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Abstract. A methodology and model have been developed for the real-time optimal flood operation 
of river-reservoir systems. This methodology is based upon combining a nonlinear programming model 
with a flood-routing simulation model within an optimal control framework. The generalized reduced 
gradient code GRG2 is used to perform the nonlinear optimization and the simulator is the U.S. National 
Weather Service DWOPER code. Application of the model is illustrated through a case study of Lake 
Travis on the Lower Colorado River in Texas. 
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1. Introduction 

1.1. BACKGROUND 

Real-time operation of multireservoir systems involves various hydrologic, hydraulic, 
operational, technical, and institutional considerations. For efficient operation, a 
monitoring system is essential that provides the reservoir operator with the flows 
and water levels at various points in the river system including upstream extremities, 
tributaries and major creeks as well as reservoir levels, and precipitation data for 
the watersheds whose outputs (runoff from rainfall) are not gauged. A flow routing 
procedure is needed to predict the impacts of observed and/or predicted inflow 
hydrographs on the downstream parts of the river system. A reservoir operation 
policy or a methodology is another component which reflects the flood control 
objectives of the system, the operational and institutional constraints on flood 
operations, and other system-related considerations. An integral part of these 
components is a reservoir operation model that predicts the results of a given 
operation policy for forecasted flood hydrographs. 

Flood forecasting in general, and real-time flood forecasting in particular, have 
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always been an important problem in operational hydrology, especially when the 
operation of storage reservoirs is involved. The forecasting problem, as in most 
hydrological problems, can be viewed as a system with inputs and outputs. The 
system output is related to its causative input through a process, either linear or 
nonlinear. In the reservoir management problem, the system is the river system 
that includes a main river and its tributaries, catchments, and natural and manmade 
structures on the path of the flood waters. The system inputs are inflow hydrographs 
at the upstream ends of the river system, and runoff from the rainfall (and snowmelt, 
where applicable) in the intervening catchments. The system outputs are flow rates 
and/or water levels at control points of the river system. The operations involved 
are the operations of the reservoir(s) in order to control flood waters. The term 
‘forecasting’ refers to the prediction of the discharges and water surface elevations 
at various points of a river system as a result of the observed portion of a flood 
hydrograph. 

The real-time reservoir operation problem involves the operation of a reservoir 
system by making decisions on reservoir releases as information becomes available, 
with relatively short time intervals which may vary between several minutes and 
several hours. A new methodology is presented for operating a reservoir system 
under flooding conditions that incorporates: (a) a simulation model that adequately 
simulates the hydraulics of the system for a given flood hydrograph and a set 
of operating decisions, and (b) a systematic way that will improve the trial decisions 
made previously and generate a set of operating decisions that would cause the 
least damage to the protected areas. 

The model presented in this paper has the following characteristics: 

(1) It is deterministic as the inflow hydrographs have to be provided by the user. 
(2) It has provisions to incorporate runoff from rainfall, through an option to 

generate runoff hydrographs resulting from given (deterministic) rainfall 
hyetographs through a submodule based on a U.S. Soil Conservation Service 
(SCS) procedure, developed for an earlier real-time flood forecasting model 
(Unver et al., 1987). In case runoff hydrographs are obtained externally, they 
can be input to the model. 

(3) The releases from reservoirs are realized through the operation of controlled 
outlet structures (gates) which are hydraulically described by a discharge versus 
gate setting relationship for various headwater elevations. 

(4) Reservoirs which are not controlled by gates, i.e. run-of-the-river type reser- 
voirs, are treated like other flow structures such as bridges, levees, and weirs. 

(5) The channel flow as well as the flow through reservoirs and various regulating 
structures are simulated by state-of-the-art methods, thus the magnitudes and 
timing of flood flows are accurately estimated. 

(6) The data required for computer implementation is basically standard and 
may be readily available to most potential users as flow routing is accomplished 
by a modified version of the U.S. National Weather Service DWOPER 
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(Dynamic Wave OPERation) Model (Fread, 1982) and optimization through 
a widely used nonlinear optimization code, GRG2 (Lasdon and Waren, 1983). 

