
Meccanica 31: 421-432,1996. 
@ 1996 Kluwer Academic Publishers. Printed in the Netherlands, 

Cosserat and Cauchy Materials as Continuum Models 
of Brick Masonry 

RENATO MASIANI and PATRIZIA TROVALUSCI 
Universitd di Roma ‘La Sapienza’, Dipartimento di Ingegneria Strutturale e Geotecnica, Via A. Gramsci 53; 
00197 Roma, Italy 

(Received: 30 March 1995; accepted in revised form: 10 November 1995) 

Abstract. Continuum modeling for masonry-like material accounting for bricks or blocks texture is discussed. 
The constitutive functions for the contact actions - expressed in terms of size, shape and arrangement of the block 
assembly - are derived within the framework of the linear elastic Cosserat and Cauchy theories. By varying some 
important geometrical parameters: the scale factor between the wall and the blocks size, the shape of the bricks 
and their arrangement, micropolar materials with particular internal constraints are obtained. In a few situations 
the constrained continuum behaves as a Cauchy continuum. In general, the Cauchy continuum does not provide 
a proper description of the brick masomy behaviour while the structured continuum model, accounting for the 
mutual blocks rotation, gives satisfactory results. 

Sommario. Si studia la modellazione continua della muratura a blocchi, considerata come sistema discreto di 
corpi indeformabili, discutendo le proprieta di due continui equivalenti: un modello di Cosserat e uno di Cauchy. 
Nell’ambito della elasticita lineare, si fomiscono le espressioni delle relazioni costitutive per le azioni di contatto, 
in funzione delle dimensioni, della forma e della disposizione dei mattoni. Modificando questi parametri geometrici 
si ottengono materiali equivalenti dotati di particolari vincoli interni. In alcuni rari casi il continua di Cosserat 
vincolato si comporta come un continua di Cauchy. Salvo queste eccezioni, il continua classic0 2 un modeho 
inadeguato per la muratura a blocchi mentre un continua dotato di struttura fomisce sempre risultati soddisfacenti. 
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1. Introduction 

An important class of masonry structures is that made of bricks or stones properly assembled 
together in various regular dispositions. Since their mechanical behaviour is strongly influ- 
enced by the geometry, the arrangement and the orientation of the units, several authors have 
already attempted to develop models which take into account these features. Two approaches 
leading to micro and macro models are essentially proposed. One employs ‘fine’ descriptions 
based either on the continuum modeling of two distinct materials, the brick and the mortar, 
e.g. [ 11, [2], or on the discrete modeling of the actual discontinuous material as a multibody 
system [3], [4]. The other employs ‘gross’ continuum descriptions based either on the homog- 
enization of masonry considered as a composite material with periodic structure [5]-[7], or 
on the direct identification from a discrete system of interacting blocks [8]-[lo]. For systems 
with a large number of degrees of freedom the fine approach becomes inapplicable. For this 
reason, and because global results are often sufficient, it is advisable to resort to gross models, 
which roughly describe the discrete assembly, when practical problems are involved. 

The proper selection of the equivalent continuum plays a crucial role. The simplest choice 
available is a Cauchy anisotropic continuum which gives satisfactory results for problems 
in which the relative rotations between the blocks are not relevant. It is easy to show that 
this model retains memory of the shape and the disposition of the blocks but not of their 
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dimensions. The mechanical behaviour is instead strongly influenced by the scale factor 
between the size of the elements and the relevant dimension of the body. For example, in 
the presence of loading or geometrical singularities - such as concentrated loads, openings 
and fractures - structures made of blocks of different size behave quite differently because 
the relative rotations between the bricks are involved, with effects depending on a ‘length’ 
parameter. 

