Asymptotic Behaviour of Positive Solutions of Elliptic Equations with Critical and Supercritical Growth I. The Radial Case

F. MERLE & L. A. PELETIER

Communicated by H. BREZIS

1. Introduction and main results

In this paper we consider the singular limit in a family of non-linear elliptic equations with strong growth. The general problem is the following. Consider for a bounded domain Ω in \mathbb{R}^N , where N > 2, with smooth boundary $\partial \Omega$, the problem

(P)
$$\begin{aligned} -\Delta u &= f(u) & \text{in } \Omega \\ u &> 0 & \text{in } \Omega \\ u &= 0 & \text{on } \partial \Omega. \end{aligned}$$

and suppose f(s) is a function whose growth as $s \to \infty$ is such that (P) has no solution. We then consider, what we call the "approach problem",

$$(\mathbf{P}_{\epsilon}) \qquad \begin{aligned} -\triangle u &= f_{\epsilon}(u) & \text{ in } \mathcal{Q} \\ u &> 0 & \text{ in } \mathcal{Q} \\ u &= 0 & \text{ on } \partial \mathcal{Q} \end{aligned}$$

in which the family of functions f_{ε} is so chosen that for $\varepsilon > 0$ and small, $(\mathbf{P}_{\varepsilon})$ has a solution u_{ε} and

$$f_{\varepsilon}(s) \to f(s) \quad \text{as } \varepsilon \to 0,$$

uniformly on compact sets. The natural question to ask now is what happens to u_{ε} as $\varepsilon \to 0$.

As a first example we consider the function

$$f(s) = s^p, \quad p > 1 \tag{1.1}$$

and we set

$$p_N = \frac{N+2}{N-2}.$$

As we know, if $p < p_N$ (*p subcritical*) then (P) has a solution [R] but if $p \ge p_N$ (*p critical* or *supercritical*) and Ω is star shaped, then it has none [P].

For $p = p_N$ this problem was studied in [AP2], [BP] and [H] by means of the family of functions

$$f_{\varepsilon}(s)=s^{p_N-\varepsilon}, \quad \varepsilon>0,$$

first when Ω is the unit ball B_1 in \mathbb{R}^N and subsequently in non-radial star-shaped domains, where in addition it was assumed that

$$\frac{\|\nabla u_{\varepsilon}\|_{L^{2}}^{2}}{\|u_{\varepsilon}\|_{L^{p_{N}+1-\varepsilon}}^{2}} \to S_{N} \quad \text{as } \varepsilon \to 0.$$
(1.2)

Here S_N is the best Sobolev constant for the norm in H^1 , given by

$$S_N = \pi N(N-2) \left(\frac{\Gamma(N/2)}{\Gamma(N)}\right)^{2/N}$$

It was shown that the solution $u_{\varepsilon}(x)$ concentrates at a single point x_0 as $\varepsilon \to 0$ and that

$$\varepsilon \| u_{\varepsilon} \|_{L^{\infty}}^2 \to 2c_N^2 \sigma_N^2 \left(\frac{N(N-2)}{S_N} \right)^{N/2} | g(x_0, x_0) | \quad \text{as } \varepsilon \to 0.$$
 (1.3)

Here c_N is a normalizing constant and σ_N is the area of the unit sphere in \mathbf{R}^N :

$$c_N = \{N(N-2)\}^{(N-2)/4}$$
 and $\sigma_N = \frac{2\pi^{N/2}}{\Gamma(N/2)}$.

The function g(x, y) is the regular part of the Green's function G(x, y) which solves

$$-\Delta G = \delta_y \quad \text{in } \Omega \tag{1.4}$$

$$G = 0 \quad \text{on } \partial \Omega \tag{1.5}$$

and is given by the relation

$$G(x, y) = \frac{1}{(N-2)\sigma_N |x-y|^{N-2}} + g(x, y), \qquad (1.6)$$

and x_0 is a critical point of the function $\phi(y) = g(y, y)$.

About the shape of the solution u_{ε} it was shown that, away from the point of concentration x_0

$$\varepsilon^{-1/2} u_{\varepsilon}(x) \to c_N \left(\frac{N(N-2)}{S_N}\right)^{N/4} \frac{N-2}{\sqrt{2|g(x_0, x_0)|}} G(x, x_0) \quad \text{as } \varepsilon \to 0 \quad (1.7)$$

and near the point of concentration:

$$u_{\varepsilon}(x) \sim \gamma_{\varepsilon} V(\gamma_{\varepsilon}^{(p-1)/2}(x-x_0)) \quad \text{as } \varepsilon \to 0, \qquad (1.8)$$

where $\gamma_{\varepsilon} = ||u_{\varepsilon}||_{L^{\infty}}$ and V(y) satisfies

$$-\Delta V = V^{p_N} \quad \text{in } \mathbf{R}^N$$
$$V(0) = 1, \quad 0 < V \leq 1 \quad \text{in } \mathbf{R}^N,$$

that is

$$V(y) = \left(1 + \frac{|y|^2}{N(N-2)}\right)^{-(N-2)/2}.$$
 (1.9)

As another example we mention the function

 $f(s) = \lambda s + s^{p_N}.$

It was shown in [BN] that for this function Problem (P) has a variational solution which satisfies (1.2) when $\lambda \in (\lambda^*, \mu_1)$, where μ_1 is the principal eigenvalue of the Laplacian and $0 \leq \lambda^* < \mu_1$ ($\lambda^* > 0$ if N = 3 and $\lambda^* = 0$ if $N \geq 4$). If we choose, as functions f_{ε} the family

$$f_{\varepsilon}(s) = (\lambda^* + \varepsilon) \, s + s^{p_N}$$

the asymptotic behaviour of u_{ε} was investigated in [R] for $N \ge 5$ and in [BP] for N = 3.

Finally we mention the example in N = 3

$$f_{\varepsilon}(s) = \lambda^* s + s^{5-\varepsilon}$$

which was studied in [Bu] and [BP] when $\Omega = B_1$ and so $\lambda^* = \pi^2/4$ [BN]!

In all the examples investigated so far, the function g had no more than critica. growth. It is the object of this paper to study in particular the approach to problems involving *supercritical* growth, and compare the resulting asymptotics to the approach to problems with *critical* growth.

