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AbstracL A theory for spatial lattices is presented in a variational setting and conditions restricting stable defor- 
mations are discussed. In particular, new results on the second variation of the energy are established and used to 
generate pointwise necessary conditions for locally energy-minimizing configurations, 

Sommario. Viene presentata una teoria per i reticoli spaziali in un ambito variazionale e sono inoltre discusse 
condizioni the limitano deformazioni stabili. In particolare vengono stabiliti nuovi risultati sulla variazione se- 
conda dell’energia. Tali risultati vengono usati per stabilire condizioni necessarie puntuali per configurazioni the 
minimizzano l’energia localmente. 
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1. Introduction 

In this work we examine some aspects of a nonlinear variational theory for three-dimensional 
deformations of extensible spatial rods. The theory that we consider is based on the notion of a 
one-dimensional continuum endowed with a kinematical and constitutive structure sufficient 
to represent the dominant features of the mechanics of suitably loaded thin three-dimensional 
elastic bodies. This theory belongs to a general class that has received considerable attention. 
An extensive account of such theories and their mathematical structure may be found in 
Antman’s book [ 11. The special theory considered here requires relatively modest empirical 
input with regard to constitutive equations, and incorporates a reasonably broad range of 
response, ranging from flexible cables to rods with significant flexural and torsional rigidity. 
It is thus well suited to applications. 

Our contribution to this subject is the development of an associated theory for the equilibri- 
um of spatial lattices and the derivation and analysis of certain necessary conditions for stable 
configurations in the presence of configuration-independent conservative loads. In particular, 
we obtain the second variation of the energy for equilibrium states and use it to generate 
pointwise necessary conditions for stable equilibria. These are the counterparts of the well 
known Legendre inequalities associated with one-dimensional variational problems [2]. 

Section 2 is devoted to a brief discussion of the kinematical and constitutive foundations 
of the rod theory under consideration. The framework used here generalizes the viewpoint 
adopted in [3] for inextensible rods. In Section 3 we obtain expressions for the first and second 
variations of the strain energy based on a local characterization of kinematically admissible 
configurations. The attendant analysis is complicated by the stringent kinematical restrictions 
embodied in the theory. 

The results are used in Section 4 to obtain the Euler equations of equilibrium. These are 
identical in form to the well known statical equations of rod theory. This correspondence in 
turn lends support to the various hypotheses upon which the theory is based. We also derive 
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the equilibrium conditions at the nodes of the lattice associated with various types of nodal 
constraint. These, too, correspond to the conditions that would be obtained from elementary 
considerations. Finally, in Section 5 we present a detailed derivation of the Legendre necessary 
condition associated with locally stable configurations. We demonstrate that, contrary to 
expectation, this condition does not encompass the Legendre condition for elastic cables in 
the limit of perfect flexibility. 

2. Kinematics and the Basic Constitutive Hypothesis 

Configurations of spatial rods are defined by mappings of an arclength parameter s E [O, L] 
onto {r(s) ei(s)}; i = 1,2,3, where L is the total arclength in a reference placement, r(e) 
is the position vector of points on the rod relative to a fixed origin, and the ei(a) are vector- 
valued functions that specify the orientations of cross-sections s = const, The material rod is 
identified with the reference configuration in which the functions r( -) and ei( .) take the values 
x(e) and Ei(.), respectively. We take {Ei} to be an orthonormal set for every s c 10, L], and 
identify El(.) with the unit tangent to the space curve defined by x( .) : El (e) = x’(a). Here 
and elsewhere, primes are used to denote derivatives with respect to s. The vectors Ez(s) 
and Ed span the plane normal to the curve at arclength station s. In principle, there is no 
further restriction on the specification of these vectors, but it is frequently advantageous to 
define them so that El - E2 x Es = 1, with E2 and Es along the geometric principal axes of 
the cross-section. 

