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There are two candidates, A and B, and three political issues, X, Y, Z, on which the 
candidates have taken positions. There are five voters; each will vote for the 
candidate with whom he agrees on more issues. The position and preference data are 
given in Table 1. 

Table 1 

Issue 

Candidate X Y Z 

A for for for 
B against against against 

Voter # 
1 for for against 
2 for against for 
3 against for for 
4 against against against 
5 against against against 

Voters # 1, #2 ,  and # 3  agree with A on two of the three issues and with B on 
only one; there are three votes for A. Voters # 4 and # 5 agree with B on all three 
issues and vote for him. A wins. But, issue by issue, A has taken the minority 
position. This possibility, of a candidate winning by majority vote, when it holds a 
minority position on every single issue was first announced in 1976. One version was 
presented by political scientists Douglas Rae and Hans Daudt [6], who called this 
the Ostrogorski paradox in honor of Moisei Ostrogorski who "devoted his major 
work [5] to the proposition that all manner of mischief can result when issues are 
mixed together in a single contest". A related version, with a different in- 
terpretation, was presented by British philosopher Gertrude Elizabeth Margaret 
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Anscombe [1 ]. In this column, we will explore the Ostrogorski paradox and raise 
questions about (i) the probability of its occurrence and (ii) a connection with 
cycles in the binary defeats-by-majority-vote relation among candidates. 

I. Probability of Occurrence 

How likely is the Ostrogorski paradox? As usual in these things, real world voting 
situations almost never permit extraction of  enough information to determine 
whether or not a paradox has occurred (curiously, Anscombe urges study of early 
18th century English Parliament voting). So we turn to simulations of the sort that 
have been used elsewhere [4] to estimate the likelihood of no Condorcet winner. One 
such approach has been presented by psychologists Bezembinder and van Acker 
[2]; here I present another. 

Assume an odd number, m, of issues and an odd number, n, of voters. Each 
individual voter's preferences are for ( +  1) or against ( -  1) each issue; non-trivial 
indifference is disallowed. A profile of preferences is thus represented by an n by m 
matrix of + l 's  and - l's. There are 2 m" such matrices. For  each choice o fm and n, 
we treat these 2 m" matrices as our population and randomly draw (with 
replacement) a sample of 100,000. For each matrix in the sample, we determine the 
majority outcome (+  1 or - 1) for each issue. One candidate, A, is then assumed to 
adopt as his position the pattern of + l 's and - 1 ' s  that is this set of majority 
outcomes. The second candidate, B, makes his position the opposite choices. 
Assume each individual would vote for the candidate with the greater number of 
position choices agreeing with that individual's preferences. When B defeats A on 
this majority vote we have an occurrence of the Ostrogorski paradox. The number 
of such occurrrences divided by 100,000 is our sample estimate of the proportion of 
the 2 m" population members that display this "paradoxical" behavior. Table 2 
shows our sample relative frequency results (n = 3 will be discussed later): 

Table 2 

n\m 3 5 7 

5 0.01504 0.00622 0.00230 
7 0.02301 0.00894 0.00399 
9 0.02708 0.01234 0.00475 

11 0.03007 0.01237 0.00495 
13 0.03086 0.01284 0.00619 
15 0.03197 0.01388 0.00574 
17 0.03405 0.01416 0.00633 
19 0.03548 0.01411 0.00693 
21 0.03554 0.01505 0.00651 

There would, of course, be no reason to carry out these simulations if we were 
able to present analytic results, but no such results are known. While the sample 
frequency rates are low, and decrease rapidly with an increase in m, the number of 
issues, they do increase with an increase in n, the number of individuals. This 
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increase with the number of individuals is, in the sample, not quite always 
monotonic, but nearly so. I conjecture that the underlying population proportions 
increase monotonically (but not to 1) with n and decrease monotonically to 0 
with m. 

2.  C o n n e c t i o n  w i t h  V o t i n g  C y c l e s  

So far we have discussed a majority vote relationship between just two candidates, 
one that is in agreement on every single issue with a majority of individuals and a 
second candidate that is in exact opposition. Rae and Daudt observed that if we 
consider introducing new candidates (who must agree with a majority of voters on 
some issues but with only a minority on some others), we will observe in- 
transitivities, voter paradoxes, in the binary defeats-by-majority-vote relation. 
They illustrate this by a profile we present in Table 3. 

Table 3 

Preference by issue 

Voter type 1 2 3 

1 (20%) + 1 - 1 - 1 
2 (20%) - 1 + 1 - 1 
3 (20%) -2 -2 +1 
4 (40%) + 1 + 1 + 1 

On every issue, position + 1 wins (60% to 40%). But voters of types 1 to 3 would 
vote for a candidate, ii, choosing positions ( - 1 , - 1 , - 1 )  over a candidate, 
Y, choosing (+1 ,  +1,  +1). Now introduce a new candidate, Z, choosing 
( - 1, + 1, + 1). We continue to assume that when individuals face two candidates, 
they vote for the one that has the greater number of agreements between candidate 
positions and voter preferences on issues. Then: 

X defeats Y (Types 1, 2, 3 voting for X) 
Y defeats Z (Types 1 and 4 voting for Y) 
Z defeats X(Type I votes for X, Type 4 votes for Z, Types 2 and 3 are indifferent 
between Z and X). 