1.2. PREVIOUS WORK 

Development of real-time reservoir operation models has been reported only in 
the recent literature. Jamieson and Wilkinson (1972) developed a dynamic pro- 
gramming model for flood control with forecasted inflows being the inputs to the 
model. Windsor (1973) employed a recursive linear programming procedure for 
the operation of flood control systems, using the Muskingum method for channel 
routing and the mass balance equation for reservoir computations. The U.S. Army 
Corps of Engineers developed HEC-5 (1973a) and HEC-SC (1973b) for reservoir 
operation for flood control, where the releases are selected by applying a fixed 
set of heuristic rules and priorities that are patterned after typical operation studies. 
Tennessee Valley Authority (1974) implemented an incremental dynamic program- 
ming and successive approximations technique for real-time operations with flood 
control and hydropower generation being the objectives. Recently, Can and Houck 
(1984) developed a goal programming model for the hourly operations of a 
multireservoir system and applied it to the Green River basin in Indiana. The model 
objective is defined by a hierarchy of goals, with the best policy being a predetermined 
rule curve. Wasimi and Kitanidis (1983) developed an optimization model for the 
daily operations of a multireservoir system during floods which combines linear 
quadratic Gaussian optimization and a state-space mathematical model for flow 
forecasting. Unver et al. (1987) developed a management model for the real-time 
short-term operations of a multireservoir system on the Colorado River in Texas, 
which combines a rainfall-runoff routine, the U.S. National Weather Service 
DWOPER flood routing package, and a graphics package. 

Yazicigil (1982) developed the GRBOOM linear optimization model for the daily 
real-time operations of the Green River basin in Indiana, a system of four 
multipurpose reservoirs. The primary use of the system is flood control, with 
recreation and low flow augmentation as secondary purposes. The model inputs 
are deterministic. The objective of operation is to follow a set of target states, 
deviations from which are penalized. The channel routing is performed using a 
linear routing procedure similar to the Muskingum method, called multi-input linear 
routing. The reservoir calculations are based on mass-balance equations which take 
into account precipitation input. Other constraints include the minimum and 
maximum allowable releases, upper limits on flow rates, and nonnegativities. The 
model variables are the flow rates, storages, and reservoir releases. The objective 
function is formulated based on a zoning approach. A zone represents a range 
of deviations from the targets. Associated with each zone is a penalty coefficient, 
which increases in magnitude as the zone deviates further away from the target, 
an assumption that makes the objective function convex so the simplex method 
can be used to solve the problem. 
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2.1. PROBLEM STATEMENT 

The optimization problem for the operation of multireservoir systems under flooding 
conditions can be stated as 

(1) Objective: 
Minimize z =Ah, Q). 

(2) Constraints: 
(1) 

(a) Hydraulic constraints defined by the Saint-Venant equations for one- 
dimensional gradually varied unsteady flow and other relationships such 
as upstream, downstream, and internal boundary conditions and initial 
conditions that describe the flow in the different components of a river- 
reservoir system, 

g (h Q, r> = 0. (2) 
(b) Bounds on discharges defined by minimum and maximum allowable 

reservoir releases and flow rates at specified locations, 
Q<Q<& (3) - 

(c) Bounds on elevations defined by minimum and maximum allowable water 
surface elevations at specified locations (including reservoir levels), 

h<hdii. 
(d) Physical and operational bounds on gate operations, 

(4) 

OGy<r<T<l. (5) 
(e) Other constraints such as operating rules, target storages, storage capa- 

cities, etc. 
w (r) < 0 . (6) 

The objective z is defined by minimizing the total flood damage or deviations from 
target levels or water surface elevations in flood areas or spills from reservoirs or 
maximizing storage in reservoirs. The variables h and Q are, respectively, the water 
surface elevation and the discharge at the computational points and r is the gate 
setting, all given in matrix form to consider the time and space dimensions of 
the problem. Bars above and below a variable denote the upper and lower bounds 
for that variable, respectively. 

2.2. OBJECTIVE FUNCTIONS 

The model can be based upon any of a number of objective functions reflecting 
various approaches to real-time reservoir operation for flood control. The first 
objective function is based on minimizing total flood damages which are defined 
as a function of water surface elevations in flood-prone areas. A damage-elevation 
relationship is provided to the model for each location where flood damage potential 
exists. The overall damage to be minimized is the summation of the total damages 
at each location. The mathematical expression for this objective function is: 
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where z is the objective function value; i is the location index; I, is the set that 
contains flood control locations; j is the time index; T is the time horizon; c is 
the unit flood damage defined as a function of the water surface elevation; h{. 
The unit flood damage, c, is expressed in terms of the water surface elevation at 
flood control locations. It must be noted that, unlike the more common approach 
to damage functions (e.g. Windsor, 19731, the damage is not a function of the 
maximum water surface elevation for any given location, but rather a function 
of all elevations that are individually damaging. This approach was chosen to keep 
all water surface elevations in the nondamaging range individually and when this 
is not possible to minimize the number of times a damaging elevation occurs. The 
total damage cost, however, may not have a real meaning in dollar value due to 
the nature of this formulation. 

