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Asymptotic Behaviour of Positive Solutions of Elliptic 
Equations with Critical and Supercritical Growth 

I. The Radial Case 

F. MERLE & L. A. PELETIER 

Communicated by H. BREZIS 

1. Introduction and main results 

In  this paper  we consider the singular limit in a family o f  non-l inear elliptic 
equations with strong growth. The general problem is the following. Consider 
for  a bounded  domain  .(2 in R N, where N > 2, with smooth  boundary  &Q, 
the problem 

(P) 
- -  A u  = f ( u )  in .(2 

u > O  in .('2 

u = 0 on 8 0 ,  

and suppose f(s) is a function whose growth as s - +  ~ is such that  (P) has no 
solution. We then consider, what  we call the "approach  problem",  

- - A u  = f~(u) in .(2 

(P~) u > 0 in .Q 

u = 0 on 8-0- 

in which the family of  functions J~ is so chosen that  for e > 0 and small, (P~) 
has a solution u~ and 

s -+f(s) as e -+ O, 

uniformly on compact  sets. The natural  question to ask now is what  happens to 
Zl e a s  e --> O. 

As a first example we consider the funct ion 

f(s)  = sP, p > 1 (1.1) 
and we set 

N - } - 2  
Pu - - N - -  2" 

As we know, if p < PN ( P  suberitical) then (P) has a solution [R] but if p ~ PN 
(p critical or supereritical) and f2 is star shaped, then it has none [P]. 



2 F. MERLE & L. A. PELEXIER 

For  p = PN this problem was studied in [AP2], [BP] and [H] by means of 
the family of  functions 

f~(s) = s pN-e, e > O, 

first when D is the unit ball B, in R N and subsequently in non-radial star-shaped 
domains, where in addition it was assumed that 

,- I 1 V u A 2 ~  
�9 2 ~" SN as e-->0.  (1.2)  

Here SN is the best Sobolev Constant for the norm in H ~, given by 

IF(N/2)]2m 
SN = z~N(N -- 2) \ F--F-(N~! " 

I t  was shown that the solution u~(x) concentrates at a single point Xo as e - +  0 
and that 

2CNCrN ~ SN ) N[2 ellu~[[2 _+ 2 2 I N ( N - - Z )  ig(xo, Xo)l as e - + 0 .  (1.3) 

Here Cu is a normalizing constant and o' u is the area of  the unit sphere in RN: 

2~u/2 
cu = {N(N - -  2)} (N-2)/4 and aN = / '(N/Z) " 

The function g(x, y) is the regular par t  of  the Green's function G(x, y) which 
solves 

- -AG = by in D (1.4) 

G ---- 0 on OD (1.5) 

and is given by the relation 

G(x, y) ~- (N -- 2) aN Ix - -  y I u -2  + g(x, y), (1.6) 

and Xo is a critical point of  the function 4(y) = g(y, y). 
About  the shape of  the solution u~ it was shown that, away from the point 

of  concentration Xo 

(N(N  -- 2) )N[4 N -- 2 G(x, Xo) as e--~ 0 (1.7) 

\ 1/2 Ig(xo, xo) l 
and near the point of  concentration: 

Us(X ) ~ ~,V(~(P-1)/2(X -- XO) ) as ~ -->- 0,  (I .8) 

where V, = ]]u~I[g ~ and V(y) satisfies 

- -&V-= VPN in R x 

V(0) ----- 1, 0 < V ~  1 in R ~r, 
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that is 

V ( y )  = 1 + N ( N  - -  2) (1.9) 

As another example we mention the function 

f ( s )  ---- 2 s  + S p N .  

It was shown in [BN] that for this function Problem (P) has a variational solution 
which satisfies (1.2) when ~. E (;t*,/~1), where #~ is the principal eigenvalue of 
the Laplacian and 0 ~ 2 " ~ / ~ 1  (2 ' : "~0 if N----3 and 2"--~0 if N ~ 4 ) .  
I f  we choose, as functions f~ the family 

J'e(S) : ()~$ "~  ,I~) S -~- S pN 

the asymptotic behaviour of u~ was investigated in [R] for N ~ 5 and in [BP] 
for N--=3. 

Finally we mention the example in N---- 3 

L ( s )  = ,~*s + s 5-~ 

which was studied in [Bu] and [BP] when ~Q----B~ and so 2* = z2/4 [BN]I 
In all the examples investigated so far, the function g had no more than critica. 

growth. It is the object of this paper to study in particular the approach to problems 
involving s u p e r c r i t i c a l  growth, and compare the resulting asymptotics to the ap- 
proach to problems with c r i t i c a l  growth. 