We consider again the function f given by (1.1) and we choose as approximating functions

$$f_{\varepsilon}(s) = s^{p} - \varepsilon s^{q}, \quad s > 0, \tag{1.10}$$

in which

(I)

 $q > p \ge p_N, \quad \varepsilon > 0.$

In this paper we shall consider this problem taking for Ω the unit ball B_1 . By [GNN] this implies that the solution u_e has radial symmetry, which allows us to use the techniques for ordinary differential equations. In a forthcoming paper we shall discuss the same problem for general star-shaped domains under the assumption (1.2) if $p = p_N$ and a comparable assumption if $p > p_N$.

Thus in this paper we shall study the problem

$$-\Delta u = u^p - \varepsilon u^q \quad \text{in } B_1, \tag{1.11}$$

$$u > 0 \qquad \text{in } B_1, \qquad (1.12)$$

$$u=0 \qquad \text{on } \partial B_1. \qquad (1.13)$$

By [GNN], u_{ε} is decreasing with respect to r = |x| and so $||u_{\varepsilon}||_{L^{\infty}} = u_{\varepsilon}(0)$. For convenience we shall sometimes write

$$\gamma_{\varepsilon} = u_{\varepsilon}(0) = \|u_{\varepsilon}\|_{L^{\infty}}.$$

As in [AP2] and [BP] we find that for any solution u_{ε} of (I)

$$\gamma_{\varepsilon} \rightarrow \infty$$
 as $\varepsilon \rightarrow 0$.

The existence of a solution u_{ε} of Problem (I) is ensured for small values of ε by the following theorem.

Theorem A. For $\varepsilon > 0$ and sufficiently small, Problem (I) has at least two solutions. For one solution we have

$$\lim_{\varepsilon \to 0} \varepsilon \gamma_{\varepsilon}^{q-p} = 1 \tag{1.14}$$

and for another we have

$$\lim_{\varepsilon \to 0} \varepsilon \gamma_{\varepsilon}^{q-p} = c^*, \tag{1.15}$$

where c^* is a number which is uniquely determined by p, q and N, and

$$\frac{c(p,N)}{c(q,N)} \le c^* < 1 \tag{1.16}$$

in which

$$c(s, N) = \frac{(N-2)s - (N+2)}{2(s+1)}.$$
(1.17)

Observe that c(p, N) > 0 if $p > p_N$ and that $c(p_N, N) = 0$.

In what follows we shall refer to those solutions of Problem (I) for which (1.14) holds as *large solutions* and to those for which (1.15) holds as *small solutions*.

To formulate our results and explain the origin of the number c^* , we need to introduce the notion of a ground state solution (or a fast decay solution) of the equation

$$-\Delta V = V^p - cV^q, \quad V > 0 \quad \text{in } \mathbf{R}^N \tag{1.18}$$

which has the properties

$$V(0) = 1$$
 and $V(y) = O(|y|^{-(N-2)})$ as $|y| \to \infty$. (1.19)

There is precisely one value of c for which (1.18)-(1.19) has a radial solution V, which is necessarily unique [KMPT]. This is the value $c^* = c(p, q, N)$ referred to in Theorem A.

The following proposition provides a relation between c^* and V.

Proposition B. Suppose that $q > p \ge p_N$. Then

$$c^*c(q,N) \int_{\mathbf{R}^N} V^{q+1} = c(p,N) \int_{\mathbf{R}^N} V^{p+1}.$$
 (1.20)

Suppose u_{ε} is a small solution of Problem (I) so that (1.15) is satisfied. If $p > p_N$, then c(p, N) > 0 and therefore we can conclude from (1.16) that $c^* > 0$ and from (1.15) that

$$||u_{\varepsilon}||_{L^{\infty}} \simeq c^{*} \varepsilon^{-1/(q-p)} \quad \text{as } \varepsilon \to 0.$$
 (1.21)

On the other hand, if $p = p_N$, then c(p, N) = 0 and we conclude from Proposition B that $c^* = 0$. In this case we find that

$$||u_{\varepsilon}||_{L^{\infty}} \simeq A(q, N) \varepsilon^{-1/(q-p+2)} \quad \text{as } \varepsilon \to 0, \qquad (1.22)$$

where

$$A(q, N) = \left\{ \frac{N^2 c(q, N)}{\{N(N-2)\}^{N/2}} B\left(\frac{N}{2}, q \frac{N-2}{2} - 1\right) \right\}^{-1/(q-p+2)}$$
(1.23)

and B(a, b) denotes the beta function [AS], defined by

$$B(a, b) = \int_{0}^{\infty} t^{a-1} (1+t)^{-a-b} dt$$

Here we write $f(x) \simeq g(x)$ as $x \to 0$, when g(x) is positive near x = 0and $f(x)/g(x) \to 1$ as $x \to 0$.

As in previous studies of the limiting behaviour of solutions of elliptic equations near criticality [AP2, BP, H, Re] we find that the function $u_e(x)$, when suitably scaled, converges to the Green's function $G_0(x) = G(x, 0)$ defined by (1.4)-(1.5). Here we prove the following limit theorem.

Theorem C. Let u_{ε} be a small solution of Problem (I) so that (1.15) is satisfied. Then

$$\varepsilon^{-\theta} u_{\varepsilon}(x) \to MG_0(x) \quad \text{as } \varepsilon \to 0,$$
 (1.24)

where θ and M are positive constants. If $p > p_N$ then

$$\theta = \frac{(N-2)p-N}{2(q-p)}, \quad M = (c^*)^{-\theta} \left(\int_{\mathbb{R}^N} V^p - c^* \int_{\mathbb{R}^N} V^q \right).$$

If $p = p_N$ then

$$\theta = \frac{1}{q - p + 2}, \quad M = \frac{\{N(N - 2)\}^{N/2} \sigma_N}{NA(q, N)},$$

where A(q, N) is given by (1.23).

Remark. We shall see in [MP] that Problem (I) has a variational structure and that what we call a small solution is in fact a variational solution of Problem (I).