We consider a constrained theory in which the set {ei} is orthonormal at every cross- 
section, with et . e2 x es = 1, and further require that ei coincide with the unit tangent, t, to 
the space curve defined by r( -). Thus 

r’(s) = At, 

where 

is the local stretch of the rod. Moreover, the constraints on {Ei} and {ei} imply the existence 
of a rotation R(s) such that 

ei(s) = R(s)Ei(s). (2.31 

In particular 

where 1 is the unit tensor for 3-space. 
A kinematical framework of this type is appropriate when modelling the response of thin 

extensible rods in which shear of the cross-section, relative to the rod axis, is suppressed. It 
is equivalent to a certain special version of the director-theory of rods, about which much has 
been written. We refer to Antman [1] for comprehensive discussion and bibliography. 

The kinematical description is completed by introducing a tensor W defined by: 

W=ei@ei=Wijei@ej; Wij = C?i . ei. (2.5) 
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This furnishes the rate of change of {ei} with respect to a: 

e: = Wei. WI 

The orthonormality of {ei} implies that W is skew, i.e. WT = -W. Thus W(s) is equivalent 
to a vector-valued function W(S), in the sense that W u = w x u for any vector u. The use of 
w allows (2.6) to be written in the form 

ei = W X t?i. (2.7) 

The relation between the components wz(= w s ei) and Wij is well known: 

where f?ijk is the usual permutation symbol (eizs = +l). 
It follows from (2.7) that the components W~(Q e {2,3}) account for the rate of change 

of the unit tangent t(= ei) with respect to s, while wi measures the projection onto the 
cross-section of the rate of change of the cross-sectional orientation. 

Let 0 be the skew tensor defined by 

f2=RTWR= WiJEt@EJ (2.9) 

and let 

n = tciEi (2.10) 

be its vector-equivalent: 

Evidently pi = wi and w = Rn. 
It is straightforward to show that A and K are invariant under superimposed rigid deforma- 

tions 

(2.12) 

where Q is an arbitrary fixed rotation and c is an arbitrary fixed vector. Because of this 
invariance property, it is natural to formulate a theory for elastic rods by introducing a strain 
energy, w, per unit length of the reference placement, that depends on A and K: 

w = w(A,n). (2.13) 

Here we suppress reference to possible dependence on arclength s that may arise due to 
nonuniformity of the material properties, or to the presence of non-zero values of the functions 

(2.14) 

These are the values of Ki (s) in the configuration {x, Ei}. It is often desirable to include them 
explicitly as parameters in the strain energy function [3, 41. We leave any such dependence 
tacit, as it does not affect the considerations of this work. 
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We remark that the form (2.13) may be deduced from the fundamental postulate that the 
strain energy depends on the variables r’, ei, and ez, together with (2.1) and the assumption of 
invariance of the energy under superimposed rigid motions [ 11. A thorough discussion of this 
point may be found in [ 11, which includes developments of theories that are more general than 
the one considered here. References [ 1, 31 also contain descriptions of the notion of material 
symmetry in this context. 

A model of elastic cables may be obtained by eliminating pi (and 6:) from the list of 
arguments of the strain energy function. Alternatively, if dependence on A is eliminated (i.e. 
by setting J! z l), we recover the theory of inextensible rods considered in [3]. Retention of 
the full list enables us to consider a wide range of problems using a single theory. 

Finally, we note that Dill [5] has recently presented an in-depth analysis of the relationship 
between the present theory and the three-dimensional theory of elasticity for isotropic solids. 

3. The Total Strain Energy and its First and Second Variations 

The strain energy of the rod is the functional of the configuration {r, ei} defined by 

I 

L 
s= w(A, n) ds. (3.1) 

0 

Let E E (-co, Ed) for some positive number Ed, and consider a smooth one-parameter family 
of kinematically admissible configurations { r*( s; E), er (s; c)}, with {r* (3; 0) , ez( s; 0)} = 
{r(s), e&)}. FI ere k inematic admissibility means that, for each fixed E, r* ( -; &) and ez (m; E) 
are at least piecewise C2 on [O, L] and satisfy (2.1) and (2.2): 

r *’ z A*t*; A* = ir*‘i, t* = e;. (3.2) 

It is possible to relax the continuity hypothesis if equilibria with discontinuities in A or n 
are of interest [3], but we do not consider such examples here. Further conditions regarding 
kinematic admissibility are introduced in Section 4 as required. 