We consider again the functionfgiven by (1.1) and we choose as approximating 
functions 

s  --= s p - -  es  q, s > O, (1.10) 
in which 

q > P ->~- PN, e > O. 

In this paper we shall consider this problem taking for Q the unit bali B~. 
By [GNN] this implies that the solution u, has radial symmetry, which allows us 
to use the techniques for ordinary differential equations. In a forthcoming paper 
we shall discuss the same problem for general star-shaped domains under the 
assumption (1.2) if p ----PN and a comparable assumption if p > PN.  

Thus in this paper we shall Study the problem 

- - ~ U  = U p - -  8U q in B 1 ,  (1.11) 

(I) u > 0 in B~, (1.12) 

u 0 on OB1. (1.13) 

By [GNN], u~ is decreasing with respect to r = Ix[ and so ]Iu~iIL~o = u,(0). For 
convenience we shall sometimes write 

As in [AP2] and [BP] we find that for any solution u~ of (I) 

7~---~ ~ as  e - + O .  
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The existence of a solution u~ of Problem (I) is ensured for small values of  e 
by the following theorem. 

Theorem A. For e ~ 0 and sufficiently small, Problem (I) has at least two solu- 
tions. For one solution we have 

l imeva -p = 1 (1.14) 
e-+0 

and for another we have 

lim eV~ -p = c*, (1.15) 
e-~-O 

where c* is a number which is uniquely determined by p, q and N, and 

c(p, N)  < c* 
c(q, N) = < 1 (1.16) 

in which 
( N - -  2) s - -  (N + 2) 

c(s, N)  -~ 2(s - /  1) (1.17) 

Observe that c(p, N)  ~ 0 if p ~ PAr and that c(pN, N)  ~-- O. 
In what follows we shall refer to those solutions of  Problem (I) for which (1.14) 

holds as large solutions and to those for which (1.15) holds as small solutions. 
To formulate our results and explain the origin of  the number  c*, we need 

to introduce the notion of  a ground state solution (or a fast decay solution) of  the 
equation 

- - / ~ V  : V p - -  c V  q, V >  0 in R N (1.18) 

which has the properties 

V(0) = 1 and V(y) = O([y] -(N-2)) as [yI-~.  (1.19) 

There is precisely one value of c for which (1.18)-(1.19) has a radial solution V, 
which is necessarily unique [KMPT]. This is the value c* = c(p, q, N)  referred 
to in Theorem A. 

. The following proposition provides a relation between e* and V. 

Proposition B. Suppose that q ~ p ~ PN. Then 

c*c(q, N)  f v ~+~ = c(p, N) f V p+I. (1.20) 
R N R N 

Suppose u, is a small solution of Problem (I) so that (1.15) is satisfied. I f  
P ~ P N ,  then c(p, N ) >  0 and therefore we can conclude from (1.16) that 
c* > 0 and from (1.15) that 

]]Ue]lL co ~ C*e -1/(q-p) as e--> 0. (1.21) 

On the other hand, if p ~ PN, then c(p, N) --~ 0 and we conclude from Propo- 
sition B that c* = 0. In this case we find that 

Ilu~]]LO~ ~ A(q, N)  e 1/(q-p+2) as e -+ 0, (1.22) 
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where 

t { U ( U  - -  2)} N/2 e q 2 - -  l (1 .23)  

and B(a, b) denotes the beta function [AS], defined by 

B ( a , b ) =  ~ t  a l ( l + t )  - a - b d t .  
0 

Here we write f ( x ) , ~  g(x) as x---~ 0, when g(x) is positive near x = 0 
and f(x)/g(x) -+ 1 as x--7 0. 

As in previous studies of  the limiting behaviour of solutions of elliptic equa- 
tions near criticality [AP2, BP, H, Re] we find that the function u~(x), when 
suitably scaled, converges to the Green's  function Go(x) = G(x, 0) defined by 
(1.4)-(1.5). Here we prove the following limit theorem. 

Theorem C. Let u, be a small solution of  Problem (I) so that (1.15) is satisfied. 
Then 

e -~  u~(x) -+ MGo(x) as e -+ 0, (1.24) 

where 0 and M are positive constants. I f  p ~ Psv then 

= 2 ( q - - p )  ' M = ( c * )  0 V p - c *  V q . 
R 

I f  p ~-  P N  t h e n  

1 {N(N - -  2)} u/2 a N 
0 - -  M =  

q - - p  + 2 ' NA(q, N)  ' 

where A(q, N) is given by (1.23). 