Remark. It is easy to see that the asymptotic behaviour for a large solution u_e is given by

 $\gamma_{\varepsilon}^{-1} u_{\varepsilon} \to 1$ as $\varepsilon \to 0$ when $x \in B_1$.

Remark. A similar analysis can be given for radial solutions of Problem (I) with a prescribed number of zeros.

The organisation of the paper is the following. In Section 2 we establish the existence of large and small solutions and prove Theorem A. In Section 3 we prove a basic global upper bound for solutions of Problem (I), and finally in Section 4 we prove Proposition B and the asymptotic estimates. The main ingredients here are the upper bound of Section 3 and the *Pohozaev Identity* which says [P] that if u is a solution of Problem (P), then

$$N \int_{\Omega} F(u) - \frac{N-2}{2} \int_{\Omega} uf(u) = \frac{1}{2} \int_{\partial\Omega} (x - y, n) \left(\frac{\partial u}{\partial n}\right)^2, \quad (1.25)$$

where $F(u) = \int_{0}^{u} f(t) dt$, y any point in Ω and n the outward pointing normal vector on $\partial \Omega$.

2. Existence and basic properties

There are many ways to prove the existence of a solution u_{ε} of Problem (I) for ε sufficiently small. Here we shall use a shooting technique. However, we first derive a general property for (I).

For convenience we rescale the variables and write

$$y = \gamma^{(p-1)/2} x, \quad v(y) = \gamma^{-1} u(x).$$
 (2.1)

This yields the following problem for v:

$$-\Delta v = v^p - cv^q, \quad c \ge 0 \tag{2.2}$$

$$v(0) = 1.$$
 (2.3)

where $q > p \ge p_N$ and

$$c = \varepsilon \gamma^{q-p}. \tag{2.4}$$

Note that (2.2) and (2.3) imply that

$$-\Delta v(0) = 1 - c,$$

Since v takes on its maximum value at the origin, this means that $c \leq 1$.

Lemma 2.1. Suppose v is a radial solution of (2.2)-(2.3), and

$$c \leq \frac{c(p,N)}{c(q,N)},\tag{2.5}$$

where c(s, N) is given by (1.17). Then

$$v > 0$$
 in \mathbf{R}^N .

Proof. We argue by contradiction. Suppose there exists a radius R > 0 such that v > 0 in B_R and v = 0 on ∂B_R . Then writing the Pohozaev Identity (1.25) for (2.2) on B_R we obtain

$$-c(p,N)\int_{B_R} v^{p+1} + cc(q,N)\int_{B_R} v^{q+1} = \frac{1}{2}\int_{\partial B_R} (x,n) \left(\frac{\partial v}{\partial n}\right)^2$$

and so, by the Boundary Point Lemma,

$$egin{aligned} &c(p,N) \int \limits_{\mathcal{B}_{R}} v^{p+1} < cc(q,N) \int \limits_{\mathcal{B}_{R}} v^{q+1} \ &< cc(q,N) \int \limits_{\mathcal{B}_{R}} v^{p+1} \end{aligned}$$

because $v \leq 1$ in B_R . This would imply that $c \geq c(p, N)/c(q, N)$, contradicting (2.5), whence we may conclude that v > 0 in \mathbb{R}^N .

Set r = |y| and write $\tilde{v}(r) = v(y)$. Then, omitting the tilde again we obtain the initial value problem

$$v'' + \frac{N-1}{r}v' + v^p - cv^q = 0$$
 (2.6)

 $v(0) = 1, \quad v'(0) = 0.$ (2.7)

Plainly, for each $c \in [0, 1]$ there exists a unique local solution of (2.6)–(2.7) which we denote by v(r, c) and which can be continued as long as it is bounded. Define

$$R(c) = \sup \{r > 0 : v(\cdot, c) > 0 \quad \text{on } (0, r) \}.$$

Note that by Lemma 2.1, $R(c) = \infty$ if $c \leq c(p, N)/c(q, N)$.

Lemma 2.2. Suppose that $0 \leq c < 1$. Then

(a)
$$v'(r, c) < 0$$
 for $0 < r < R(c);$

(b)
$$R(c) = \infty \Rightarrow \lim_{r \to \infty} v(r, c) = 0$$

Proof. (a) Because c < 1 it follows that v''(0, c) < 0 and so that v'(c, r) < 0for small values of r. Suppose to the contrary that for some $r_0 \in (0, R(c)), v(r, c)$ ceases to be decreasing, i.e. $v'(r_0, c) = 0$ and v(r, c) > 0 on $(0, r_0)$. Then we would have $v''(r_0, c) \ge 0$, which is incompatible with the differential equation (2.6).

(b) Because v'(r, c) < 0 and v(r, c) > 0 for all r > 0, it follows that $\lim v(r, c)$ exists. It is readily seen that this limit can only be zero.

In the following lemma we establish some further properties of R(c).

Lemma 2.3. There is a number $\hat{c} \in [0, 1]$ such that

(a)
$$R(c) < \infty$$
 when $\hat{c} < c < 1$,

(b)
$$\lim_{c\uparrow 1} R(c) = \infty$$
 and $\lim_{c\downarrow c} R(c) = \infty$,

and R(c) is continuous on $(0, \hat{c})$.

Proof. (a) Suppose to the contrary that there is a sequence $\{c_n\} \in (0, 1)$ such that $c_n \to 1$ as $n \to \infty$ and $R(c_n) = \infty$ for every $n \ge 1$. Then, since $v(0, c_n) = 1$ an by Lemma 2.2 $v(r, c_n) \rightarrow 0$ as $r \rightarrow \infty$, for every $n \ge 1$ there is a radius $\varrho_n > 0$ such that $v(\varrho_n, c_n) = \frac{1}{2}$. Thus if we set

$$s = r - \varrho_n$$
 and $w_n(s) = v(r, c_n)$

we obtain for w_n the problem

$$w_n'' + \frac{N-1}{s+\varrho_n}w_n' + w_n^p - cw_n^q = 0, \qquad (2.8)$$

$$w_n(0) = \frac{1}{2}, \quad 0 < w_n(s) \le \frac{1}{2} \quad \text{for } 0 \le s < \infty.$$
 (2.9)

Plainly, the sequence $\{w_n\}$ is uniformly bounded, but also the sequence of derivatives $\{w'_n\}$ is uniformly bounded. To see this we multiply (2.8) by w'_n and integrate over (0, s). This yields

$$\frac{1}{2} (w_n')^2 = \int_{w_n(s)}^1 f(t) dt - (N-1) \int_0^s \frac{(w_n')^2}{t+\varrho_n} dt$$
$$< \int_0^1 f(t) dt,$$

where $f(t) = t^p - ct^q$.