Let superimposed dots denote derivatives of functions with respect to E, evaluated at E = 0. 
Then the first and second variations of S at the configuration {r, ei} are 

(3.3) 

and 

respectively, where 

ikli = 8Wflk& Di = 132w/&4&~, Cij = 82W/aKi81Cj (3.5) 

and all the derivatives of w(., a) are evaluated at E = 0. Here {A, ki} and {i, &} are the first 
and second variations of {A, Q} induced by the variations of {r*, ez}. 

To analyze the structure of these variations near E = 0, we write 

er(s; E) = ei(s) 4- E&(S) + Z&~&(S) + o(E~), (3.6) 
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and 

r*(s;&) = r(s)+- m(s) -I ~$&~v(s)i- o(E2), (3.7) 

where 

u=? and v=i. 

Let R*(s; &) be the rotation that maps {Ei} onto {e;} : R* = ez @ Ei. Then 

(3.8) 

(3.9) 

where a*(+ = (3.10) 

is a skew tensor and a*(s; &) is its vector-equivalent. Consequently, 

i?i = a X ei 

where a(s) = a*(s; 0). Further differentiation of (3.9) yields 

iii = a x (ax es)+ b x e; 

where b(s) = (d/d&)a*iczu. 
Next, we define the scalar functions 

u(s) = i, b(s) = i 

(3.11) 

(3.12) 

(3.13) 

so that 

A*(s; E) = A(s) + m(s) + $E2b(s) t o(c2). (3.14) 

On combining this with (3.6), (3.7) and the constraint (3.2), we obtain the compatibility 
conditions 

u'(s) = ut+ Aa x t= d+a x r' (3.15) 

and 

v’(s) = 2u(a x t) t a x (a x r’) t bt t b x r’. (3.16) 

Formulae for the first and second variations of $(s; &) may be derived from (2.5), (2.11) 
and (3.11): 

(3.17) 
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The terms involving a cancel, and we obtain 

One of the e - 6 identities then furnishes the result 

ki = ei . a’. (3.19) 

With the use of (3.12), we may also show that 

iii = ei . a’ x a + ei . b’. (3.20) 

Let ~(3) and y(s) be piecewise C2 scalar-valued and vector-valued functions, respectively. 
We define 

I[q y’] = ~L[(Lh/8A)x -I M - y’] ds (3.21) 

and 

J[X, y, y'] = ~L[(i?2w/i3A2)x2 t y' . Cy' t M . y' x y t 2cr1. y'] ds, (3.22) 

where 

M = A&e;, D = IJiei, C = Cijei @ ej (3.23) 

and Mi, Di, Cij are defined in (3.5). In the next section we interpret M(s) as the moment 
exerted on the part [O, s] of the rod by the remainder (s, L]. 

Substitution of (3.13) and (3.19-23) into (3.3) and (3.4) yields the first and second 
variations of the strain energy in the forms 

3 = I[u, a’] and ,? = 1[b, b’] t J[u, a, a’]. (3.24) 

4. Lattices 

Consider a collection of n rods. Let the jth rod have arclength Lj in its reference configuration. 
Suppose these are joined together at 1 nodes located at the positions xk; k = 1, . . . , 1. After 
deformation, the nodes displace to the (unknown) positions yk. Let the collection of index 
labels of these nodes be the set K. At each node k E K, a dead load qk is prescribed. In 
addition, we suppose that m nodes are fixed at the locations zh; h = 1,. . . , m. Their labels 
belong to the set H. The collection of all node labels is K U H. 

Let sJ E [O, Lj] measure reference arclength along the $h rod. The position function in 
a typical configuration is zj (sj) and the orientation triad is {eZ (sj )}J. Following Cannarozzi 
[6], we introduce the sets 

Ik = {j : Sj = 0 at node k E I(}, 

Ek = {j : ~j = Lj at node k E I{} 
(4.1) 
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and 

1h = {J’: sj = 0 atnodeh e H}, 

Eh={j:si=Lj atnodehcH}. 
(4.2) 

Henceforth we use superscripts 0 and L to denote the values of functions at sj = 0 and 
sJ = Li, respectively. Thus 

ry = rj(O) and rf’ = rj(Lj). (4.3) 