Remark. We shall see in [MP] that Problem (I) has a variational structure and 
that what we call a small solution is in fact a variational solution of Problem (I). 

Remark.  I t  is easy to see that the asymptotic behaviour for a large solution u~ 
is given by 

~ - i  u~--~-1 as e - +  0 when x E B1. 

Remark.  A similar analysis can be given for radial solutions of Problem (I) with 
a prescribed number of  zeros. 

The organisation of the paper is the following. In Section 2 we establish the 
existence of large and small solutions and prove Theorem A. In Section 3 we prove 
a basic global upper bound for solutions of Problem (I), and finally in Section 4 
we prove Proposition B and the asymptotic estimates. The main ingredients here 
are the upper bound of Section 3 and the Pohozaev Identity which says [P] that 
if u is a solution of Problem (P), then 

N F(u) 2 uf(u) = �89 (x -- y, n) au 2 
g2 ~2 Og2 
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u 

where F(u) = ff(t)dt, y any point in D and n the outward pointing normal 
o 

vector on ~D. 

2. Existence and basic properties 

There are many ways to prove the existence of a solution us of  Problem (I) 
for e sufficiently small. Here we shall use a shooting technique. However, we first 
derive a general property for (I). 

For  convenience we rescale the variables and write 

y = y(z'-~)/2x, v(y) = 7 -1 u(x). (2.1) 

This yields the following problem for v: 

- - A V  : V p - -  evq.,  c ~ 0 (2.2) 

v(0) = 1. (2.3) 
where q > p >= PN and 

C : ,S7 q - p .  (2.4) 

Note that (2.2) and (2.3) imply that 

--lSv(O) = 1 - c, 

Since v takes on its maximum value at the origin, this means that c =< 1. 

L e m m a  2.1. Suppose v is a radial solution of (2.2)-(2.3), and 

c < c(p, N)  
= c(q, N ) '  (2.5) 

where c(s, N) is given by (1.17). Then 

v ~ O  in R N. 

Proof. We argue by contradiction. Suppose there exists a radius R > 0 such 
that v > 0 in B R and v = 0 on C~BR. Then writing the Pohozaev Identity (1.25) 
for (2.2) on B~ we obtain 

-e(p, N) f + cc(q, N) BR fv +' = �89 J (x' n) iav , 

and so, by the Boundary Point Lemma, 

c(p,N) f vP+* < cc(q,N) f v q+' 
B R  B R 

< cc(q,N) f v  p+' 
BR 

because v ~ ! in BR. This would imply that c ~ e(p, N)/c(q, N), contradicting 
(2.5), whence we may conclude that v > 0 in R N. 
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Set r = [Yl and write ~(r) = v(y). Then,  omit t ing the tilde again we obtain  
the initial value p rob lem 

N - - 1  
v" + - - v '  -5 v p -  cv q ----- 0 (2.6) 

r 

v(0) = 1, v'(0) = 0. (2.7) 

Plainly, for  each c E [0, 1] there exists a unique local solution of  (2.6)-(2.7) 
which we denote  by v(r, c) and which can be cont inued as long as it is bounded.  

Define 
R(c) = sup {r > 0 : v(', c) > 0 on (0, r)}. 

No te  tha t  by L e m m a  2.1, R(c) = ~o if c < c(p, N)/c(q, N).  

Lemma 2.2. Suppose that 0 <= c < 1. Then 

(a) v'(r, c) < 0 for  0 < r < R(c); 

(b) R(c )=cx~  ~ l im v ( r , c ) = O .  
r - + ~  

Proof. (a) Because c < 1 it follows tha t  v"(0, c) < 0 and so tha t  v'(c, r) < 0 
for  small values of  r. Suppose to the cont rary  tha t  for  some ro E (0, R(c)), v(r, c) 
ceases to be decreasing, i.e. v'(ro, c) : 0 and v(r, c) > 0 on (0, ro). Then  we 

t t  ~ would have v (ro, c ) ~  0, which is incompat ib le  with the differential equat ion 
(2.6). 

(b) Because v ' ( r , c ) < O  and v ( r , c ) > 0  for  all r > 0 ,  it follows tha t  
l irn v(r, c) exists. I t  is readily seen that  this limit can only be zero. 

In  the following l emma  we establish some fur ther  propert ies  of  R(c). 