We now let $n \to \infty$. Then, by a standard compactness argument there exists a subsequence, which we denote by w_n again, which converges to a function Wwhich, taking the limit in (2.8)-(2.9), satisfies

$$W'' + W^p - W^q = 0,$$

$$W(0) = \frac{1}{2}, \quad 0 \leq W(s) \leq \frac{1}{2} \quad \text{for } 0 \leq s < \infty.$$

Because this problem has no solution, we have arrived at a contradiction and we must conclude that $R(c) < \infty$ in a left-neighbourhood of c = 1.

(b) Since v(r, 1) = 1 is a solution of equation (2.6) the first limit follows from the continuous dependence of solutions of (2.6)–(2.7) on c. As to the second limit, we conclude from Lemma 2.1 that

$$\hat{c} = \inf \{c < 1 : R(t) < \infty \text{ for } c < t < 1\} \ge \frac{c(p, N)}{c(q, N)}$$

Invoking the continuous dependence of v(r, c) on c again, we conclude that $R \in C(\hat{c}, 1)$ and that $R(c) \to \infty$ as $c \to \hat{c}$.

We now return to Problem (I). The function v(r, c) will correspond to a solution of this problem if

$$R(c) = \gamma^{(p-1)/2}$$
 and $c = \varepsilon \gamma^{q-p}$,

or, when we eliminate γ , if

$$c = \varepsilon \{ R(c) \}^{2(q-p)/(p-1)}.$$
 (2.10)

In view of the properties of the function R(c) established in Lemma 2.3, there exist for ε sufficiently small, two solutions $c^+(\varepsilon)$ and $c^-(\varepsilon)$ of equation (2.10) such that

$$c^+(\varepsilon) \to 1$$
, $c^-(\varepsilon) \to \hat{c}$ as $\varepsilon \to 0$

They correspond to two solutions u_{ε}^+ and u_{ε}^- of Problem (I) with

$$\varepsilon \| u_{\varepsilon} \|_{L^{\infty}}^{q-p} \to 1, \quad \varepsilon \| u_{\varepsilon} \|_{L^{\infty}}^{q-p} \to \hat{c} \quad \text{as } \varepsilon \to 0.$$
 (2.11)

This completes the proof of Theorem A with the exception of the assertion that $\hat{c} = c^*(p, q, N)$ which will be proved in Section 4.

3. An upper bound for u_{e}

In this section we exhibit a surprising property of solutions of Problem (I), in that they can be globally bounded means of a solution of the Yamabe equation

$$-\triangle u = K u^{p_N} \quad \text{in } \mathbf{R}^N$$

for some appropriately chosen constant K.

In [AP1] this property had been observed for solutions of Problem (P) in spherical domains, when the nonlinearity f is subcritical or critical, *i.e.*, when

$$sf'(s) \leq p_N f(s)$$

Here we shall show that for the functions f_{ε} defined in (1.10), which are neither critical nor subcritical for all s > 0, this property is still true.

Theorem 3.1. Let u be a solution of Problem (I) in which $q > p \ge p_N$ and let $u(0) = \gamma$. Then

$$u(x) \leq W_{\gamma}(x)$$
 in B_1 ,

where

$$W_{\gamma}(x) = \left(\frac{\gamma^{2/(N-2)}}{1 + \alpha_{\varepsilon} \gamma^{p-1} |x|^2}\right)^{(N-2)/2}$$
(3.1)

and

$$\alpha_{\varepsilon} = \frac{1}{N(N-2)} \left(1 - \varepsilon \gamma^{q-p}\right). \tag{3.2}$$

Remark. The function W_{γ} is the solution of the problem

$$-\Delta W = (1 - \varepsilon \gamma^{q-p}) \gamma^{p-p_N} W^{p_N} \quad \text{in } \mathbb{R}^N$$
(3.3)

$$W(0) = \gamma, \quad 0 < W \leq \gamma \quad \text{in } \mathbf{R}^N.$$
 (3.4)

In what follows we shall often work with the function $v(y) = \gamma^{-1} u(x)$ introduced in Section 2. If u is a solution of Problem (I), then v is a solution of the problem

$$-\Delta v = v^{p} - \varepsilon \gamma^{q-p} v^{q} \quad \text{in } B_{\varrho}$$

$$v > 0 \qquad \text{in } B_{\varrho}$$
(3.5)
(3.6)

$$v(0) = 1, \quad v = 0 \qquad \text{on } \partial B_{\varrho}, \tag{3.7}$$

where $\rho = \gamma^{(p-1)/2}$. For v, Theorem 3.1 states that

$$v(y) \leq W_1(y)$$

where α_{ϵ} is still defined by (3.2).

The proof of Theorem 3.1 proceeds along the lines of that of the corresponding result for critical or subcritical nonlinearities [AP1]. Thus, we first introduce the new variables

$$t = \left(\frac{N-2}{|y|}\right)^{N-2}, \quad y(t) = v(y).$$
 (3.8)

(3.6)

Then Problem (II) becomes

$$y'' + t^{-k}f(y) = 0, \qquad T < t < \infty$$
 (3.9)

$$y > 0 \qquad \qquad T < t < \infty \tag{3.10}$$

$$y(T) = 0, \quad \lim_{t \to \infty} y(t) = 1,$$
 (3.11)

where k = (2N-2)/(N-2), $T = \{(N-2)\gamma^{-(p-1)/2}\}^{N-2}$ and

$$f(y) = y^p - \varepsilon \gamma^{q-p} y^q.$$
(3.12)

Note that in this context the critical power is given by $p_N = 2k - 3$.