With regard to materials made of particles of finite dimensions which exhibit size effects, 
like concrete or granular materials, the idea of a microstructural continuum approach has 
already shown itself to be particularly appealing [ll], [12]. The model with a micropolar 
structure differs from the classical one in some well known significant aspects which confirms 
its effectiveness with reference to these discrete frameworks. Firstly, the additional kinemat- 
ical degree of freedom represented by the microrotation provides a natural way to describe 
the rotations of the single units [11], [13]. The mutual rotations between individual blocks, 
which play a crucial role, have the microrotation gradient as a continuum counterpart. Sec- 
ondly, the stress tensor is not symmetric. This circumstance prevents some singularities from 
arising in the solution and allows the class of compatible boundary conditions to be widened 
[14], [15], [8]. Finally, the presence of the couple stresses allows the dimensions of the bricks 
to be included in the constitutive functions and thus to properly account for the size effects. 

Some authors [8], [9] have already acknowledged that the Cauchy theory is not effective 
when the block dimensions are not small in comparison with the relevant dimensions of 
the body; therefore they adopted the Cosserat theory. While sharing this point of view, in 
this paper we also attempt to show that even when the size of the units is small, contrary to 
common expectations, a structured continuum description is required, The classical continuum 
is suitable only in a few cases, lacking practical interest: when the disposition of the units is 
strongly symmetric and their size is negligible. The above considerations and the tolerable 
complexity of the model confirm the choice of a Cosserat material as an effective model for 
block masonry. 

2. Identification of the Equivalent Continua 

The constitutive relations for the contact actions, the body forces and the surface forces of the 
equivalent micropolar continuum can be identified employing the procedure presented, with 
all the details, by Masiani et aZ. [lo]. 

First we consider the masonry as a discrete system made of rigid blocks interacting two 
by two through the contact surfaces. The rigid displacement of a generic point of a block A 
is described, within the framework of a linearized theory, by means of the displacement of 
the centre of mass w(g’) c V and the rotation of the block Wa c Skw (cf. Equations (17) in 
[lo]).’ For each pair of adjacent blocks A and L?, we define two linearized strain measures: the 
relative displacement wP = w(@) - w(p’) between two material points (‘test pair’) belonging 
to A and B, whose positions in the reference shape are JP and p*, and the relative rotation 
Wp = Wb - Wa between the two blocks. 

The contact actions that B exerts on A are described by a class of equivalence represented 
by the force tp G V applied at pa and by the couple CP E Skw. The actions on f3 are obtained 
from balance. 

’ Sym and Skw are, respectively, the sets of the symmetric and skew-symmetric elements of the set Lbx of 
the linear transforms of the vector space Vinto itself. 
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Then we establish a correspondence between the motion of a part P of the block assembly 
and that of a neighbourhood of a continuum with micropolar structure. We assume that the 
motion of the part F is smooth so that the discrete fields of the displacement w(ga) and the 
rotation Wa admit a local representation as 

where U(X) and R(x) G Skw are respectively the linearized displacement and microrotation 
fields of the continuum, H = grad(u) E Lin and H = grad(R) E LIN.* Hence, the strain 
measures for the test pair QP, pb) can be expressed in terms of continuum strain measures 
H - R and H (Equations (25) in [lo]). 

In order to identify the stress measures of the equivalent continuum, represented by the 
stress tensor S E Lin and the couple-stress tensor S c LIN, we finally assume that the density 
of mechanical power expended by the contact actions in 7’ (Equation (22) in [lo]) and in the 
continuum medium (Equation (14) in [ 101) is the same for any admissible velocity field fi - R, 
H . This is true if and only if the continuum contact actions admit the following expressions 

tcp @ bib - L7Y 1 G9 

functions of the mechanical actions between the bricks and their geometrical fabric. 
To make a comparison we also identify the contact actions of a Cauchy continuum applying 

the same equivalence procedure. Let us establish a correspondence between the motion of the 
part P of the block assembly and of a neighbourhood of a Cauchy body in such a way that 

With these hypotheses, the strain measures of the discrete can be written as 

wp = wnW4(gb - 9% wp = 0. 