L e m m a  2.3. There is a number ~ E [0, 1] such that 

(a) R(c) < oo when ~ < c < 1, 

(b) lira R(c) = oo and l im R(c) = cx~ , 
c~l c+C 

and R(c) is continuous on (0, ~). 

Proof .  (a) Suppose to the cont ra ry  tha t  there is a sequence {cn} E (0, 1) such 
that  en ---> 1 as n -+  ~ and R(c,)  = ~ for  every n => 1. Then, since v(0, c,) = 1 
an by L e m m a  2.2 v(r, cn) -+  0 as r --~ ~x~, for  every n ~ 1 there is a radius 
~, > 0 such tha t  v(~,, cn) = �89 Thus  if we set 

s = r - -  ~ and  w~(s) = v(r, c,),  

we obtain  for  wn the p rob lem 

N - - 1  
w': -? ~ w', -i- w p - -  cw q = 0, (2.8) 

w,(O) = �89 0 < w,(s) <~ �89 for  0 =< s < ~ .  (2.9) 
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Plainly, the sequence {wn} is uniformly bounded, but also the sequence of 
derivatives {w'n} is uniformly bounded. To see this we multiply (2.8) by w;, and inte- 
grate over (0, s). This yields 

1 s t 

�89 z =  --f f ( t )  d t - - ( N - -  1) /" (w;')z dt 
d t -? ~, 

Wn(S) 0 

I 

< f f ( t )  ,it, 
0 

where f ( t )  = t p - -  Ct q. 
We now let n -+ e~. Then, by a standard compactness argument there exists 

a subsequence, which we denote by wn again, which converges to a function W 
which, taking the limit in (2.8)-(2.9), satisfies 

W "  + W p -  Wq----0, 

W(O) = �89 0 <~ W(s) ~ �89 for 0 ~ s < (x~. 

Because this problem has no solution, we have arrived at a contradiction and we 
must conclude that R ( c ) <  oo in a left-neighbourhood of c = 1. 

(b) Since v(r, 1) = 1 is a solution of equation (2.6) the first limit follows from 
the continuous dependence of  solutions of  (2.6)-(2.7) on c. As to the second limit, 
we conclude from Lemma 2.1 that 

c(p, N)  
b = i n f { c <  l : R ( t ) < o o  for c < t <  1 } > - -  

= c(q, N)"  

Invoking the continuous dependence of v(r, c) on e again, we conclude that R C 
C(~, 1) and that R(c) -~ cx~ as c - ~  ~. 

We now return to Problem (I). The function v(r, c) will correspond to a solu- 
tion of  this problem if 

R(c) ---- y(p-l)/2 and c = ey ~ P, 

or, when we eliminate y, if 

c = e{R(c)} 2(q-p)/(p- '). (2.10) 

In view of the properties of the function R(c) established in Lemma 2.3, there 
exist for e sufficiently small, two solutions c+(e) and c-(e) of equation (2.10) such 
that 

c+(~)-+ 1, c-(~) - +  b as e --> O. 

They correspond to two solutions u + and u~- of Problem (I) with 

e Iiu~]IqLLP-~ 1, e llu~]]qLP-+ ~ as e -+  0. (2.11) 

This completes the proof  of Theorem A with the exception of the assertion that 
= c*(p, q, N)  which will be proved in Section 4. 
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3. An upper bound for u~ 

In this section we exhibit a surprising property of solutions of Problem (I), 
in that they can be globally bounded means of a solution of the Yamabe equation 

--&u = Ku pN in R N 

for some appropriately chosen constant K. 
In [AP1] this property had been observed for solutions of Problem (P) in 

spherical domains, when the nonlinearity f is subcritical or critical, i.e., when 

sf'(s) <= puf(s).  

Here we shall show that for the functons f~ defined in (1.10), which are neither 
critical nor subcritical for all s > 0, this property is still true. 

Theorem 3.1. Let u be a solution of  Problem (I) in which q > p ~ PN and let 

u(O) = y. Then 
u(x) ~ W~,(x) in B1, 

where 

and 

~2/(N--2) )(N--2)/2 
W ? ( x )  = i @- o~e~ p-1 [xI 2 (3.1) 

1 
(I -- eva-P). (3.2) 

~ - -  N ( N  - -  2) 

Remark. The function W e is the solution of the problem 

--AW---- (1 - -  ey q-p) yP-PN WPN in R N 

W(0) -- y, 0 < W ~ y in R u. 

