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NATURAL DEDUCTION AND 

HILBERT’S a-OPERATOR 

In his recent [4], Kit Fine presents a model-theoretic account of “arbi- 
trary” (or “variable”) objects and uses it to analyze the rules of Exi- 
stential Instantiation (EI), etc., found in many textbook systems of 
logic. Along the way he argues for the pedagogical utility of such 
rules and for a (not very clearly formulated) theoretical claim on their 
behalf: that they mirror the patterns of informal reasoning more 
faithfully than do the quantifier introduction and elimination rules of 
Gentzen-style natural deduction. In this note I wish to point out 
(what must have been a familiar point to many logicians) that there is 
an older logical tool, Hilbert’s a-calculus, providing a simple and intu- 
itive analysis of these rules, and to express a few doubts about Fine’s 
pedagogical and “ordinary language analytic” claims. Since, however, 
this will concern only the analysis of systems of first-order logic, it 
does not constitute a general critique of Fine’s theory of arbitrary 
objects: he himself ([4], p. 106; all page references to Fine are to this 
article) feels that the advantages of his scheme are only fully apparent 
when we go beyond first-order reasoning. ([5], however, though defin- 
ing semantic notions in great generality, does not pursue applications 
much beyond [4].) 

The first sort of natural deduction system Fine discusses (pp. 
76-78) is that typified by Gentzen’s [7] NK, whose analysis carries 
over virtually without change to the Fitch-style systems of such texts 
as [6], [12] and [ 191; I shall assume Fitch-style NK as a basis of com- 
parison in what follows. As Fine remarks, his theory of arbitrary objects 
offers no special advantages over standard model theory in the analy- 
sis of the use of free “eigenvariables” in the Universal Quantifier Intro- 
duction (U.Q.Int) and Existential Quantifier Elimination (E.Q.Elim) 
rules of such systems. Fine’s machinery, then, gets its first real work- 
out in the analysis of systems with stronger quantifier rules, such as 
EI. The details of the analyses vary with the system, but in each 
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case it is proposed to interpret the instantial letters used in connection 
with the rules as denoting certain arbitrary or variable objects. The 
soundness of the systems is proven with respect to this interpretation; 
since classical models are a special case of Fine’s models (arbitrary- 
object models with a null set of arbitrary objects), this yields the 
soundness of the system (for theses or arguments not containing any 
of the special terms) with respect to the ordinary semantics of first- 
order logic. 

The analysis I wish to describe treats the instantial letters of rules 
like EI as abbreviations of certain s-terms and explains the restric- 
tions placed on them by noting that, were the s-terms written out in 
full, simple syntactic factors (notably, the asymmetry of the “contains 
as a proper subterm” relation among s-terms) would lead automatic- 
ally to their fulfillment. Soundness follows from (1) the fact that the 
restrictions on instantial letters are strong enough to allow all such 
letters occurring in a correct derivation to be “disabbreviated” into 
full s-terms, and (ii) the soundness of the s-calculus. 

Hilbert’s s-operator is a variable-binding term operator (v.b.t.0.) in 
the sense of [g]. Where A(a) is a formula, (~x)A(x) is thought of as 
denoting an arbitrarily chosen object in the domain satisfying A(a) if 
there are any, and an arbitrarily chosen object in the domain if there 
are none. The metatheory of predicate calculi with s-operators gets its 
classical treatment in [9]; the Germanless reader is referred to [13]. 
Standard inference rules for the a-operator are (~1) from 3xA(x) to 
infer A((sx)A(x)), and (~2) from A((Ex)~ A(x)) to infer VxA(x). In 
the present context of pure first-order logic, we may take Hilbert’s 
second s-theorem to be the proposition that the system formed by 
adding these rules to a formulation of first-order logic is conservative 
over first-order logic. The original proof of this is one of the triumphs 
of Hilbert-style finitistic metamathematics, and forbiddingly complex. 
There are, however, two distinct reasons for thinking that this com- 
plexity need not prevent appeal to the s-theorem even in pedagogical 
contexts. One is that, for the applications described below, only s-terms 
containing no variables bound to operators outside the term (proper 
s-terms) are needed, and the finitistic proof of the s-theorem for a 
system so restricted is far simpler than that for the general case. The 
other is an instance of the general phenomenon that the use of abstract 
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(e.g. set-theoretic) techniques can make it possible to give proofs of 
elementary results that are far more readily comprehensible (and per- 
haps in some sense more explanatory) than the elementary proofs: we 
may appeal to model theory. The second s-theorem is an immediate 
consequence of the soundness, with respect to the interpretation 
sketched above, of the rules (~1) and (s2), and the completeness of the 
predicate calculus. Another result, related to the first e-theorem, is 
that when the rules of E.Q.Elim and U.Q.Int are replaced, in a com- 
plete system of first-order logic, with (~1) and (s2), the system remains 
complete: given the restrictions on premisses containing eigen- 
variables, we may transform a proof in the original system into one in 
the modified system by replacing each occurrence, in a sub-proof for 
one of the replaced quantifier rules, of the eigenvariable of the sub- 
proof with an occurrence of the appropriate (proper) e-term (and, in a 
Fitch-style proof, erasing the vertical line of the sub-proof). 