These are subject to the conditions 

$ = ok, .i c Ik; + = Yk7 j E & 

and 

i-y = zh, .i E Ih; rf = zh, ei !C % 

which ensure the continuity of the lattice at the nodes. 
The potential energy, E, of a configuration of the entire lattice is 

IIC = 2 sj - 6 qk ’ Yky 
j=l k=l 

where SJ is the total strain energy of the jth rod. A configuration of the lattice is equilibrated 
if and only if the associated first variation of the energy vanishes for all admissible variations 
of the kinematical variables: 

where 

,$ = J ” [(Lh/l?A)t . u’ -I- M . a’] ds. (4W 
0 

Here (3.13)r and (3.15) have been invoked and the index j has been suppressed in the integrand 
for the sake of clarity. 

To proceed it is necessary to account explicitly for the fact that the variations u(s) and a(s) 
are not independent. In particular, scalar multiplication of (3.15) with ea(a = 2,3) furnishes 
the constraints: 

u’ - ea + r’ . a x e* = 0; ckf = 2,3. 

When these are satisfied, Sj coincides with the augmented functional 

(4.9) 

Tj = J 4 [(&@qt 
0 

- u’ + M . a’ + Fm(u’ . e. + r’ . a x eti)] ds 

X  J LJ[F-u’+ M 
0 

. i-t’ + r’ . a x (Faea)] ds, (4.10) 
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where Fa(s), GE E {2,3}, are Lagrange multipliers, and 

F = (G’w/aA)t t Foea. (4.11) 

Since r’ is parallel to t, the last term in (4.1) may be replaced with a . F x r’, and integration 
by parts yields 

(4.12) 

TJj z - 
/ 

“[II . F’ + a . (M’ - F x r’)] ds. (4.13) 
0 

These expressions may be used to reduce the stationary-energy condition, eq. (4.7), to 

(4.14) 

(4.15) 

Restrictions on the virtual rotations a! and af’ must also be imposed in accordance with 
the particular type of nodal connection under consideration. 

Now (4.14) must be satisfied for all admissible uk, a: and a$. Null values of these 
variations are admissible in all lattice types, and for this choice (4.14) requires that the sum 
x Uj vanish. By choosing u(s) and a(s) to be non-zero in each of the n rods in succession, 
weconclude that Uj = 0;j = 1,-a., n, where Ui is given by (4.13). The mzdtiplier de [2] 
of the calculus of variations then yields the equilibrium equations in each rod: 

F’ = 0, M’ = F x r’. (4.16) 

These are identical to the classical equations of rod theory [5], in the absence of distributed 
load, provided that F(s) and M( ) s are identified with the force and moment, respectively, 
exerted by the part [s, L] on the remainder [O, s). (Conversely, -F(s) and -M(s) are the force 
and moment exerted by [O, s] on (s, L]). The moment is given by the constitutive equation 
(3.5) (with (3.23)). In view of (4.11), it is only the tangential component of the force that is 
determined by a constitutive equation. The transverse components Pa are shear reactions that 
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are workless in any variation of the configuration compatible with (4.9). They are determined 
by equilibrium considerations alone. 

We remark here that Tadjbakhsh and Lagoudas [7] recently presented an alternative vari- 
ational treatment of a dynamical theory for rods of the kind considered here. In their work, 
the counterpart of eq. (2.1) (or (3.15)) is treated a constraint in its entirety, and all three 
components of the force F are regarded as Lagrange multipliers. The tangential component is 
then given by a constitutive equation a posteriori. However, this is unnecessary because the 
variation i( = c) of the local stretch is not subject to any restriction. Thus, according to (3.15), 
the tangential part of u’ is arbitrary. It is only the transverse components that are restricted, in 
accordance with (4.9). Equation (2.1) may be interpreted as a constraint if the rod is inexten- 
sible (A = 1). In this case all components of the force are constitutively-indeterminate (e.g. 
r311. 

With (4.16) satisfied in each rod, all of the Uj in (4.14) vanish, and the remaining expression 
must be satisfied for all uk and for all admissible a? and a:. On setting a: = 0, a: = 0 and 
taking all but one of the uk to be zero in succession, we obtain the nodal force balance 
equations 

These require that the net effect of the nodal reactions (the forces exerted by the nodes on the 
rods) be such as to balance the applied forces. 