The second objective function is basically the same as the first one except that 
flood damages are expressed in terms of discharges instead of water surface elevations, 
given as: 

minz= C CC~Q,‘, iE$,jET, 
i j 

where c’ is the unit flood damage as a function of discharge, Q,. The unit flood 
damages, c’, are expressed in terms of the discharge at the flood control locations. 
This objective function is provided for cases where it is more convenient to express 
damages in terms of flow rates for certain locations, or the available data is in 
this form. It must be noted that this objective function would normally be used 
for natural channels as the damages in lakes are almost always a function of flood 
stages. 

The third objective function is a combination of the first two for cases where 
both discharges and water surface elevations are used to define the flood damages 
given as 

where I, is the set that contains locations where damage is a function of water 
surface elevation and Z, is the set that contains locations where damage is a function 
of discharge. The myopic nature of short-term operation is usually handled by 
constraints that represent the end-of-the-period, or medium-term targets or goals. 
For example, the possibility of ending up with an empty reservoir is usually prevented 
by defining a lower limit for the water surface elevation of the headwater location 
for time step T. An alternative to this is given by the fourth objective function. 
The objective of operation is defined as the maximization of the total reservoir 
storages while keeping the water stages and/or flow rates within nondamaging ranges 
through the constraint set. The fourth objective function is 

maxz=33Q/, jET, 
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where all terms are as defined earlier. 
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Zoning is another very common approach used in modeling the real-time operation 
objectives (e.g. Yazicigil, 1982; Can and Houck, 1984; Wasimi and Kitanidis, 1983). 
In order to use this approach, operation targets (or ideal levels) are defined prior 
to operation and deviations from these are penalized through a penalty function. 
Zones are identified for different levels of deviations and a unit penalty (or a penalty 
coefficient) is assigned to each, almost always in such a way that the resulting 
function is convex. Although the solution methodology presented in the next section 
has provisions for violated bounds on discharges and water surface elevations, a 
penalty-type objective function is presented here, as the sixth objective function, 
for cases where data are already available or the reservoir operator opts to use 
a penalty function. The mathematical expression for the sixth objective is: 

min z = c c ci hi + 2 2 di Q,!, 
i j 

i E l,, j E T, (12) 
i j 

where I, is the set that contains locations for which a target is specified and c 
and c’ are the unit penalties associated with water surface elevation, h, and discharge, 
Q. It must be noted that water surface elevations in this formulation replace the 
deviations used in most penalty functions. However, this is justified by the fact 
that the inclusion of the target into the objective function contributes a constant 
to the objective value, which does not affect the optimization, within the given 
range of unit penalties. Different unit penalties for different locations are used 
to reflect the relative importance of each location. 

2.3. CONSTRAINTS 

The constraints of the model can be divided into two groups: the hydraulic constraints 
(Equation (2)) and the operational constraints (Equations (3)-(6)). The hydraulic 
constraints are equality constraints consisting of the equations that describe the 
flow in the system. These are (a) the Saint-Venant equations for all computational 
reaches except internal boundary reaches, (b) relationships to describe the upstream 
and downstream boundary conditions in addition to the Saint-Venant equations 
for the extremities, and (c) internal boundary conditions including the continuity 
equation and a flow relationship. 

Internal boundary conditions describe flow that cannot be described by the Saint- 
Venant equations such as critical flow resulting from flow over a spillway or waterfall. 
The operational constraints are basically greater-than or less-than type constraints 
that define the variable bounds, operational targets, structural limitations, capacities, 
etc. Options for the operator to set or limit the values of certain variables are 
also classified under this category. The solution methodology used in this study 
separately solves the hydraulic and operational constraints. The hydraulic constraints 
are solved implicitly by the simulation model, DWOPER, whereas the operational 
constraints are solved by the optimization model, GRG2. The DWOPER model 
performs the unsteady flow computations. 
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Bound constraints are used to impose operational or optimization-related re- 
quirements. Nonnegativity constraints on discharges are not used because discharges 
are allowed to take on negative values in order to be able to realistically represent 
the reverse flow phenomena (backwater effects) due to a rising lake or due to large 
tributary inflows into a lake. Nonnegativity of water surface elevations is always 
satisfied since the system hydraulics are solved implicitly by the simulation model, 
DWOPER. The lower limits on elevations and discharges can be used to impose 
water quality considerations, minimum required reservoir releases, and other policy 
requirements. The upper bounds on elevations and discharges can be used to set 
the maximum allowable levels (values beyond are either catastrophic or physically 
impossible) such as the overtopping elevations for major structures, spillway 
capacities, etc. When the objective function, Equation (10) or (11) is used, the 
damaging elevations and/or discharges must be given to the model through the 
constraints, as neither objective function has any terms to control them. 