In the proof the functional

$$H(t) = t(y')^2 - yy' + \frac{1}{k-1}t^{1-k}y(f(y))$$
(3.13)

plays a central rôle.

Lemma 3.2. Let y(t) be the solution of Problem (III), in which $q > p \ge p_N$. Then

H(t) > 0 for $T < t < \infty$.

Proof. As a first observation we note that

$$H(T) = 0.$$
 (3.14)

and we deduce from (3.10) that $y'(t) = O(t^{1-k})$ as $t \to \infty$ and so, because k > 2, that

$$H(t) \to 0 \quad \text{as } t \to \infty.$$
 (3.15)

Differentiating H and using the equation, we obtain

$$H'(t) = \frac{1}{k-1} t^{1-k} y'\{(p-2k+3) y^p - \varepsilon \gamma^{q-p}(q-2k+3) y^q\}.$$
 (3.16)

Because y' > 0, it is clear that if $p = p_N = 2k - 3$, then H'(t) < 0 and it follows from (3.15) alone that H(t) > 0 on $[T, \infty)$.

To deal with the case $p > p_N$, we inspect H'(t) more closely, writing it as

$$H'(t) = \frac{q - 2k + 3}{k - 1} t^{1 - k} y^{p} y' Q(t),$$

where

$$Q(t) = \frac{p - 2k + 3}{q - 2k + 3} - \varepsilon \gamma^{q - p} y^{q - p}(t).$$
(3.17)

Plainly, the sign of H'(t) is determined by the sign of Q(t). At t = T we have

$$Q(T) = \frac{p - 2k + 3}{q - 2k + 3} > 0$$

and as $t \to \infty$,

$$\lim_{t \to \infty} Q(t) = \frac{p - 2k + 3}{q - 2k + 3} - \varepsilon \gamma^{q - p}$$

$$< \frac{(N - 2) p - (N + 2)}{(N - 2) q - (N + 2)} - \frac{c(p, N)}{c(q, N)}$$

$$= -\frac{q - p}{p + 1} \frac{(N - 2) p - (N + 2)}{(N - 2) q - (N + 2)}$$

$$< 0,$$

where we have used Theorem 2.4. Thus, in view of (3.14), H(t) starts positive near t = T, and, in view of (3.15), decreases to zero as $t \to \infty$. Since y(t) is strictly increasing it follows from (3.17) that H'(t) can only once change sign on (T, ∞) , and so H(t) > 0 on (T, ∞) . This completes the proof.

Lemma 3.3. Let y(t) be the solution of Problem (III). Then

where

$$z(t) = \left(1 + \frac{1 - \varepsilon \gamma^{q-p}}{k-1} t^{2-k}\right)^{-1/(k-2)}.$$
(3.18)

Remark. The function z(t) is the solution of the problem

$$z'' + (1 - \varepsilon \gamma^{q-p}) t^{-k} z^{p_N} = 0 \quad \text{for } 0 < t < \infty,$$
$$\lim_{t \to \infty} z(t) = 1.$$

Proof. As in [AP1] we observe that

$$(t^{k-1}y^{1-k}y')' = -(k-1)t^{k-2}y^{-k}H(t) < 0$$
 on (T,∞) .

Integrating this inequality from t > T to $t = \infty$, we obtain

$$y^{1-k}(t) y'(t) > \frac{1}{k-1} (1 - \varepsilon \gamma^{q-p}) t^{1-k}$$
 for $T < t < \infty$.

Carrying out another integration from t > T to $t = \infty$ finally yields

$$y^{2-k}(t) > 1 + \frac{1}{k-1}(1 - \varepsilon \gamma^{q-p}) t^{2-k}$$
 for $T \le t < \infty$, (3.19)

which proves the lemma.

Returning to the original variables y and u we find that $z(t) = W_1(y)$, and thus that Lemmas 3.2 and 3.3 together prove Theorem 3.1.

The upper bound for u_{ε} supplied by Theorem 3.1 is not uniform in ε because of the factor α_{ε} in the denominator of W_{ν}^{i} . In particular we have

(a) If u_{ε} is a large solution of Problem (I), then $\alpha_{\varepsilon} \to 0$ as $\varepsilon \to 0$ by (1.14) and so

$$\lim_{\varepsilon \to 0} \gamma^{-1} W_{\gamma}(x) = 1$$

uniformly in sets $\{x \in \mathbf{R}^N : \gamma^{p-1} |x|^2 \text{ bounded}\}$.

(b) If u_{ε} is a small solution of Problem (I), then

$$\limsup_{\varepsilon \to 0} \gamma^{-1} W_{\gamma}(x) \leq \left(\frac{1}{1 + \alpha_0 \gamma^{p-1} |x|^2}\right)^{(N-2)/2}$$

where

$$\alpha_0 = \frac{1}{N(N-2)} (1-c^*)$$

uniformly on sets $\{x \in \mathbf{R}^N : \gamma^{p-1} |x|^2 \text{ bounded}\}.$

Thus for small solutions we have the following uniform upper bound.

Theorem 3.4. Suppose $\{u_{\epsilon}\}$ is a family of small solutions. Then there are numbers $\varepsilon_0 > 0$ and $\nu > 0$ such that for $0 < \varepsilon < \varepsilon_0$,

$$u_{\varepsilon}(x) \leq \left(\frac{\gamma^{2/(N-2)}}{1+v\gamma^{p-1}|x|^2}\right)^{(N-2)/2}$$
 in B_1 .

4. Asymptotic behaviour of u_{ϵ}

In this Section we finally turn to a description of the small solution u_{ε} defined in Theorem 2.4 as $\varepsilon \to 0$. Thus, we assume that along a subsequence

$$\varepsilon \gamma^{q-p} \to c \quad \text{as } \varepsilon \to 0,$$
 (4.1)

where c is some constant which satisfies $0 \leq c < 1$.

As in [AP2] and [BP] the Pohozaev Identity (1.25) plays a central rôle here. For solutions of Problem (I) it becomes

$$-c(p,N)\int_{B_1} u_{\varepsilon}^{p+1} + \varepsilon c(q,N)\int_{B_1} u_{\varepsilon}^{q+1} = \frac{1}{2}\int_{\partial B_1} (x,n) \left(\frac{\partial u_{\varepsilon}}{\partial n}\right)^2, \qquad (4.2)$$

where

$$c(k, N) = \frac{(N-2)k - (N+2)}{2(k+1)}.$$
(4.3)

Some basic elliptic estimates will also be needed. They are supplied by the following lemma which we take from [BP].