As above, by equating the mechanical virtual power density of the fine and the gross model 
- both expressed in terms of the continuum strain measure symH - we can identify the 
expression for the Cauchy stress tensor g in terms of the contact forces and geometrical 
parameters of the discrete 

3. Constitutive Functions for the Contact Actions 

The procedure of power equivalence allows the correspondence between the continuum and 
the discrete contact actions to be determined without declaring the nature of their response 

’ LIN := V+ Skw. 
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function. We assume below that the interactions between the bricks are linear elastic and 
vanish in the reference configuration, therefore we write3 

b = Wwp, q-J = WyP 6) 

Assuming the representation (1) for the displacements of the discrete, the expressions (6) can 
be written in terms of continuum strain measures and then substituted into Equations (2). After 
some algebra, we obtain the linear relations between the stress and the local strain measures 
of the structured continuum in the form4 

w4 = *c4P~~~ - w41+ $wb91~ 
w = %m--w - WI + wP~~~l* (7) 

Likewise, if the discrete strain measures are described by Equations(4), from Equations (5) 
and (6) we derive the constitutive expressions for the contact actions of the Cauchy equivalent 
material in the form 

g(x) = @z)[symH(z)]. e9 

The components of the elasticity tensors A, IE8, C and JD, in the Cosserat frame, and & in the 
Cauchy frame, are expressed in terms of the geometry of the blocks and of the elastic constants 
of the contacts. Here we assume that the tensors K(p) and K(p) are symmetric, 5 consequently 
wehaveU.~V=V.~U,U.~V=V.~U,~U.U=U.~,VU,V~L~n~dVU,V~LIN, 
and the material results as being hyperelastic. 

In order to define the symmetry groups for the equivalent materials, we introduce the 
following groups6 

GA := {Q E SO(3) IQ * A[U] = A[Q * U],VU E l-in}, 
GB := {Q c SO(3) iQ*B[U] = m[Q * U],VU E LIN}, 
Gc := {Q c SO(3) IQ * C[U] = C[Q * U],VU c Lin} 
GUD := {Q c SO(3) IQ * QU] = D[Q * U],VU c LIN}, 
GA := {Q c SO(3) IQ * @J] = &Q * U],VU c Sym}, 

where the asterisk indicates the action of the group on a tensor.7 The symmetry group for the 
Cosserat material is G := GA n G’B n &;* for the Cauchy material the symmetry group is GA. 

In the right hand side of expressions (2) the variable x appears explicitly, but also the 
functions volP and ‘&,’ depend on X. If the bricks assembly has a periodic structure, a 
‘module’ can be defined as the smallest volume element accounting for all kinds of dynamical 
interaction between the bricks. Choosing such a module as part P, the equivalent continuum 
results in being homogeneous. If the assembly is non-periodic, the procedure can still be 
applied by obtaining a non-homogeneous equivalent continuous material; the identification 

’ K:=V + v; K := Skw + Skw. 
’ A:=L~n~L~n;~:=LIN~L~n;~:L~n~LIN;~:=LIN~LIN. 
’ Thatisu.Kv=v.Ku, Vu,vEVandU.EN=V.HJ, VU,VESkw. 
6 SO(3) is the group of the proper orthogonal transformation of the 3-D euclidean space. 
’ In terms of components, the action of an element Q of the group on a tensor T yields (Q * T),J...m = 

Tat,,,,nQzaQ3b . Qmn. With ‘b3-m = T . e, @ e3 8 + . .@3 em. 
* For hyperelastic materials GC E &. 
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Figure I. Examples of masonry textures and corresponding moduli 

will be carried out point by point assuming an arbitrary neighborhood as part P on which to 
establish the power equivalence. In both cases, the part of the discrete framework must be 
small in order to satisfy the hypothesis of regularity on the motions implicit in Equations (1) 
and (3). 