Suppose, now, that having replaced E.Q.Elim and U.Q.Int with the 
two E rules, we abbreviate the e-terms to single letters. The derivations 
in the abbreviated notation will look like those of Quine’s system in 
[16] (discussed by Fine on pp. 78ff.); the restrictions Quine places on 
his rules of Universal Generalization (UG; = ~2) and EI (= ~1; his 
Universal Instantiation and Existential Generalization are simply 
U.Q.Elimination and E.Q.Introduction) can be seen as designed to 
ensure that all the instantial letters of a derivation can be disabbrevi- 
ated to s-terms. What Fine (p. 79) calls the Local Restriction amounts 
simply to the requirement that the bound variable of the quantified 
formula in the inference (the premiss in EI and the conclusion in UG) 
replace all occurrences of the instantial letter in the other formula. 
This would be implied in a careful statement of (~1) and (a2), and, as 
Fine remarks, corresponds to one of the conditions on E.Q.Elim and 
U.Q.Int in a Gentzen- or Fitch-style system. The remaining restric- 
tions, Flagging and Ordering, are more interesting. Flagging requires 
that the same instantial letter not be used in two inferences by the 
new rules. One thing this rules out is, for example, inferring VxA(x) 
from A(a) and then, several lines later in the derivation, inferring the 
same conclusion from the same premiss a second time. One may occa- 
sionally want to do this if, say, the first inference is made under a 
hypothesis that has been discharged by the time one gets to the 
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second, but one never has to use UG twice on the same premiss in 
this way: if nothing else, one can start one’s derivation with a quick 
conditionalization to establish (free of any hypothesis) (A(u) 1 VxA(x)), 
and then use modus ponens rather than UG on later occasions. The 
important thing outlawed by the Flagging restriction is the use of the 
same instantial letter in two difirent inferences by UG or EI. This, 
though, in terms of our interpretation of instantial letters as abbrevi- 
ated E-terms, comes down to the simple injunction not to use the 
same letter to abbreviate different s-terms: avoid the fallacy of equivo- 
cation. 

Finally, the Ordering restriction requires that it be possible to define 
a linear ordering of the instantial letters occurring in a given derivation 
in such a way as to make every instantial letter occurring in the quan- 
tified premiss of an EI or conclusion of a UG later than the instantial 
term of the inference. This restriction can seem quite arcane, especi- 
ally since the ordering may be quite different from the order in which 
the inferences occur in the derivation. When the instantial letters are 
seen as abbreviated e-terms, however, all becomes clear. The e-terms 
occurring in the quantified formula of an inference by (~1) or (~2) in 
which a given e-term is the instantial term also occur as subterms 
within the given e-term itself. The ordering, then, is a simple conse- 
quence of the asymmetry of the “proper subterm of” relation among 
e-terms. (To be sure, such syntactic part-whole relations are in general 
only partial and not linear orders: an s-term can contain two sub- 
terms which are not subterms of each other. A little reflection serves 
to show, however, that when the subterm relation on the s-terms in a 
proof using (~1) and (~2) is a partial order, any of the linear orders 
extending it will meet the criteria of the Ordering restriction when the 
terms are abbreviated as Quinean instantial letters.) 