(3.3) 

(3.4) 

In what follows we shall often work with the function v(y) ~ 7 -1 u(x) intro- 
duced in Section 2. If  u is a solution of Problem (I), then v is a solution of the 
problem 

(II) 

- - ~ P  = U p - -  's~q--Pu q in BQ (3.5) 

v > 0 in B e (3.6) 

v(0) = 1, v = 0 on ~Be, (3.7) 

where ~ = ~](p--l)/2. For v, Theorem 3.1 states that 

v (y )  ~ WI(y),  

where o~ is still defined by (3.2). 
The proof  of Theorem 3.1 proceeds along the lines of that of the corresponding 

result for critical or subcritical nonlinearities [AP1]. Thus, we first introduce the 
new variables 

I N -  2~ N-2 
t = •  lyl J ' y(t)  = v(y). (3.8) 
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Then Problem (II) becomes 

y "  + t - k  f ( y )  = O, 

(III) y > 0 

y ( T )  = O, 

where k = ( 2 N - -  2) / (N- -  2), 

T < ~ t ( ~  

T ~ t ( ~  

lira y(t)  = 1, 
t ---> OO 

T = { (N- -  2)y-Cp-1)/E}S-2 and 

(3.9) 

(3.10) 

(3.11) 

f ( y )  -~ yP -- e~,q--Pyq, (3.12) 

Note that in this context the critical power is given by PN ~ 2k -- 3. 
In the proof  the functional 

1 
H ( t )  = t(y') z --  yy '  + ~ t 1 -~y(r(y) 

plays a central r61e. 

(3.13) 

Lemma 3.2. Le t  y( t )  be the solution o f  Problem (III), in which q > p ~ PN. Then 

H( t )  ~ 0 for  T < t < <xD. 

Proof. As a first observation we note that 

/-t(v) = o.  (3.14) 

and we deduce from (3.10) that y ' ( t )  = O(t 1 -k)  as t -+ <x> and so, because k > 2, 
that 

H ( t ) - + O  as t - + ~ .  (3.15) 

Differentiating H and using the equation, we obtain 

1 
H' ( t )  --  k --  1 t l -ky,{(p _ 2k + 3)yP - -  e~]q--P(q - -  2k + 3)yq}. (3.16) 

Because y ' > 0 ,  it is clear that if p = p N = 2 k - - 3 ,  then H ' ( t ) < O  and it 
follows from (3.15) alone that H ( t )  > 0 on [7, oo). 

To deal with the case p > PN, we inspect H' ( t )  more closely, writing it as 

where 

q --  2k + 3 t l ~yPy'Q(t), 
I - r ( t ) =  k - 1  

p - - 2 k +  3 
Q(t)  = ey q-pyq-p(t) .  (3.17) 

q - - 2 k + 3  

Plainly, the sign of H ' ( t )  is determined by the sign of Q(t). At t = T we have 

p - - 2 k - k  3 
Q( T)  --  q _ 2k-}-  3 "~ 0 
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and as t--~ 0% 

p - - 2 k +  3 
lim Q(t) = e~ q - p  
t -~o~ q - - 2 k + 3  

(N --  2 )p  - -  (N -k 2) c(p, N)  
< 

(N - -  2) q - -  (U + 2) e(q, N )  

q - -  p (N  --  2) p - -  (N  + 2) 

P - k  I ( N - - 2 )  q - - ( N @ 2 )  

< 0 ,  

where we have used Theorem 2.4. Thus, in view of (3.14), H(t )  starts positive near 
t = T, and, in view of (3.15), decreases to zero as t - +  ~ .  Since y(t)  is strictly 
increasing it follows f rom (3.17) that H' ( t )  can only once change sign on (T, c~), 
and so H(t )  > 0 on (T, cx~). This completes the proof. 

Lemma 3.3. Let  y( t )  be the solution o f  Problem (Ill). Then 

y( t )  < z(t) ,  
where 

1 --  e~, q p ,,--~/(k-2) 
z(t)  = 1 -]- t 2 . k }  

k 1 / 
(3.18) 

Remark.  The function z(t)  is the solution of the problem 

z" -k- (1 - -  e7 q P) t k zpN ~--. 0 for 0 < t < ~ ,  

lim z(t)  = 1. 
t - +  o o  

Proof. As in [AP1] we observe that 

( t k -ay l -ky , ) ,  = - - ( k  - -  1) t k -2y  -k  H( t )  < 0 on (T, ~ ) .  

Integrating this inequality f rom t > T to t = ~ ,  we obtain 

1 
ya-k(t)y'(t)>-ff--~---~(1 - -eTq-P)  t~-k  for T <  t <  ~ .  