Lemma 4.1. Suppose u is the solution of the problem

$$-\Delta u = f \quad in \ \Omega$$
$$u = 0 \quad on \ \partial \Omega,$$

where Ω is a bounded domain in \mathbb{R}^N with smooth boundary $\partial \Omega$. Then there is a constant C > 0, which depends only on Ω , such that

$$\|u\|_{W^{1,e}(\Omega)} + \|\nabla u\|_{C^{0,x}(\partial\Omega)} \le C(\|f\|_{L^{1}(\Omega)} + \|f\|_{L^{\infty}(\omega)})$$
(4.4)

for any s < N/(N-1), any $\alpha \in (0, 1)$ and any neighbourhood ω of $\partial \Omega$.

As a consequence of the compact embedding of $W_0^{1,s}(\Omega)$ in $L^m(\Omega)$ when s < N and m < sN/(N-s), Lemma 4.1 has the following corollary.

Corollary 4.2. In the notation of Lemma 4.1 we have

(a)
$$||u||_{L^2(\Omega)} + ||\nabla u||_{L^2(\partial \Omega)} \leq C(||f||_{L^1(\Omega)} + ||f||_{L^{\infty}(\omega)}).$$

(b) If $\{f_n\}$ is a bounded sequence in $L^1(\Omega)$ and in $L^{\infty}(\omega)$, then the corresponding sequence of solutions $\{u_n\}$ has compact closure in $L^2(\Omega)$, whilst the sequence $\{\nabla u_n\}$, restricted to $\partial \Omega$, has compact closure in $L^2(\partial \Omega)$.

As before, we introduce the rescaled variables y and v_{ε} defined by (2.1) to determine the behaviour of small solutions u_{ε} near the origin.

Lemma 4.3. We have

and

$$arepsilon \gamma^{q-p}
ightarrow c^{*}(p, q, N) \quad as \ \varepsilon
ightarrow 0$$

 $v_{\varepsilon}(y)
ightarrow V(y) \quad as \ \varepsilon
ightarrow 0$

uniformly on \mathbb{R}^N , where the pair (c^*, V) is the unique radially symmetric solution of the problem

(IV)

$$\begin{aligned}
-\Delta V &= V^{p} - c^{*}V^{q} & \text{in } \mathbb{R}^{N}, \\
V(0) &= 1, \quad 0 < V \leq 1 & \text{in } \mathbb{R}^{N}, \\
V(y) &= O(|y|^{-(N-2)}) & \text{as } |y| \to \infty.
\end{aligned}$$

Proof. Because the family $\{v_{\varepsilon}\}$ is uniformly bounded in \mathbb{R}^{N} , it follows from elliptic regularity theory that there exists a sequence, also denoted by $\{v_{\varepsilon}\}$, which converges uniformly on compact sets to some radial function V. Since the functions v_{ε} are solutions of Problem (II) and $\varepsilon \gamma^{q-p} \to c$ as $\varepsilon \to 0$ according to (4.1) it follows that V satisfies

$$-\Delta V = V^p - cV^q \quad \text{in } \mathbf{R}^N \tag{4.5}$$

$$V(0) = 1, \quad 0 \le V \le 1 \quad \text{in } \mathbf{R}^N.$$
(4.6)

By Theorem 3.4 there is a constant K > 0 which does not depend on ε such that

$$v_{\varepsilon}(y) \leq K |y|^{-(N-2)} \quad \text{in } \mathbf{R}^{N}$$

$$(4.7)$$

for ε small enough. This implies that the convergence of v_{ε} to V is actually uniform in the whole for \mathbf{R}^{N} and that

$$V(y) \le K |y|^{-(N-2)}$$
 in \mathbb{R}^N . (4.8)

Thus V is a solution of (4.5), (4.6) and (4.8), which means that $c = c^*(p, q, N)$ [KMPT] and hence that (c^*, V) is the solution of Problem (IV).

Finally, we note that by the uniqueness of the solution of Problem (IV) the entire family $\{v_{\varepsilon}\}$ converges to V as $\varepsilon \to 0$ and that $\varepsilon \gamma^{q-p}$ converges to c^* .

For future reference we note the following limit.

Lemma 4.4. Suppose m > N/(N-2). Then

$$\lim_{\varepsilon \to 0} \gamma^{-m+N(p-1)/2} \int_{B_1} u_\varepsilon^m(x) \, dx = \int_{\mathbf{R}^N} V^m(y) \, dy.$$

Proof. Transforming to the variables y and v_{ε} , we obtain

$$\int_{B_1} u_{\varepsilon}^m(x) \, dx = \gamma^{m-N(p-1)/2} \int_{B_p} v_{\varepsilon}^m(y) \, dy,$$

where $\rho = \gamma^{(p-1)/2}$. For ε sufficiently small, it follows from (4.7) that

$$v_{e}(y) \leq \hat{v}(y) = \min\{1, K |y|^{-(N-2)}\}$$

Since $\hat{v} \in L^m(\mathbb{R}^N)$ if m > N/(N-2) it follows from Lemma 4.3 and the dominated convergence theorem that

$$\int\limits_{B_{\varrho}} v_{\varepsilon}^{m}(y) \, dy \to \int\limits_{\mathbf{R}^{N}} V^{m}(y) \, dy,$$

from which the assertion follows.