Henceforth we focus our attention on 2-D walls with periodic textures. In Figure 1 two 
examples of ordinary periodic bricks textures are sketched along with an unusual but significant 
case. Since the continuum constitutive functions are directly related to the geometry of 
the module, and in particular to the arrangement of the units, by changing the disposition 
of the bricks the continuum elastic coefficients, and the classification in terms of material 
symmetries, are modified. We define symmetric transformations for the discrete medium 
as being the rotations of the module which leave unchanged the power expended in any 
admissible displacement field. It can be shown that the symmetric transformations of the 
structured continuous material correspond to those of the discrete material [16]. This is an 
essential requirement for a gross equivalent model not always satisfied by the Cauchy model. 
For example,9 choosing the orthonormal base { ei} (i = 1,3) shown in Figure 1, the modules 
(a) and (c) are symmetric with respect to the rotations of amplitude r about the two axis 
et, e2: QT = 2er @ et - I and QT = 2e2 @ e2 - I. Both the micropolar and the classic 
equivalent materials are orthotropic materials whose symmetry groups are generated by Qy 
and QT = 2e2 @ e2 - I. lo For the module (b) the symmetric transformations are generated 
by QT. This rotation also generates the symmetry group of the Cosserat material, while the 
Cauchy material is orthotropic. Finally, if the texture (c) consists of square blocks, the discrete 
and both the continuous materials have the so-called ortho-tetragonal symmetry. In this case, 
the symmetry group generators are Qy and Qt’2 = e3 @ e3 t e2 @ cl - q 63 e2. 

4. Size and Shape Effects 

To analyze the influence of the geometry of the blocks we express the components of the 
elasticity tensors A, D and A in terms of the two dimensionless parameters p and &. With 
reference to the Cosserat continuum, if QT e G, as for the three cases considered, the tensors 
B and C are the null tensors. The parameter p (p > 0), here called ‘aspect ratio’, is the ratio 
between the length 1 and the height /L of the block. The ratio & (0 < .s 5 1) between the block 
length and a characteristic length of the body, for example the width of the panel, is a ‘scale 
factor’ which relates the dimension of the geometric micro-structure to the macroscopic one. 

’ We assumed here that the tensor fields K(p) and K(P) do not akr the geometrical symmetry of the module. 
“’ These groups also contain the rotation QT since Qy o Qr = 2~ @ e3 - I. 
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Tuble I. Constitutive terms for the modules of Figure 1, as functions of the 
parameters E and p. 

Cosserat Cauchy 
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The elastic coefficients as functions of the parameters E and p are obtained by assuming 
the following hypothesis for the discrete framework. Two independent sets of linear elastic 
springs, respectively acting in the direction normal and tangential to the joint, describe the 
link between two bricks. The independence between the two layers of springs accounts for the 
absence of dilatancy in the joints. The thickness of the head joints (normal to et) is assumed 
equal to that of the bed joints (normal to ez.) and proportional to the height of the bricks with 
a factor q. As a result, the non zero components of K and K in Equation (6) for each test pair 
along the head joints are: Kii = urr&, K22 = atn&; k7 = ~z$i~‘~-~ and for the test 
pairs along the bed joints: Kt t = u3777&, Kz2 = agpt&; kr = udq&z2p. Here & and /Q are 
respectively the normal and the tangential stiffness per unit length and unit thickness of the 
joint, h = &m - @h21 = &1n - If&i is the sole independent component of the tensor K 
in 2-D and ui are constants depending on the disposition of the bricks. 

In Table 1 the non zero components of the Cosserat and the Cauchy elasticity tensors 
common to the three patterns of Figure 1 are represented. 

As a consequence of the hypothesis Kt2 = Kzr = 0 and due to the symmetries of the 
modules examined, the elasticity tensors A and I& result in being diagonal. Moreover, the 
Young’s moduli of the Cauchy material are equal to those of the micropolar material, while 
the classical shear modulus is equal to the mean value of the two Cosserat shear moduli. The 
constants bi depend on the arrangement of the units. In particular: b* = bg = blo = 0 for the 
module (a), bg = 0 for (b) and b2 = b4 = b7 = bg = blo = 0, b3 = b5 = be = bg for (c). 

Note that the components of both the tensors A and A do not depend on the size of 
the blocks (E) but only on their shape (p). On the contrary, the couple-stresses depend on 
the size of the bricks besides of their shape. This property is a fundamental characteristic 
of the micropolar materials. Conversely, the classical continuum, lacking the microrotation 
kinematical descriptors and their dynamical counterparts, cannot account for the difference 
between small and large blocks. 