Carrying out another integration f rom t > T to t = cx~ finally yields 

1 
yZ k(t ) > 1 -1- ~ (1 - -  8• q - p )  t 2 - k  for T ~ t < cx~, 

which proves the lemma. 

(3.19) 

Returning to the original variables y and u we find that z(t)  = WI(y),  and 
thus that Lemmas 3.2 and 3.3 together prove Theorem 3.1. 

The upper bound for u~ supplied by Theorem 3.1 is not uniform in e because 
of  the factor 0% in the denominator of  W~. In particular we have 
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(a) Ifu~ is a large solution of Problem (I), then 0%-+0 as e - + 0  by (1.14) and 
SO 

lim 7 -a W~,(x) = 1 e~-O 

uniformly in sets {xE R N : 7  p-1 Ixl 2 bounded}. 

(b) If  u, is a small solution of Problem (I), then 

where 

limsup 7 -1 WT(x) < ( 1 .~(N-2)/a 
= 1 +  ,o7, - 1  l x ? ]  ' 

1 
O~o = N(N -- 2) (1 -- c*) 

uniformly on sets {xE RN: 7 p-1 Ixt a bounded}. 
Thus for small solutions we have the following uniform upper bound. 

Theorem 3.4. Suppose {u~} is a family o f  small solutions. Then there are numbers 
eo > O and v > O such that for  O < e % eo, 

,y2/(N--2) 1(N--2)/2 
u~(x) < in B1. 

4. Asymptotic behaviour of u~ 

In this Section we finally turn to a description of the small solution u~ defined 
in Theorem 2.4 as e -+  0. Thus, we assume that along a subsequence 

e ~  q - p  ~ e as e -> 0, (4.1) 

where c is some constant which satisfies 0 ~ e < 1. 
As in [AP2] and [BP] the Pohozaev Identity (1.25) plays a central r61e here. For 

solutions of Problem (I) it becomes 

where 
B~ B~ ~B1 

(4.2) 

Some basic elliptic estimates will also be needed. They are supplied by the 
following lemma which we take from [BP]. 

Lemma 4.1. Suppose u is the solution of  the problem 

-- Au -= f in 

u =-  0 o n  &'-2, 

( N - -  2) k - -  ( N +  2) 
c(k, N) = 2(k + 1) (4.3) 
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where $-2 is a bounded domain in R N with smooth boundary ~s Then there is a 
constant C > 0, which depends only on D, such that 

IluIlw~,~(~ + blVU/Ic0,~(~ < c(llfllL~(~) + []fllL~(~) (4.4) 

f o r  any s < N / ( N  - -  1), any o~ E (0, 1) and any neighbourhood co o f  #f2. 

As a consequence of the compact embedding of Wo 1'~(D) in Lm(D) when s < N 
and m < s N / ( N  - -  s), Eemma 4.1 has the following corollary. 

Corollary4.2. In the notation o f  L e m m a  4.1 we have 

(a) []ul[L,(a) ~-][Vu]lL,(a.e)=< C(Nfl]L,(m + ]]fllL~ 

(b) I f { f , }  is a bounded sequence in La(.Q) and in L~(o)), then the corresponding 
sequence o f  solutions {u,} has compact closure in La(f2), whilst the sequence {Vu,}, 
restricted to 8.Q, has compact closure in L2(8-Q). 

As before, we introduce the rescaled variables y and v~ defined by (2.1) to deter- 
mine the behaviour of small solutions u~ near the origin. 

Lemma 4.3. W e  have 

e~ q-p ~ c*(p, q, N)  as e . "  0 
and 

v~(y) -+ V(y) as e --> 0 

uniformly on R N, where the pair (c*, V) is the unique radially symmetric  solution 
o f  the problem 

(IV) 

- -  A V = V p - -  c *  V q 

V ( O ) =  1, O <  V <= 1 

v(y) = O([y l -(N-2~) 

in R N, 

in R N, 

a s  ] y l - + ~ .  

Proof. Because the family {v~} is uniformly bounded in R N, it follows from 
elliptic regularity theory that there exists a sequence, also denoted by {v~}, which 
converges uniformly on compact sets to some radial function V. Since the func- 
tions v~ are solutions of Problem (II) and e7 q P-~  c as e ~ 0 according to 
(4.1) it follows that V satisfies 

- - ~ V  = V p 

1I(0) = 1, 0 <= 

- -  c V  q in R N (4.5) 

V ~ 1 in R N. (4.6) 

By Theorem 3.4 there is a constant K >  0 which does not depend on e such 
that 

v~(y) <= K lY[ (u-2) in R N (4.7) 

for e small enough. This implies that the convergence of v~ to V is actually uniform 
in the whole for R N and that 

V(y) <= K ]y i - (u -2)  in R u. (4.8) 
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Thus V is a solution of (4.5), (4.6) and (4.8), which means that c = c*(p, q, N)  
[KMPT] and hence that (c*, V) is the solution of Problem (IV). 