In short, any derivation in Quine’s system can be disabbreviated to 
a derivation in the E-calculus. This, together with the model theoretic 
proof of the soundness of the E-rules, gives a proof of the soundness 
of Quine’s system which seems to be more perspicuous and perhaps in 
some sense more explanatory than Quine’s elementary but complicated 
argument. The completeness of Quine’s system follows from the com- 
pleteness result of the system in which (~1) and (s2), with proper 
a-terms, replace E.Q.Elim and U.Q.Int, together with the fact that 
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any proof in that system can (after at most minimal reformulation) be 
abbreviated to one in Quine’s system. 

In a concluding discussion (p. 97) Fine argues that “it is hard to 
regard Quine’s system either as a very satisfactory system in its own 
right or as a faithful representation of ordinary reasoning”. The objec- 
tion centers on the treatment of the instantial letters for UG. “It is a 
natural requirement on a derivation containing A-names, or any other 
names, that we should know what those names denote as soon as 
they are introduced; their interpretation should not depend upon 
what subsequently happens in the derivations”, but Quine’s system, 
interpreted in terms of his arbitrary object semantics, goes against 
“this ban on retrospective interpretation”. The complaint, at least, is 
easily formulated in terms of our interpretation. In reading a derivation 
in Quine’s system from the top down, one will not be able to tell, on 
first encountering a letter that will ultimately serve as the instantial 
term of a UG, what c-term it is meant to abbreviate; for this, one 
will have to search down until one finds the inference where it is 
used. 

What is less clear is the pedagogical and analytic importance of the 
complaint. From a pedagogical standpoint, what is perhaps most 
important is that students be able to construct (and verify the correct- 
ness of) derivations in the system easily. Whether the retrospective 
interpretability of some of the instantial letters is a hindrance in this 
regard I do not know: the many logic teachers who have taught from 
Quine’s textbook over the last thirty years might have ideas on the 
subject. My own guess is that it wouldn’t be. Students are, after all, 
advised to “start from both ends” in attempting to find derivations, 
to work up from the conclusion as well as down from the premisses. 
Someone might, I suppose, argue that in some more abstract sense a 
system of formal derivations can only represent intuitively convincing 
proofs if it heeds the ban on retrospective interpretation. Here, I 
think, Quine’s system could be defended by taking seriously the idea 
that its instantial constants are abbreviations of c-terms. For the con- 
venience of students, the defense would run, we allow conventions of 
abbreviation which temporarily obscure the interpretation of some 
terms, but if the E-terms were written out in full, each term’s inter- 
pretation would be clear as soon as it was introduced. 
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After treating Quine’s system, Fine turns to a consideration (pp. 
92 - 98) of the system of Copi [3] and Kalish [ 111. Here the individual 
inferences take the same form as in Quine’s system, but the restric- 
tions are very different. Fine notes that the instantial letters for EI 
and UG are treated quite differently, and (usefully) suggest that, in 
view of their different functions, separate alphabets be used for the 
two kinds of terms. In fact, the instantial letters for UG amount to 
the familiar free variables from U.Q.Int, in the sense that the restric- 
tions limit application of the UG rule to cases where the Fitch- or 
Gentzen-style rule could be applied, and I will refer to it as U.Q.Int. 
EI, on the other hand, is like Quine’s rule, with instantial letters that 
can be thought of as abbreviated s-terms, and once again the restric- 
tions (pp. 92-93) suffice to guarantee their disabbreviability in any 
derivation. The only subtlety is in the restriction of Independence. 
When we think of the instantial letters for EI as abbreviated s-terms, 
the relation of dependence takes on a simple syntactic character: one 
term depends on another just in case the first (or rather, the s-term of 
which it is the abbreviation) contains the second (or . . .) as a sub- 
term. In requiring that no term dependent on the eigenvariable occur 
in the conclusion of a U.Q.Int, Independence keeps us from turning 
the free variables “invisibly” occurring in our abbreviated s-terms into 
bound variables of quantification. Not that there is anything intrinsic- 
ally wrong with improper s-terms, but since the abbreviated notation 
does not distinguish between a “free” s-term and one containing a 
variable bound by a quantifier external to it, they would tempt us to 
commit fallacies later. In forbidding occurrences of instantial letters 
dependent on the eigenvariable in the suppositions of the inference, 
on the other hand, Independence extends the coverage of the usual 
proviso on U.Q.Int - that the conclusion of the inference not depend 
on any undischarged hypotheses containing the eigenvariable - to 
cover “invisible” occurrences of the eigenvariable. (Pedagogical aside: 
this proviso has to be stated as a restriction in a Gentzen-style system 
or, as we have just seen, in a Copi-style one, but it is enforced by the 
restrictions on reiteration into general sub-proofs in Fitch-style ones. 
A hybrid system, combining a rule of El with a Fitch-style rule of 
U.Q.Int, would relocate part of the Independence restriction as a 
tightening of the restriction on reiteration: neither formulas containing 
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the eigenvariable nor formulas containing terms dependent on it may 
be reiterated into a general sub-proof.) 