The third model variable, gate openings, are allowed to vary between zero and 
one, which corresponds to zero and one hundred percent opening of the available 
total gate area, respectively. The upper and lower bounds on the model variables 
are expressed mathematically as 

where variables with a bar above them denote upper limits; those with a bar below 
them denote lower limits; i and j are respectively the time and location index; 
and 1,. is the set containing the reservoir locations. Q, h, and r denote the discharge, 
water surface elevation, and gate opening, respectively. 

The bounds on gate settings are intended primarily to reflect the physical limitations 
on gate operations as well as to enable the operator to prescribe any portion(s) 
of the operation for any reservoir(s). Operational constraints other than bounds 
can be imposed for various purposes. The maximum allowable rates of change 
of gate openings, for instance, for a given reservoir, can be specified through this 
formulation, as a time-dependent constraint. This particular formulation may be 
very useful, especially for cases where sharp changes in gate operations, i.e. sudden 
openings and closures, are not desirable or physically impossible. It is handled 
by setting an upper bound to the change in the percentage of gate opening from 
one time step to the next. This constraint can also be used to model another important 
aspect of gate operations for very short time intervals, i.e. the gradual settings 
that have to be followed when opening or closing a gate. For this case, the gate 
cannot be opened (or closed) by more than a certain percentage during a given 
time interval. This can be expressed in mathematical terms as follows: 
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where rc and r0 are the maximum allowable (or possible) percentages by which 
to open and close the gate. This constraint can be used to model manually operated 
gates, for example, for all or a portion of the time intervals. The same constraint 
can be used, for example, to incorporate an operational rule that ties the operations 
of a reservoir to those of the upstream reservoir such as a multi-site constraint. 

3. Solution Approach 

3.1. OVERVIEW 

The optimization problem stated above is a large mathematical programming 
problem for most real-world situations. In modeling a river system, computational 
points are used to discretize the river channels and reservoirs. Each computational 
point, for each time step of the operation, contributes two flow variables (water 
surface elevation and discharge) and two hydraulic constraints (the Saint-Venant 
equations or other flow relations) to the problem. In addition, each reservoir 
contributes another variable (the setting of the equivalent gate) per time step. The 
external boundaries each contribute an additional hydraulic relationship. Thus, a 
typical 24 h operation horizon with 1 h time steps for a river system with 5 reservoirs 
and 150 computational points would give rise to a problem with more than 7200 
flow equations (two times the product of the number of time steps and computational 
nodes) and over 7200 flow variables. This is beyond the capacity of existing nonlinear 
programming codes. The logical approach in solving a problem this large would 
be to reduce its size. Traditionally, the problem size has been reduced by replacing 
the unsteady flow equations by more simplistic relationships. In this work, a different 
approach is taken to alleviate the dimensionality problem. The optimum control 
model presented here leads to an efficient algorithm to solve the optimization problem 
without sacrificing the hydraulic model accuracy. 

The basic idea is to solve the hydraulic constraints (Saint-Venant equations) using 
an unsteady flow routing model such as the US. National Weather Service Dynamic 
Wave Operational (DWOPER) model. For each iteration of the optimization model, 
the simulator (DWOPER) solves for the water surface elevations, h, and the flow 
rates, Q, given the gate operations which are the control variables. This allows 
the constraints and the objective function of the reservoir optimization problem 
to be viewed as a function of only the controllable variables. Since there are relatively 
few controllable variables, the resulting reduced problem is easier to solve. The 
major remaining difficulty is to compute the first partial derivatives of the objective 
and constraint functions with respect to the controllable variables. Once the 
derivatives are determined, several efficient nonlinear optimization routines could 
be used to solve the reduced optimization problem. 
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OPTIMIZER 

9 
actual operations water surface 

of reservoirs elevations, h. and 

(control vector) discharges, Q 

(state vector) 

Fig. 1. Optimal control approach to operations problem 

3.2. THE REDUCED PROBLEM 

The operations problem (Equations (l)-(6)), referred to as the general operations 
model (GOM) has certain characteristics that can be used in reducing it to a smaller 
problem. The GOM has the general structure of a discrete time control with three 
basic groups of constraints: those concerning the state of the system (hydraulic 
constraints) and those describing the system controls (bound and operation con- 
straints). The GOM yields to an effkient solution algorithm when the state variables 
(discharges and water surface elevations) and the control variables (gate settings) 
are treated separately, in a coordinated manner. The hydraulic constraints (Equation 
(2)) can be solved sequentially forward in time for the water surface elevations, 
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statemQnt Emblem SLZQ 