Finally, we note that by the uniqueness of  the solution of Problem (IV) the 
entire family {v~} converges to V as e -+ 0 and that e~ q-p converges to e*. 

For  future reference we note the following limit. 

Lemma 4.4. Suppose m > N/(N - -  2). Then 

lim 7 -~+N(p-I)/2 f u'Z(x) dx : 
e-+O 

Bi 

~ Vm(y) ay. 

Proof. Transforming to the variables y and v~, we obtain 

f uT(x) dx = ym-N(p-,)/2 f vT(y) dy, 
B~ B e 

where 9 = 7(p-1)/2. For e suMciently small, it follows from (4.7) that 

v~(y) ~ v(y) = min {1, K lYl-(N-2)}. 
Since v E Lm(R N) if m ~ N/ (N -- 2) it follows from Lemma 4.3 and the do- 
minated convergence theorem that 

f vm(y) dy -+ f Vm(y) dy, 
BQ R N 

from which the assertion follows. 

In what follows we shall write 

J,, ---- f V',(y) dy. (4.9) 
R N 

The limiting behaviour of the left-hand side of the Pohozaev Identity (4.2) now 
readily follows from Lemma 4.4: 

!ira ~ 7 ~ (--c(p, N) f u~ +' + ec(q, N) f ug +1) = -c(p, N) S, + , + c*c(q, N) Jq + ~, 
Bi B1 I 

(4.10) 
where 

/3 = � 8 9  2)p  --  ( N +  2)}. (4.11) 

To determine the behaviour of u~ away from the origin and to estimate the 
right-hand side of (4.2) we define, following [BP], the function 

w~(x) = 7~+1 u~(x). (4.12) 

By (1.9) we is as solution of the problem 

- -Aw~=h~(x)  in B1 

w~ = 0 on 8Bl ,  



Elliptic Equations with Critical Growth 15 

where 
h~(x) = ~'r + l{uP(x) -- eug(x)}. (4.13) 

According to Theorem 3.1 and (4.7) we have for x =t= 0, 

he(x) G y~+l WP(x) G KP7 -(~+I)(p-1) Ix] -p(N-2) 

and so, if x 4= 0, then 
ks(x) -+ 0 as e -+ 0. (4.14) 

On the other hand, 

fh,(x) dx ---- y+l  f uf(x) dx --  e7 ~+1 f ug(x) dx 
B~ BI B1 

and/3 has been chosen so that 
N 

/3+ 1 = - - p - t - - ~ ( p -  1). 

Hence, by Lemma 4.4 and (4.1) 

lim f k~(x) dx = Y p -  C*Jq. (4.15) 
e--+ O 

BI 

We note that 
J ,  - c* Jq = f ( v "  - c* v ~) 

R N 

> (1 -- c*) f V" 
R N 

> 0 .  

From (4.14) and (4.15) we conclude that 

ks-+ # (~o as e - + 0 ,  

where 6o is the Dirac mass centered at the origin and 

t~ = J p -  C*Jq. (4.16) 

This implies, according to Corollary 4.2, that 

w~-+l~G o as e - + 0  (4.17) 

in L:(BO, as well as in L~(o)), where ~o is any compact subset of Bt which does not 
contain the origin. Here Go = G(-, 0), where G is the Green's function of - -A 
with zero Dirichlet boundary conditions in B~, defined in the Introduction. It 
is given by 

Go(x) -- ( N - -  2) aN -Ix[ N 2 1 . (4.18) 

In addition we conclude from Corollary 4.2 that on the boundary 8B1 

Vw~-+#VGo as e - + 0  in L2(SBO. (4.19) 

This yields for the right-hand side of (4.2) 

{8u~2 _+ 1~2 [8Go\2 
as e -+  0. (4.20) 

OBx OB~ 
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To simplify the right-hand side of (4.2), we recall a result about the Green's 
function from [BP, Theorem 4.3]. 

Lemma 4.5. Let G(x, y) be the Green's function defined by (1.4)-(1.5). Then for 
every y E ~ ,  

(x -- y, n) ~ (x, y) dx = - - (N  -- 2) g(y, y), 
0~2 

where n = n(x) denotes the outward n o ~ a l  to ~Q at x. 