Additional equilibrium conditions may be derived, but these vary depending on the class 
of nodal constraint. We present discussions of three of these classes. 

(a) Unrestricted rotations 
If the rod rotations are unrestricted at the nodes, then there are no kinematical constraints 

on virtual displacements or rotations beyond those that have already been imposed. Nodal 
connections of this type are appropriate in a theory of cable networks, or in models of ball 
and socket joints in structural lattices. 

For illustrative purposes, suppose that a particular node k’ cz K is of this type. Then a 
necessary condition for (4.14) is 

For each j E Ek! UIk!, the a: and a: may be specified independently, so the node is equilibrated 
only if it transmits no moment to any of the attached rods: 

(b) Rigidly constrained rotations 
Once again we focus attention on a particular node k’ E K for the sake of illustration. 

Suppose the nodal connection is rigid in the sense that, for any two values of j in the set 
Ikl U Ek!, the angles formed by the triads {Ei}: and {Ei}f are preserved under deformation. 
This is equivalent to requiring that 

R!j = Rk/, j E &; Rf = Rk,, J’ G &, (4.20) 
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for some rotation Rp, where R’ and RL are the endpoint values of the rod rotation R defined 
in (2.4). If such conditions are imposed in all configurations, then (3.10) may be used to derive 
an associated set of restrictions on the virtual endpoint rotations: 

for some arbitrary vector akj. 
In the present case (4.18) remains valid, and (4.21) yields 

for all ak/, (4.22) 

where 

(4.23) 

Thus the net moment at the node vanishes: pkl = 0. 

(c) Concurrent axes of rotation 
As a final example, let the rods joined at node k’ E K be constrained in such a way as 

to pivot freely about a common axis with orientation N in the reference configuration of the 
lattice. Then the endpoint rotations Ry and Rf are such that 

where n is the pivotal axis in the deformed lattice. We take N and n to be unit vectors without 
loss of generality. 

The variational versions of (4.24) are 

where 

p=il (4.26) 

is the variation of n. We note that p - n = 0 because n is a unit vector. Now any vector a may 
be represented in the form 

a = (n . a)n + n x (a x n), (4.27) 

so that 

a: = c$n + n x p and a$ = c$n + n x p (4.28) 

for some scalars c$ , of. 
Substitution of (4.28) into (4.18) yields 

(4.29) 
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where pk, is given by (4.23). This must hold for arbitrary c$, c$‘, and for any p perpendicular 
to n. By setting fi = 0 and all but one of the CX’S equal to zero in succession, we derive the 
necessary conditions 

n.My=O, j E Ikl; n.Mf=O, jE,!&. (4.30) 

Thus the node transmits no axial moment to any of the attached rods. Finally, the last term in 
(4.29) requires that pk! be orthogonal to any vector in the plane perpendicular to n, so that 
pk! = (n - ,.&k!)n. But 

and this vanishes by (4.30). Thus there is no net moment at the node: 

,.hk: = 0. 

(4.31) 

(4.32) 

5. Further Necessary Conditions for a Minimum of the Energy 

(a) The second variation of the energy at equilibrium 
For an equilibrium configuration to be stable, it is necessary that the second variation 

of the energy, evaluated at that configuration, be nonnegative. In the present context, this is 
equivalent to the requirement 

(5-l) 

where 

and 

is the second variation of the strain energy of the jth rod (see (3.24)). 
To proceed we use the equilibrium conditions derived in the previous section to obtain 

restrictions on the equilibrium values of the functionals Ij. Substituting (4.11) and (4.16)~ 
into (3.21), we derive 

Ij = J ” (bt . F - b . F x r’) ds -/- Mf . bf - My . by. (5.4) 
0 

Here we use the compatibility condition (3.16) to reduce the first term of the integrand to 

k.F=F.v’+b.Fxr’-2uFmaxt-F.ax(axr’). (5.5) 

From (4.16)1, the leading term in the latter expression is equal to (F . v)‘, and we obtain 
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- J ” [2aF 
0 

. a x t + Fe a x (a x r’)] ds. W-3 

For the sake of brevity we restrict our further considerations to nodal constraints of the 
type treated in Section 4(a). Thus we impose (4.19) together with the kinematical conditions 

dj = vk, j E -fk; v; = vk, j E &. 