There is one further kind of system, closely related to systems of 
natural deduction, where something like an EI rule has been 
proposed: Beth’s semantic tableaux, which, in Smullyan’s vastly 
improved notation, have been presented in a treatise [ 171 and in such 
texts as [IO]. The connection with natural deduction is perhaps most 
readily seen if we make a few changes in the familiar systems of natural 
deduction. First, incorporate into the system of classical logic the 
negative rules presented in [6] for the non-classical system of that 
book, so that negated conjunctions (disjunctions/universal quantifi- 
cations/existential quantifications) become immediately equivalent to 
disjunctions (conjunctions/existential quantifications/universal quanti- 
fications) of negations. Second, treat the conditional as defined in 
terms of disjunction and negation. Third, add a propositional F&urn 
constant with the rule that F&urn is a direct consequence of the two 
formulas A and 1 A. Then a closed semantic tableau for a formula 
(argument) can be thought of as a slightly abbreviated, tree-form, 
presentation of a natural deduction derivation of Falsum from the 
negation of the formula (premisses and negation of conclusion of 
argument), in which only elimination rules are used. 

The usual rules for extending tableaux with quantified formulas on 
them (any instance of a universal quantification may be added, but 
for an existential quantification a constant new to the branch must be 
used) correspond to U.Q.Elim and E.Q.Elim. Smullyan, however, on 
pp. 54 - 56 and 78 - 79 of [ 171, discusses a “liberalized” version of the 
existential quantifier rule that can shorten some tableaux in ways 
analogous to those in which a rule of EI can shorten natural deduc- 
tion derivations. Under the liberalized rule, the constant substituted 
for the bound variable of the existential quantifier must either be new 
to the branch or fulfill the three requirements of (i) not having pre- 
viously been introduced by the existential quantifier rule, (ii) not occur- 
ring in the existentially quantified formula the rule is applied to, and (iii) 
there not being any constant in the existentially quantified formula 
which was previously introduced by the existential quantifier rule. 

It is fairly easy to show that dropping any of the three require- 
ments allows the construction of closed trees validating invalid 
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inferences, but it would be nice to have a more intuitive explanation 
for them. One is provided if we look on the liberalized rule as anal- 
ogous to (cl), with the constant abbreviating the s-term. Requirement 
(i) amounts to the obvious requirement that the same constant not be 
used to abbreviate distinct a-terms; if the liberalized rule is to be used 
in tableaux for translations of ordinary language arguments contain- 
ing names, (i) should be supplemented with a restriction to the effect 
that the constant introduced should not occur in starting formulas of 
the tableau. Requirement (ii) simply reflects the syntactic fact that an 
s-term cannot contain itself as a proper subterm. To see the function 
of requirement (iii), consider a tableau for the fallacious inference 
from Vx3yRxy to 3xZly(Rxy & Ryx) in which it is violated. Applying 
the quantifier rules to the premiss, we get in succession (1) 3yRey, (2) 
Rea, (3) 3yRay, and (4) Rue. The application of the existential quan- 
tifier rule to (3) to obtain (4) meets requirements (i) and (ii) but 
infringes requirement (iii); (2) and (4) together with the negation of 
the conclusion are sufficient to ensure that the tableau will close. To 
see what has gone wrong, try to disabbreviate the constants to c-terms. 
The constant e, when it is introduced in (4), functions as an abbrevi- 
ation for an s-term containing the constant a, but a in turn is an 
abbreviation for an e-term containing e: e, when fully disabbreviated, 
would have to contain itself. 