In what follows we shall write

$$J_m = \int\limits_{\mathbf{R}^N} V^m(y) \, dy. \tag{4.9}$$

The limiting behaviour of the left-hand side of the Pohozaev Identity (4.2) now readily follows from Lemma 4.4:

$$\lim_{\varepsilon \to 0} \gamma^{\beta} \left(-c(p, N) \int_{B_{1}} u_{\varepsilon}^{p+1} + \varepsilon c(q, N) \int_{B_{1}} u_{\varepsilon}^{q+1} \right) = -c(p, N) J_{p+1} + c^{*} c(q, N) J_{q+1},$$
(4.10)

where

$$\beta = \frac{1}{2} \{ (N-2) p - (N+2) \}.$$
(4.11)

To determine the behaviour of u_{ε} away from the origin and to estimate the right-hand side of (4.2) we define, following [BP], the function

$$w_{\varepsilon}(x) = \gamma^{\beta+1} u_{\varepsilon}(x). \tag{4.12}$$

By (1.9) w_{ε} is as solution of the problem

$$-\Delta w_{\varepsilon} = h_{\varepsilon}(x) \quad \text{in } B_1$$
$$w_{\varepsilon} = 0 \qquad \text{on } \partial B_1,$$

where

$$h_{\varepsilon}(x) = \gamma^{\beta+1} \{ u_{\varepsilon}^{p}(x) - \varepsilon u_{\varepsilon}^{q}(x) \}.$$
(4.13)

According to Theorem 3.1 and (4.7) we have for $x \neq 0$,

$$h_{\varepsilon}(x) \leq \gamma^{\beta+1} W^p_{\gamma}(x) \leq K^p \gamma^{-(\beta+1)(p-1)} |x|^{-p(N-2)}$$

and so, if $x \neq 0$, then

$$h_{\varepsilon}(x) \to 0 \quad \text{as } \varepsilon \to 0.$$
 (4.14)

On the other hand,

$$\int_{B_1} h_{\varepsilon}(x) \, dx = \gamma^{\beta+1} \int_{B_1} u_{\varepsilon}^p(x) \, dx - \varepsilon \gamma^{\beta+1} \int_{B_1} u_{\varepsilon}^q(x) \, dx$$

and β has been chosen so that

$$\beta + 1 = -p + \frac{N}{2}(p-1).$$

Hence, by Lemma 4.4 and (4.1)

$$\lim_{\varepsilon \to 0} \int_{B_1} h_{\varepsilon}(x) \, dx = J_p - c^* J_q. \tag{4.15}$$

We note that

$$egin{aligned} J_p - c^* J_q &= \int \limits_{\mathbf{R}^N} (V^p - c^* V^q) \ &> (1 - c^*) \int \limits_{\mathbf{R}^N} V^p \ &> 0 \,. \end{aligned}$$

From (4.14) and (4.15) we conclude that

$$h_{\varepsilon} \rightarrow \mu \, \delta_0$$
 as $\varepsilon \rightarrow 0$,

where δ_0 is the Dirac mass centered at the origin and

$$\mu = J_p - c^* J_q. \tag{4.16}$$

This implies, according to Corollary 4.2, that

$$w_{\varepsilon} \to \mu G_0 \quad \text{as } \varepsilon \to 0$$
 (4.17)

in $L^2(B_1)$, as well as in $L^{\infty}(\omega)$, where ω is any compact subset of B_1 which does not contain the origin. Here $G_0 = G(\cdot, 0)$, where G is the Green's function of $-\Delta$ with zero Dirichlet boundary conditions in B_1 , defined in the Introduction. It is given by

$$G_0(x) = \frac{1}{(N-2)\sigma_N} \left(\frac{1}{|x|^{N-2}} - 1\right).$$
(4.18)

In addition we conclude from Corollary 4.2 that on the boundary ∂B_1

$$\nabla w_{\varepsilon} \to \mu \, \nabla G_0 \quad \text{as } \varepsilon \to 0 \text{ in } L^2(\partial B_1).$$
 (4.19)

This yields for the right-hand side of (4.2)

$$\gamma^{2(\beta+1)} \int_{\partial B_1} (x,n) \left(\frac{\partial u_{\varepsilon}}{\partial n} \right)^2 \to \mu^2 \int_{\partial B_1} (x,n) \left(\frac{\partial G_0}{\partial n} \right)^2 \quad \text{as } \varepsilon \to 0.$$
 (4.20)

To simplify the right-hand side of (4.2), we recall a result about the Green's function from [BP, Theorem 4.3].

Lemma 4.5. Let G(x, y) be the Green's function defined by (1.4)–(1.5). Then for every $y \in \Omega$,

$$\int_{\Omega} (x - y, n) \left(\frac{\partial G}{\partial n}(x, y) \right)^2 dx = -(N - 2) g(y, y),$$

where n = n(x) denotes the outward normal to $\partial \Omega$ at x.

Thus, setting $g_0 = g(\cdot, 0)$, we can write (4.20) as

$$\gamma^{2(\beta+1)} \int_{\partial B_1} (x,n) \left(\frac{\partial u_e}{\partial n} \right)^2 \quad \Rightarrow \quad -\mu^2 (N-2) g_0(0) = \frac{\mu^2}{\sigma_N}, \tag{4.21}$$

where we have used the explicit expression for G_0 given in (4.18).

We now equate the estimates (4.10) and (4.21) for respectively the left-hand and the right-hand side of the Pohozaev Identity (4.2). To begin with this yields the relation

$$c^*c(q, N) J_{q+1} = c(p, N) J_{p+1}.$$
 (4.22)

and thus proves Proposition B.

We distinguish two cases

I:
$$p > p_N$$
, II: $p = p_N$.

Case I. If $p > p_N$, then c(p, N) > 0 and we deduce from (4.22) that $c^* > 0$. Thus we conclude from (4.1), (4.12), (4.17) and (4.22) the following limiting behaviour of small solutions of Problem (I).

Theorem 4.6. Let u_{ε} be a small solution of Problem (I) in which $p > p_N$ such that (4.1) is satisfied. Then

(a)
$$\|u_{\varepsilon}\|_{L^{\infty}} \simeq c^{*} \varepsilon^{-1/(q-p)}$$
 as $\varepsilon \to 0$;

(b)
$$\varepsilon^{-\theta} u_{\varepsilon}(x) \to (c^*)^{-\theta} (J_p - c^* J_q) G_0(x) \quad as \ \varepsilon \to 0,$$

where

$$\theta = \frac{(N-2)p - N}{2(q-p)}, \quad c^* = \frac{c(p,N)}{c(q,N)} \cdot \frac{J_{p+1}}{J_{q+1}}$$

and G_0 is the Green's function given by (4.18).