To clarify the predicting possibilities provided by the micropolar model and, in particular, 
to know for which conditions the equivalent continuum behaves as a classical Cauchy material, 
we study the cases in which the area of the bricks approaches zero by acting on the geometrical 
parameters p and E. It can be shown that different assumptions for the discrete model - for 
instance different thicknesses between the head and bed joints - lead qualitatively to the same 
asymptotic results. Three situations will be studied in detail. Two of them afford particular 
constitutive prescriptions for the material, which can be interpreted as internal constraints. 



Continuum Models of Brick Masonry 427 

Case Cl. & + 0, constant p. With respect to the dimensions of the wall, the width and the 
height of the brick vanishes at the same rate. This is the case of a panel made of a large number 
of small bricks. The components of A and of A remain unchanged. Instead, all the drilling 
stiffness coefficients of ID approach zero as & ‘; this leads to the constitutive prescription for 
the micropolar continuum that the couple-stress field vanishes whatever is the microrotation 
gradient 

s = 0. uw 

The stress tensor is, in general, asymmetric and its skew-symmetric part can be evaluated 
directly from the moment balance Equation (13b) in [ 101 that, in terms of strain components, 
becomes 

(A1212 - A2121 );(I%2 + H21) - @ 1212 + ~212,)(#&2 - H21) - R12) = h2 (11) 

where B E Skw is the body couple density. This equation has an interesting consequence 
when the two elastic coefficients &t2 and &r2i - which relate the angular distortions to 
the corresponding tangential stresses - are equal. This occurs if the material symmetry group 
contains the rotation Q;‘2. For B = 0, the moment balance affords the internal constraint 
between the displacement gradient and the microrotation field 

skwH-R=O ua 

In the Appendix we show that a Cosserat material with the constitutive prescriptions (10) 
and (12) behaves, in the absence of body couples, like a Cauchy material and has i as 
elasticity tensor. Instead, restraining the Cosserat solution only by Equation (10) we obtain 
the solution of a particular structured continuum here called ‘reduced Cosserat’. The structured 
equivalent continuum behaves as the classical equivalent continuum only if the size of the 
brick approaches zero and the module has at least ortho-tetragonal symmetry. For instance, 
as in the case of walls made of square bricks arranged in a texture of the kind (c), unusual in 
constructive practice. 

The next two situations are interesting in order to clarify the influence of the aspect ratio 
when only one of the dimensions of the blocks approaches zero and the dimensions of the 
wall remain unchanged. If one decreases the length of the brick or its height the effects on the 
equivalent materials are very different. 

Case C2. p + ce, constant &. The brick’s height vanishes while its width is fixed. Some 
of the terms in the constitutive relations, relative to both the stress and the couple-stress 
components, become singular. As it is necessary that the strain energy be bounded, the 
strain measures corresponding to boundless stress measure must be constrained to zero. 
The continuum obtained can be interpreted as a partially constrained continuum within the 
meaning specified in [17]. For example, with reference to the module (a) the constraints are 
(H - R)ei = 0, HeI = 0 in the Cosserat case, and sym Het = 0, in the Cauchy case. Note 
the difference between the micropolar and the classical model: the Cosserat model retains the 
possibility to exhibit one non zero component of angular distortion; instead, in the Cauchy 
model a reduction of the height of the blocks leads to a complete shear nondeformability. 

Case C3. p + 0, constant E/P. The length of the brick vanishes with fixed height. In this 
situation only the stress Sez, and Se2 are different from zero, no terms become singular and 
no kinematical constraints are needed. From a physical point of view, the vanishing of some 
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drilling stiffness accounts for the loss of interlocking between the bricks due to the shortening 
of their length. 

5. Numerical Comparisons 

To evaluate the effectiveness of the proposed continuum models, we have solved numerically 
one test problem comparing three different solutions. The first one is the discrete model of 
the assembly of rigid bodies with linear elastic contacts: we assume its results as the ‘actual’ 
behaviour of the masonry. The second one is the Cosserat continuum equivalent model: we 
have solved the field problem by a finite element discretization, using a three nodes triangular 
element with three degrees of freedom per node: two displacements and one in-plane rotation, 
with linear shape functions. Thirdly, we have tested the Cauchy continuum equivalent model, 
using the same discretization as in the previous case with the proper modifications. 