On combining (5.3), (5.6) and (3.22), we find that (5.1) is equivalent to 

where 

J &I 
Fj = F*(a, a’) ds, 

0 
Gj = J ” G*( a, a, a’) ds 

0 

and 

F*(a, a’) = (i3’2w/b’A2)a2 + a’. Ca’ -j- 2aD. a’, 

G*(a, a, a’) = Me a’ x a - 2aF. a x t - F. a x (a x r’). 

In view of (4.17), all of the terms in square brackets in (5.8) vanish separately. Thus 

(5.8) 

(5.10) 

x(Fj + Gj) 2 0. (5.11) 
i 

(b) The Legendre inequal@ 
Following the development of the classical necessary conditions for one-dimensional 

variational problems [2], we consider local variations a(s) and a(s) that vanish identically in 
all but one of the rods. In the remaining rod, we consider variations of the form 

44 = e.W, 44 = 4~4, (5.12) 

where e is a fixed vector, e is a constant, and j(s) is the continuous piecewise C1 function 
defined by 

.s -317 Sl < t!s < s2 

f(s) = -j$(s - s3), s2 < L3 < s3 (5.13) 

0, s E Wl\(Sl, s3). 

Here s 1, s2 and s3 are three arbitrarily chosen points in the interval [O, L], with sr < s2 < 33, L 
is the initial length of the rod, and 

f? = (s2 - 54/@3 - 4 E p,q. (5.14) 
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The induced variation u(s) may be constructed by integrating (3.15). 
We remark that the variations defined by (5.12) do not possess the degree of continuity 

required in the development leading up to (5.11). To rectify this, one may use the method of 
molZi$ers [8] to construct sequences of Cm functions that converge boundedly to (5.12)i J. 
The use of such sequences leads to precisely the same results as those obtained by using (5.12) 
directly. 

For variations of the type considered, the single non-vanishing term in the sum (5.11) must 
be nonnegative: 

F+G>O, (5.15) 

where the functionals F and G are defined in (5.9, 10). Let 

A = s3 - sl, A, = s2 - sl = 0A, A2 = s3 - s2 = (1 - 0)A. (5.16) 

Then 

A-‘$’ zz A-’ J ” F*( a, a’) ds 
Sl 

8 1-e s3 
=- 

A J ” F*(e,e) ds + z J F* (-$e, - (5.17) 
1 Sl s2 

The definition of the function F* may be used to replace the integrand in the second integral 
by [02/(l - O)2]F*(e,e). If we now let A + O+ (i.e. Ai, A2 + O+) with 0 fixed, and invoke 
the mean-value theorem, we obtain 

A-‘F + $F*(e, e). 

A similar argument applied to the functional G yields 

A-1(&A ” 

A J G*(e, a, e) ds + - -$e,a,-$e ds. (5.19) 
1 31 

As A -+ O+, the continuous function f(s) defined by (5.13) approaches zero pointwise, while 
its derivatives remain finite in the intervals (st , ~2) and (~2, ~3). Thus a(s) approaches zero 
pointwise, and 

A-iG -+ 0G*(e, 0, e) + (1 - O)G* I9 
--e,O, -- 

1-0 

But G*(., 0, a) = 0 by (5.10)2, so A-‘G + 0. Thus we have shown that 

F = G(A), G = o(A); A + 0+ 

for the particular variations defined by (5.12-5.14) and (5.16) 
Substitution of (5.18) and (5.21) into (5.15) yields 

(5.20) 

(5.21) 

A &F*(e,e) + A-lo(A)] > 0. (5.22) 
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Dividing by A, passing to the limit, and recalling that 0 < 0 < 1, we obtain the Legendre 
necessary condition S’*(e, e) 2 0: 

(@w/8A2)e2 -t em Ce t 2eD . e > 0 for all e, e. (5.23) 

This holds at every point s E [O, L] in a minimizing configuration. Obvious necessary condi- 
tions for this are 

a*w/b’A* 2 0 and em Ce 2 0, Ve. (5.24) 

The first requires that the extensional modulus be nonnegative, while the second states that the 
tensor of moduli associated with torsion and tlexure is nonnegative definite (see (35), (3.23)). 
The latter result is equivalent to the Legendre necessary condition for inextensible rods [3]. 