Case II. If $p = p_N$, then c(p, N) = 0. Therefore, according to (4.22), $c^* = 0$ and so, by (4.1),

$$||u_{\varepsilon}||_{L^{\infty}} = o(\varepsilon^{-1/(q-p)}) \quad \text{as } \varepsilon \to 0.$$

To establish the precise behaviour of $||u_{\varepsilon}||_{L^{\infty}}$ as $\varepsilon \to 0$ we return to the Pohozaev Identity (4.2). Note that $\beta = 0$ in this case, and so we multiply (4.2) by γ^2 and let ε tend to zero. Using Lemma 4.4 in the left-hand side and (4.21) in the right-hand side, we obtain

$$\varepsilon \gamma^{2+q+1-N(p-1)/2} \rightarrow \frac{1}{c(q,N)J_{q+1}} \cdot \frac{\mu^2}{2\sigma_N}.$$
 (4.23)

Because $p = p_N$ we have

$$2 + q + 1 - \frac{1}{2}N(p - 1) = q - p + 2$$

and, since $c^* = 0$ in this case, $\mu = J_p$, whence (4.23) can be written as

$$\varepsilon \gamma^{q-p+2} \rightarrow \frac{1}{2\sigma_N c(q,N)} \cdot \frac{J_p^2}{J_{q+1}}.$$
 (4.24)

However, when $c^* = 0$, V is given by (1.9) and J_p and J_{q+1} can be computed explicitly. We have

$$J_m = \int_{\mathbf{R}^N} \left(1 + \frac{|y|^2}{N(N-2)} \right)^{-m(N-2)/2} dy,$$

which we can write with $|y|^2 = N(N-2) t$ as

$$J_m = \frac{1}{2} \left\{ N(N-2) \right\}^{N/2} \sigma_N \int_0^\infty t^{(N-2)/2} (1+t)^{-m(N-2)/2} dt$$
$$= \frac{1}{2} \left\{ N(N-2) \right\}^{N/2} \sigma_N B\left(\frac{N}{2}, m\frac{N-2}{2} - \frac{N}{2}\right),$$

where

$$B(a, b) = \int_{0}^{\infty} t^{a-1} (1+t)^{-a-b} dt$$

is the beta function [AS]. Recall that

$$B(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}.$$

In particular, for J_p and J_{q+1} we obtain

$$J_p = \frac{1}{N} \{N(N-2)\}^{N/2} \sigma_N,$$
$$J_{q+1} = \frac{1}{2} \{N(N-2)\}^{N/2} \sigma_N B\left(\frac{N}{2}, q\frac{N-2}{2} - 1\right)$$

Using these expressions in (4.24) and (4.17) we can formulate the asymptotic behaviour of small solutions of Problem (I) in the critical case.

Theorem 4.7. Let u_{ε} be a small solution of Problem (I) in which $p = p_N$ such that (4.1) holds. Then

(a)
$$||u_{\varepsilon}||_{L^{\infty}} \simeq A(q, N) \varepsilon^{-1/(q-p+2)}$$
 as $\varepsilon \to 0$,

(b)
$$\varepsilon^{-1/(q-p+2)} u_{\varepsilon}(x) \rightarrow \frac{\{N(N-2)\}^{N/2} \sigma_N}{NA(q,N)} G_0(x) \quad as \ \varepsilon \rightarrow 0,$$

where

$$A(q, N) = \left\{ \frac{N^2 c(q, N)}{\{N(N-2)\}^{N/2}} B\left(\frac{N}{2}, q \frac{N-2}{2} - 1\right) \right\}^{-1/(q-p+2)}$$

and G_0 is the Green's function given by (4.18).

Remark. Comparing the critical and the supercritical case we find that

$$\varepsilon ||u_{\varepsilon}||^{q-p} \simeq A^{q-p}(q, N) \varepsilon^{2/(q-p+2)}$$
 as $\varepsilon \to 0$.

Acknowledgements. It is a pleasure to thank H. BERESTYCKI and H. BREZIS for a number of stimulating conversations on this problem and the Netherlands Organization for Scientific Research (NWO) for the financial support of the first author.

References

- [AS] ABRAMOWITZ, M., & I. A. STEGUN, Handbook of mathematical functions, Dover, New York, (1965).
- [AP1] ATKINSON, F. V., & L. A. PELETIER, Emden-Fowler equations involving critical exponents, Nonlinear Anal. TMA 10 (1986), 755–776.
- [AP2] ATKINSON, F. V.. & L. A. PELETIER, Elliptic equations with nearly critical growth, J. Diff. Equ. 70 (1987), 349-365.
- [BN] BREZIS, H., & L. NIRENBERG, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
- [BP] BREZIS, H., & L. A. PELETIER, Asymptotics for elliptic equations involving critical growth, In Partial Differential Equations and the Calcalus of Variations (Eds. F. COLOMBINI, A. MARINO, L. MODICA & S. SPAGNOLO), pp 149– 192, Birkhäuser, Basel, 1989.
- [Bu] BUDD, C., Semilinear elliptic equations with near critical growth rates, Proc. Roy. Soc. Edinburgh 107 A (1987), 249-270.
- [GNN] GIDAS, B., W.-M. NI, & L. NIRENBERG, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 200-243.
- [H] HAN, ZHENG CHAO, Private communication, 1988.
- [KMPT] KWONG, M. K., J. B. MCLEOD, L. A. PELETIER, & W. C. TROY, On a ground state solution of $-\Delta u = u^p u^q$, to appear.
- [MP] MERLE, F., & L. A. PELETIER, Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth II. The nonradial case, to appear.
- [P] POHOZAEV, S. I., Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Dokl. Akad. Nauk SSSR 165, 36-39 (in Russian) and Sov. Math. 6 (1965), 1408-1411.

- [R] RABINOWITZ, P. H., Variational methods for nonlinear eigenvalue problems, Indiana Univ. Math. J. 23 (1974), 729–754.
- [Re] REY, O., The rôle of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Functional Anal. 89 (1990), 1–52.

Ecole Normale Supérieure, Paris

and

Mathematical Institute, Leiden University

(Received September 18, 1989)