So a cycle has occurred in the defeats-by-majority-vote relation. 
But we may still ask how serious these cycles are. For a first observation, 

suppose that we are not restricted to just two or three candidates (Rae and Daudt, 
for example, used four). There are 23 = 8 possible candidates if they differ only by 
issue choices; might one of these be a Condorcet winner even though there is a cycle 
among other candidates ? We will show that, in this case of three issues, this is not 
possible, that every occurrence of the Ostrogorski paradox implies that among the 
8 possible candidates there can be no Condorcet winners. To do this, we will exploit 
some notation and some inequalities introduced by Shelley [7]. Without loss of 
generality, we can assume that, in the Ostrogorski paradox occurrence we are 
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Table 4 

Preference by Issue 

Voter group 1 2 3 

A - 1  - 1  - 1  
B - 1  - 1  +1 
C - 1  +1 - 1  
D +1 - 1  - 1  
E - 1  +1  +1  
F +1 - 1  +1 
G +1 +1  - 1  
H +1  +1  +1 
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examining, + 1 wins on every issue. In Table 4 we show a general profile of 
preferences. Voter groups A, B, C, and D would vote for a candidate choosing 
positions ( - 1, - 1, - 1) over a candidate choosing ( + 1, + 1, + 1). Groups E, F, G, 
and H would vote for (+1 ,  +1,  +1)  over ( - 1 ,  - 1 ,  -1 ) .  So, if we let each letter 
refer to the size of its respective group, we have 

A + B + C + D >  E + F + G + H  . (1) 

But, since + 1 is preferred by a majority on each issue, we also have 

D + F + G + H > A + B + C + E  ; (2) 

C + E + G + H > A + B + D + F  ; (3) 
J 

B +  E + F +  H >  A + C + D + G  . (4) 

Shelley observed that these imply also 

D > E  ; C > F  ; B > G  ; and H > A  

(these last show that an occurrence of the Ostrogorski paradox requires more than 
three voters which is why Table 2 started with the case n = 5). 

We wish to show that inequalities (1)-(4) imply that each of the eight candidates 
loses to at least one other. (1) tells us 

( + 1 , + 1 , + 1 )  loses to ( - 1 , - 1 , - 1 )  . 

It thus will be sufficient to show that (+  1, + 1, + 1) defeats all the other six position 
lists and that ( - 1, - 1, - 1) loses to at least one of them (in fact ( - 1, - 1, - 1) loses 
to all six). (2) tells us 

( - 1 , + 1 , + 1 )  loses to 

(3) implies 

( + 1 , - I , + 1 )  loses to 

while (4) implies both 

(+1 ,  + 1 , - 1 )  loses to 

(+1 ,  +1,  +1)  ; 

(+1 ,  +1,  +1)  ; 

(+1 ,  + I ,  +1)  
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and 

( - 1 ,  -1 ,  -1 )  loses to ( - 1 ,  -1 ,  +1) . 

Adding (3) and (4) gives 

C + E + G + H + B + E + F + H > A + B + D + F + A + C + D + G  

o r  

o r  

2(E+H)>2(A+D)  

E + H > A + D  

which implies 

( + 1 , - 1 , - 1 )  loses to ( + 1 , + 1 , + 1 )  . 

Finally, adding (2) and (3) gives G + H >  A + B  which tells us 

( - 1 ,  -1 ,  +1) loses to ( + i ,  +1, +1) . 

For the case of three issues, then, any occurrence of the Ostrogorski paradox 
implies that there does not exist a Condorcet winner among all possible candidate 
positions. I conjecture that this is also true for larger odd numbers of issues. 

Secondly, we observe that even more extreme cycling may occur. Still within the 
three issue case, consider the general profile in Table 4 and suppose that we have, for 
example, 

A = I ,  B = 5 ,  C = 8 ,  D = 7 ,  E = 2 ,  F = I  , G = 2 ,  and H = 1 3 .  

Then there exists a global cycle, a cycle of the defeats-by-majority-vote relation 
involving all eight candidates: 

( - 1 ,  -1 ,  -1 )  defeats (+1, +1, +1) which defeats 

(+1, +1, - 1 )  which defeats (+1, -1 ,  +1) which defeats 

( - 1 ,  +1, +1) which defeats (+1, -1 ,  -1 )  which defeats 

( - 1 ,  +1, - 1 )  which defeats ( - 1 ,  -1 ,  +1) which defeats 

(-1, -1, - 1 ) .  

But, such a global cycle need not always exist when an Ostrogorski paradox 
occurs. Consider the rather similar example 

A = I , B = 5 ,  C=8,  D=7,  E=2,  F=4,  G=2, and H=13  . 

Then it can be shown there is no global cycle. There is, however, one of length six. It 
can be shown that, with three issues, there will always be a cycle of length six and, 
usually, a cycle of length eight. It would be interesting to run additional simulation 
experiments and examine maximal cycle lengths for those profiles exhibiting an 
Ostrogorski paradox. How does the average maximal cycle length vary as you 
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increase the number of voters, holding the number of issues fixed ? As a fraction of 
the number 2" of possible candidates, how does average maximal cycle length vary 
as you increase the number of issues ? 
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