In general, (5.23) is equivalent to the nonnegative definiteness of the 4 x 4 matrix 

Necessary and sufficient conditions in terms of the elements of the matrix may be derived 
with the aid of a theorem for semi-definite quadratic forms given in [9, Chapt. lo]. 

Finally, we remark that our restriction to nodal connections of the ball and socket type is 
not essential. Inequality (5.23) may be shown to be necessary for all node types. 

(c) Cable networks 
It is of interest to re-examine the foregoing analysis for the case of a system of elastic 

cables. These may be modelled by suppressing the dependence of the strain energy on the 
variables K%. In this case the appropriate nodal conditions are precisely those that we have 
imposed previously to illustrate the theory of the second variation. Retracing the argument in 
the present case, we find that (5.15) is replaced by the inequality H > 0, where 

I 
L 

H= H*(u, a) ds 
0 

and 

H*(qa) = F*(u,O) + G*(O,a,O) 

= (df/dA)cj* - f(A)t . a x (a X 8). 

Here 

f(A) = dw(A)/dA (5.27) 

and we have used the result 

F = f(A)t 

(5.25) 

(5.26) 

(5.28) 

to eliminate the second term in the expression (5.10)~ for the function G*. 
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The absence of a’(s) in (5.26) allows us to consider variations a(s) having less continuity 
than would otherwise be required. In particular, replacement of a(s) in (5.12)i with a = ef’( s) 
leads to the limit 

A-‘H + $H*(e, e); A + O+, (5.29) 

and (5.23) is replaced by the Legendre condition for cables: 

H*(e,e) 2 0 foralle,e. (5.30) 

Next, we use the identity 

F . e x (e x r’) = (e v F)(e . r’) - ]ei2F. r’, 

together with (5.26) and (5.28), to write (5.30) in the form 

(5.31) 

(df/dA)e2 + Aj[]ei2 - (t . e)2] 2 0 for all e, e. (5.32) 

The choice e = 0 yields the counterpart of (5.24)1: 

df/dA 2 0. (5.33) 

Since the bracketed term in (5.32) is nonnegative and may be positive, the alternative choice 
e = 0 gives 

f(4 2 0. (5.34) 

Thus, according to the idealized theory used here, the cable cannot support a compressive 
force in stable equilibrium. This restriction has no counterpart in the Legendre condition for 
rods. 

Conversely, inequalities (5.33), (5.34) imply (5.32), which is equivalent to (5.30). This in 
turn implies that H 2 0 for each cable, which guarantees the nonnegativity of the second 
variation for the entire collection of cables. The pointwise conditions (5.33), (5.34) are there- 
fore necessary and sufficient for the local stability, in the sense of the second variation, of an 
elastic cable network. For rods, the relevant Legendre inequality is generally not sufficient for 
stability. 

Acknowledgement 

I gratefully acknowledge the support of the Natural Sciences and Engineering Research 
Council of Canada through grant OGP 0041743. 

References 

2. 
3. 
4. 
5. 
6. 

7. 

8. 
9. 

Antman, SS., Nonlinear Problems of Elasticity, Springer-Veriag, New York, 1995. 
Ewing, G.M., Calculus of kriations with Applications, Norton, W.W., New York, 1969. 
Steigmann, D.J. and Faulkner, M.G., ‘Variational theory for spatial rods’, J. Elast., 33 (1993) l-26. 
Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, 1927. 
Dill, E.H., ‘Kirchhoff’s theory of rods’, Archivefor HistoT ofExact Sciences, 44 (1992) l-23. 
Cannarozzi, M., ‘Stationary and extremum variational formulations for the elastostatics of cable networks’, 
Meccanica,20 (1985) 136-143. 
Tadjbakhsh, LG. and Lagoudas, D.C., ‘Variational theory of motion of curved, twisted and extensible elastic 
rods’, Int. J. Engng. .Sci., 32 (1994) 569-577. 
Friedman, A., Partial D$erential Equations, Holt, New York, 1969. 
F.R. Gantmacher, The Theory of Matrices, Vol. 1. Chelsea, New York, 1977. 