Smullyan’s liberalized rule could be liberalized further (his (iii) 
could be replaced by something like Quine’s Ordering), but his 
requirements are at least sufficient to ensure that all the constants 
introduced by the rule in a given tableau can be disabbreviated to 
s-terms, guaranteeing soundness. 

I hope that I have at least demonstrated with my sketchy soundness 
proofs that reference to Hilbert’s s-operator can provide a perspicu- 
ous and intuitively satisfying account of rules like EI. It remains to 
consider what implications there are for the correct analysis of informal 
reasoning and for practice in logical pedagogy and other fields (e.g. 
computer program verification) where the production of long formal 
derivations may be called for. 

First a side issue. Fine suggests that his dependency diagrams can 
provide a useful algorithm for checking the correctness of derivations 
in systems with rules like EI. Some such algorithm may indeed be 
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necessary in fields like program verification, where derivations of 
several hundred or more lines may be called for. From the pedagogi- 
cal standpoint, however, I have two complementary worries about 
dependency diagrams. To present them with Fine’s theoretical justifi- 
cation would require a fair bit of model theory before the deductive 
system for first-order logic is introduced, and this, even if the inversion 
of the usual order of topics is accepted, might seem to involve devoting 
an inordinate amount of time to mere mechanics. On the other hand, 
to present them without explanation, as an additional bit of formal 
work to be done mechanically each time a derivation is constructed, 
would simply reinforce the already wide-spread opinion that introduc- 
tory logic is a semester of unmotivated, pseudomathematical hen- 
scratching, with no detectable relevance to the rest of the philosophy 
curriculum. In practice, the notation of Suppes [18], where instantial 
letters are subscripted with the terms on which they depend, would 
probably not be too long for use in derivations of the size likely to be 
produced by students in elementary or intermediate logic courses. 

But should a rule like EI be used at all? Certainly it allows some 
derivations to be shortened, but at the expense of some complication 
in the system and its metatheory. The savings in derivation length, 
though important for some applications, will not be enough to justify 
the trade-off in a pedagogical context unless the rule is a natural one 
in itself. Fine argues that EI is more faithful than E.Q.Elim to the 
structure of intuitive reasoning, but I am not convinced. The formal- 
ization of the argument on p. 103 in a Fitch-style system will, to be 
sure, involve extra lines as the nested E.Q.Elim sub-proofs are set up, 
but it is entirely routine (and any full formalization will insert steps 
that would be left out in ordinary mathematical exposition). I see no 
reason not to think that someone uttering “There is a real, c, such 
that c is between a and b” is performing two speech acts in uttering a 
single sentence: asserting an existential quantification and hypothesiz- 
ing that one of the reals satisfying the condition is called c. We must 
look deeper for the structure of intuitive reasoning. 

One of the unlovely specimens whose derivation can be shortened 
by EI is !lx(3y& XJ Fx). This is a monstrous formula: no one finds 
its validity intuitive on first encountering it. I would, at least half 
seriously, argue that it is evidence in favor of the superior naturainess 



420 ALLEN HAZEN 

of Gentzen- or Fitch-style natural deduction that it can only prove 
this horror in a longer, indirect, way. The intuitionistic invalidity of 
the example raises a further point. (~1) or its abbreviated form EI 
cannot be used without restriction in intuitionistic logic (cf. [14]) or in 
the systems of weak relevant logic without excluded middle currently 
being explored (cf. [1], [2]) as possible ways of avoiding the logical 
paradoxes. (The argument of [15] is fallacious because it ignores this 
point.) Leading to a final pedagogical consideration: logicians who 
think these non-classical logics worthy of study, either for their tech- 
nical mathematical interest or for broader philosophical reasons, will 
want their beginning students taught methods of proof that generalize 
to the non-classical cases. 
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