The test problem is a square panel whose dimensions are 800 x 800, with the bricks 
disposed as texture (a) in Figure 1, with E = l/ 10 and p = 4, that is Z = 80 and /Z = 20. Thti 
panel was subject to a concentrated contact force, of components ft = 0 and fz = 2 x 102, 
applied in the middle of the top side. As constitutive constants of the joints in the discrete 
we assumed & = 1.25 x 10’~-‘, kt = 2.50 x 104, q = 0.20, ut = 1.00, u2 = 5.33 x 104, 
u3 = 0.25, u4 = 3.33 x 10s. 

In Figure 2 the contour lines of the components of the fields of displacement and rotation 
for the discrete problem are compared to the corresponding values of the Cosserat and Cauchy 
solution. Further results, in terms of the components of strain measures, are shown in Figure 
3. The displacement gradient of the discrete solution has been evaluated by means of the finite 
difference technique. 

Note that, because of the diagonal constitutive relations of the continuum, all the strain 
measures are proportional to the corresponding stress measures. Resorting to the symmetry 
of the problem, we divided each plot into two parts representing on the left side the results 
of the discrete model and on the right side the results of the continuum solutions. The 
Cosserat solution is consistent with the discrete solution both in qualitative and, particularly, 
in quantitative terms. Due to the effects of the couple-stress the diffusion of the vertical forces, 
caused by the interlocking among the blocks in the discrete framework, is well reproduced by 
the Cosserat material. 

To numerically investigate the influence of the scale factor we also modified the length of 
the bricks. The comparison is made with reference to a global response parameter, here the 
work of the external forces. The diagram in Figure 4 (a) shows the results obtained for p = 4 
by changing the value of E. Three curves are plotted relative to the Cosserat, the Cauchy and 
the reduced Cosserat solutions. The results obtained by the Cosserat model are very close to 
the actual ones indicated by block squares. Although there is an appreciable correspondence 
for values of the scale factor corresponding to the ordinary masomy walls (E = l/25,1 /15), 
the approximation is more satisfactory for smaller E, i. e. for small blocks. The discrete and 
the micropolar solutions move asymptotically towards the result of the reduced Cosserat 
material, that represents the limit solution for blocks of negligible dimensions. Instead, the 
Cauchy model gives a response independent from E, as stated in the previous sections, not 
corresponding to the discrete solution and apparently without a clear physical meaning. 

In Figure 4 (b) the results of the same problem in terms of the aspect ratio p are represented, 
assuming E = l/20. The Cauchy equivalent material is able to account for the shape of the 
bricks. However, its consistency with the actual solution depends on the value of E and 
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may prove ineffective in different situations, while the micropolar material always gives 
satisfactory results. 

6. Concluding Remarks 

The usefulness of a continuum model for the brick masonry is evident whenever a fine 
description of the masonry proves to be impracticable or unnecessary. Whichever is the type 
of equivalent material, the proposed identification procedure affords a simple way to obtain 
directly all the constitutive parameters from the mechanical and the geometrical properties 
of the discrete. Nevertheless, since experimental tests show that for many problems the 
dimensions of the units, as well as their arrangement and their orientation, strongly affect 
the mechanical behaviour of block masonry, a gross modeling of the masonry must take into 
account the size effects. 

