -j) - (k+l  -j) 

If flh > 0, by Proposition 6 all h e { j , . . . ,  k} should be bunched together. If flh < O, 
then (29) holds and the same conclusion follows from Proposition 5. Hence, all 
individuals with the same value for fl~ should be bunched together. 

Let {flo . . . .  flo} be the Tdistinct values for fl~, i=  1 . . . .  , Nwritten in increasing 
order and let nt be the number of individuals with fli=fl °. Constraining all 
individuals who have the same value for fl~ to receive the same consumption and 
using the equality in (A.3), the reduced-form objective function (18) may be written 
a s  

T T 

Z n, fl°v(c°)-TP Z n, c° (A.4) 
t = l  t = l  

where c o is the common consumption level of the individuals with the t th largest 
distinct value for fli. The solution (expressed in terms of the original labelling of 
individuals) to the maximization of (A.4) subject only to the constraint that each c ° 
be nonnegative is unique and is given by (38). As noted above, this consumption 
vector is in C, which completes the proof. 

Proof of Lemma 1. Convexity of fl is equivalent to 

fii+l+fli-1 - 2 f l i > 0  i = 2  . . . . .  N . (A.5) 

Analogously, convexity of a is equivalent to 

~i+i d-~(i-i - 2 c q > 0  i = 2  . . . .  ,N  . (A.6) 

Let 

i - 1  

) ( / :=2  ~ flh+(Z--i--ii)fl~+(i2--i)fli+~ i = 2 , . . . , U .  
h = l  

Note that 

i + 1  i - 1  i 

Xi=i( i -1)  ~ flh+(i+l)i ~ fln--2(i+l)(i--1) ~ flh 
h = l  h = l  h = l  

= ( i +  1)(i-1)i(~i+, +0q_x -2cq) . 

Thus, (A.6) holds if and only if X~_>0 for all i = 2  . . . . .  N. Induction is used to 
establish this result. Solving for X~+~ in terms of ~ ,  

J 

xj+,=2 Z ~h-02+3j)/~J+,+(J2+J)/~J+2 
h = l  

=Xj-F(jzq-j)(flj-k-flj+2 -2fl,+1) . 
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Since (A.5) holds,  Xj+ 1 > 0  if  Xj>O.  As 

X z = 2 ( f l a + f l a  - 2 f l 2 )  , 

which is nonnega t ive  by  (A.5), a is convex. Tha t  i ,> ia  is a s t r a igh t fo rward  
consequence  o f  the re la t ionship  between average and  marg ina l  values.  

P r o o f  o f  Proposi t ion 7. Firs t ,  it is shown tha t  c* = c* for all i < io. This conclus ion  is 
tr ivial  i f  io = 2, so cons ider  the case where io > 2. Since fl, and  hence ~, is convex,  for  
all i~{2  . . . . .  i~-1}, ai<_~i-1. Thus,  (A.3) is sat isfied for  j = l  and  k = i ~ _ l .  The 
a rgument  fol lowing (A.3) implies  tha t  all i~{1 . . . . .  i~-1} should  be bunched  
together .  I f  io 4: i~, for  all i t  { i , , . . . ,  io - 1}, fli _< 0. By P ropos i t i on  2, all o f  these 
indiv iduals  should  bunch  with  i~_ 1. Hence c* = c~' for all i < io. 

Cons t r a in ing  the r educed- fo rm p r o b l e m  to have cl . . . . .  Cio-1, it can be 
rewri t ten  as : 

Choose  (s, ci o . . . .  , CN) to maximize  

N 
(io-l)a~o-lV(s)+ Y~ 

h=io 

subject  to  

O<-s<_Clo<_... <-cN , 

flh V (Ch) -- 7P [(io -- 1) S + •]Chl (A.7) 
h=io 

(A.8) 

where s denotes  the c o m m o n  value o f  { q , . . . ,  Cio-1}. Ignor ing  the mono ton i c i t y  
const ra ints ,  the so lu t ion  is (£ C~o . . . .  , cN). This vec tor  also satisfies (A.8) because,  
by the def ini t ion o f  to, aio- 1 < flio < • • • < flu. Fur the rmore ,  ci > 0 for  all i > i0 since 

/~io > 0. 

P r o o f  o f  L e m m a  2. Subs t i tu t ing  A > 0 for  w i + l - w i  in (17) implies  

(fli+l - - f l i ) - - ( f l i - - f i i -1 ) :A( '~ i - - '~ i+l )  i = 2 , . . .  , N  . (A.9) 

As 2i is str ictly decreas ing in i, the express ion in (A.9) is posit ive,  so fl is convex. 

References 

1. Baron DP, Myerson RB (1982) Regulating a monopolist with unknown costs. Econometrica 
50:911-930 

2. Cooper R(1984) On allocative distortions in problems of self-selection. Rand J Econ 15:568-577 
3. Guesnerie R, Laffont J-J (1984) A complete solution to a class of principal-agent problems with an 

application to the control of a self-managed firm. J Public Econ 25 : 329-369 
4. Guesnerie R, Seade J (1982) Nonlinear pricing in a finite economy. J Public Econ 17:157-179 
5. Lockwood B (1985) Non-linear pricing and the exclusion of consumers. Econ Lett 18:313-316 
6. Lollivier S, Rochet J-C (1983) Bunching and second-order conditions : A note on optimal tax theory. 

J Econ Theory 31:392400 
7. Maskin E, Riley J (1984) Monopoly with incomplete information. Rand J Econ 15:171-196 
8. Mirrlees JA (1971) An exploration in the theory of optimum income taxation. Rev Econ Studies 

38 : 175-208 
9. Mussa M, Rosen S (1978) Monopoly and product quality. J Econ Theory 18:301-317 



232 J .A.  Weymark 

10. Myerson RB (1981) Optimal auction design. Math Oper Res 6:58-73 
11. Seade JK (1977) On the shape of optimal tax schedules. J Public Econ 7:203-235 
12. Seade J (1980) Optimal non-linear policies for non-utilitarian motives. In: Collard D, Lecomber R, 

Slater M (eds) Income distribution: The limits to redistribution. Scientechnica, Bristol, pp 53-68 
13. Weymark JA (1986) A reduced-form optimal nonlinear income tax problem. J Public Econ (in press) 
14. Weymark JA (1985) Comparative static properties of optimal nonlinear income taxes. Discussion 

Paper No, 85q)2, Department of Economics, University of British Columbia (revised 1986) 