Thus, setting go = g(', 0), we can write (4.20) as 

f = - - ,  (4.21) y2(e+a) (x, n) \ a n /  --~ --#2(N -- 2) go(0) aN 
aBz 

where we have used the explicit expression for Go given in (4.18). 
We now equate the estimates (4.10) and (4.21) for respectively the left-hand 

and the right-hand side of the Pohozaev Identity (4.2). To begin with this yields 
the relation 

c*c(q, N) J~+l = c(p, N) J,+,.  (4.22) 

and thus proves Proposition B. 

We distinguish two cases 

I: p > pN, I I : p = p N .  

Case I. If  p > PN, then c(p, N) > 0 and we deduce from (4.22) that c* > 0. 
Thus we conclude from (4.1), (4.12), (4.17) and (4.22) the following limiting be- 
haviour of small solutions of Problem (I). 

(a) 

(b) 

where  

Theorem 4.6. Let u~ be a small solution of Problem (I) in which p > PN such that 
(4.1) is satisfied. Then 

[]u~[TL~ ~ c*e -~/(q P) as e-+0; 

~,-O ue (x ) - ->(C ' I ' ) -O(J  , - -  c'~Jq) Go(x)  as  e----~O, 

( N - -  2) p - - N  
0 =  C ' ' ~=  

2(q -- p) ' 

and Go is the Green's function given by (4.18). 

e(p, N) . J.+l 

c(q, N) 4+1 

Case II .  I f  p = PN, 
and so, by (4.1), 

then c(p, N) = 0. Therefore, according to (4.22), c*  = 0 

l]u, IIL~o = o(e -J/(q-p~)  as  e - +  0 .  
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To  establish the precise behaviour  of  [lu~1!L~ as e - + 0  we return to the 
Pohozaev  Ident i ty  (4.2). No te  tha t  /3 = 0 in this case, and  so we mult iply (4.2) 
by ~2 and let e tend to zero. Using L e m m a  4.4 in the lef t-hand side and (4.21) in 
the r ight -hand side, we obtain 

8 ~ 2  + q + 1 -- U(p -- 1 ~/2 1 [s -+ (4.23) 
c(q, N)  .lq +1 2(rN" 

Because p = P Jr we have 

2 + q  + 1 - - � 8 9  1 ) = q - - p + 2  

and, since c* = 0 in this case, # = Jp, whence (4.23) can be writ ten as 

E;~]q__p_12 ~ 1 . j2p (4.24) 
2r c(q, N)  Jq+l" 

However ,  when c* = 0, Vis given by (1.9) and Jp and Jq+l can be computed  
explicitly. We have 

Jm = 1 -}- N ( ~ 7  2)" dy, 

which we can write with ]y ]2 = N ( N -  2) t as 

oo 
Jm = �89 {N(N - -  2)} N/2 a N f t ( N - - 2 ) / 2 ( 1  -}-- t) -'n(N-2)/2 dt 

0 

where 

= �89 {N(N - -  2)} N/2 ( r N B  , m 2 ' 

o o  

B(a, b) = f t a - l (1  -F t) -a-b  dt 
0 

is the beta  funct ion [AS]. Recall  that  

B ( a ,  b)  - -  
_P(a) I'(b) 
l"(a q- b) " 

In  part icular ,  for  Jp and Jq+l  we obtain  

1 
Yp = -~  {N(N -- 2)} N/2 GN, 

) Jq+l = �89 { N ( N -  2)} N/2 aavB ' q 2 1 . 

Using these expressions in (4.24) and (4.17) we can formula te  the asymptot ic  
behaviour  of  small solutions of  P rob lem (I) in the critical case. 
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(a) 

(b) 

where 

Theorem 4.7. Let u~ be a small solution o f  Problem (I) in which p : PN such that 
(4.1) holds. Then 

[[U~[]L~ X A(q, N)  e -l[(q-p+2) as e -+ O, 

{N(N --  2)} N/2 aN 
~--l](q--p+2) Ue(X ) __+ ~T~((~"-~ Go(x) as e -->- O, 

{ N2c(q, N)  ( ~  N - -  2 
A(q, N)  =- {N(N -- 2)} N/2 B , q 

and Go is the Green's function given by (4.18). 

1)} -1/(q-p+:) 

Remark. Comparing the critical and the supercritical case we find that 

elIu~H q P ~ A q - P ( q , N )  e 2/(q-p+2) as e - + 0 .  
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