Accordingly, the main issue of the paper lies in two considerations, concerning the nature 
of the equivalent continuum. First of all, a micropolar continuum is able to account for 
the size effects of the masonry, while the Cauchy model implicitly requires that the scale 
factor be zero. Secondly, even if the dimensions of the bricks are small, the Cosserat equiva- 
lent continuum behaves as the classical continuum only for textures corresponding to ortho- 
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tetragonal materials, like for example the texture (c) when made of square blocks. This 
observation has a practical relevance because usually such textures are not used, so that 
masonries in generally require a micropolar continuous model. 
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Appendix: Constrained Cosserat Continua 

In this section we study the consequences of the two constitutive assumptions introduced in 
Section 4 (case Cl): the kinematic constraint (12) and the dynamic restriction on the field of 
couple stress (10). Since the microrotation and the infinitesimal rigid rotation fields coincide, 
the linearized strain measure becomes H - R = sym H. Due to the presence of the internal 
constraint (12), the stress and the couple stress tensors can be divided into the active and the 
reactive part: S = S’ +- ,!Y and S = Sa + ‘5’. If the constraint is perfect the reactive part is 
characterized by the condition to spend no power in any admissible strain rate field. Thus, 
from the power formula for the reactive actions, it follows: S’ c Skw and S’ = 0. 

In order to derive the active part of the stress tensor we follow the procedure suggested in 
[ 181. The above kinematical constraint can be regarded as the prescription of a subspace ‘2). 
This represents the collection of the admissible strain fields 

23 := {U G Lin [U - V = 0, VV c Skw} (13) 

which trivially coincides with the subspace of all the symmetric tensors Sym, while its 
orthogonal complement ZJ’ coincides with Skw. The stress split is such that Sa c 2J and 
ST c ZJl while Sa and ST are identically zero. The active part of the stress depends on the 
admissible strain by a linear map whose symmetric transformations must be compatible with 
the imposed constraint. Here the symmetry group of the constrained material is GA in (9) and, 
since the symmetry group of the constraint subspace ZJ 

~D:={QcSO(3)~Q*U4=O;VU~D,VV~D’~ (14) 

coincides with the whole group of the proper orthogonal transformations SO(3), the consisten- 
cy that Gh c Gn is always verified. The dynamical constraint (10) entails C = 0; moreover, 
if the material is hyperelastic, it follows B = 0 and the constitutive equation (7a) becomes 
S = A[symH]. The linear map of D into itself can be deduced by the restriction - ]n - on 
D of the constrain-free map A., followed by an orthogonal projection - IP’n - on ‘ZJ. Thus the 
constitutive relationship for the active part of the stress tensor results” 

Sa = P&ID [sym H]. (1% 

We observe that IPnA]n coincides with the elasticity tensor of the Cauchy equivalent material 
& from Equation (8) and then S’ = S. 

The reactive part of the stress tensor can be determined from the moment balance equation 
Equation (13b) in [lo] and, by substituting it into the force balance equation, we obtain a 
‘pure’ dynamic equation 

div(S’ + iB) + b = 0 (16) 

which, for B = 0, corresponds to the motion equation for a Cauchy body. The boundary 
conditions, in terms of external contact force f and couple M, are Sn = f and M = 0, As 
expected, a compatibility problem arises on the data M. By considering Equations (16) and 
(15) it is possible to determine directly the displacement field u from 

div(A[sym (grad u)]) + b = 0, (17) 
” A/D := I9 -+ Lin, IF% := Lin -+ ‘D. In 2-D, P 73 := GJI- iV@V, V = ez.@el -el @e2. (Q~B)c = .4cLiT. 
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and then the field of microrotation R = skw(grad u). Such a material is defined continuum 
with latent microstructure in [19]. We conclude that by prescribing Equations (12) and (lo), 
for zero density of the mass couple, the material behaves as a Cauchy continuum. 

If we consider only the internal constraint (12) we obtain the so-called continuum with 
constrained rotations [20]. Instead, if we assume the sole position (10) the stress-strain rela- 
tionship (7a), for the hyperelastic material, becomes S = A[H - R]. The balance equations, 
in terms of displacement, become 

div(Ngrad u - R]) + b = 0, 2 skw(Ngrad u - R]) = B WI 

with the above boundary conditions: Sn = f and M = 0. If the body density couple is absent, 
we obtain the material we called reduced Cosserat continuum, whose distinctive feature is to 
spend zero power with any field of microrotation gradient H. Its stress tensor S is a symmetric 
tensor depending both on the symmetric and the skew-symmetric part of the strain (H - R). 
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