GOM(General Operations Model) 
MInimire z = f(h.Q,r) 

Subject to afl equettonr 

(ZN+Nr )‘T variables 9600 

> (PN+Nr)‘T constraints 9840 

use simulation model to 
solve implicit functions 

h = h(r) and Q = Q(r) 
l 

ROM(Reduced Operations Model) 
Mlnlmlre I = F(r) Nr’T variables 120 

Subject to bounds and gate 
constraints bounds and constraints as needed 

use augmented Lagrangian(AL) 
method to incorporate bounds 

onhandCl 
into the objective function 

? , 
ROMAL(Reduced Operations Model 

with augmented Lagrsnglan) Nr’T variables 
Mlnimire z I L (r,o ,k) < Nr’T bounds 

Subject to gate constraint8 only constraints as needed 

120 
120 

N : no. of computationai points (100 points) 
Nr: no. of resewoirs (5 reservoirs) 
T : no. of time steps (48 one-hour steps) 

Fig. 2. Transformation of operations problem. 

h and the flow rates, Q by using the DWOPER simulation model, once the gate 
settings, r are specified. The general optimal control approach to the real-time 
reservoir operation problem is shown in Figure 1. Through this simulator-optimizer 
formulation, the problem is solved efficiently by incorporating the simulation model 
into a procedure when a set of gate operations, r, (control vector) is chosen, the 
simulation model is run subject to the selected control vector, to solve the hydraulic 
constraint set, g, for the elevations and discharges (state vector). Then the objective 
function is evaluated, the bound constraints are checked for any violations and 
the procedure is repeated with an updated set of gate operations until a convergence 
criterion is satisfied and no bound constraints are violated. 

It must be noted that the optimization is performed only on the gate settings 
in this procedure. The new optimization problem, called the reduced operations 
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model (ROM) has N,*T variables compared to the (2N*T+N,*T) variables of the 
GOM, where N, T, and N, are the total number of computational points, time 
steps, and reservoirs, respectively. The number of constraint equations has also 
been reduced by the same amount, (2N*T), with the elimination of the hydraulic 
constraints, g. The transformation of the operations problem is shown in Figure 
2, along with the problem size at each step of the transformation for an example 
system. The problem size for an example with 100 computational points, 5 reservoirs, 
and 48 time steps is drastically reduced, from over 9000 variables and constraints 
to 120 variables and 120 bound constraints because of the simulator-optimizer 
formulation. 

The hydraulic constraint set, g, has a special staircase banded structure that can 
be exploited to construct an efficient overall algorithm. The model presented herein 
combines the simulation model, DWOPER, and the optimization model, GRG2, 
within the framework of an optimum control formulation. The transformation of 
the original problem into the reduced one is similar to the generalized reduced 
gradient approach, which is also used to solve the reduced (transformed) problem. 

The original problem, GOM, can be converted into a reduced problem as suggested 
by the implicit function theorem (Luenberger, 1973). The implicit function theorem 
states that if some of the problem variables can be solved in terms of the remaining 
variables, then a reduced problem can be devised which can be manipulated more 
easily. The approach is applied to the problem given by Equations (l)-(6) in such 
a way that the hydraulic constraints (Equation (2)) are handled separately by the 
simulator and the other constraints by the optimizer. The simulation model computes 
the values of the state variables, h and Q for given values of the control variables 
r and the optimization model seeks the optimal values of r that will minimize 
the objective function. The implicit function theorem states that h(r) and Q(r) exist 
if and only if the basic matrix (the Jacobian of the system of equations given 
by (Equation (2)) is nonsingular. This condition is always satisfied when a solution 
is possible, as the simulator (DWOPER), uses the same matrix for the finite-difference 
unsteady flow computations. 

Expressing the water surface elevation and discharge as a function of the control 
variable, r, 

h = h(r) 

and 

(17) 

then, the objective function, now called the reduced objective function is expressed as 

Minimize 

2 = F(r) =fMr),Q(r)l 
The objective function can be evaluated once the state variables, h and Q, are 
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computed for the given set of control variables, r. 
The reduced problem, which is called the reduced operations model (ROM), is 

now expressed by the reduced objective function, Equation (19) subject to Equation 
(3)-(6). The ROM is much smaller in size than the GOM with the simulator 
determining the implicit functions h(r) and Q(r), by performing the unsteady flow 
computations thus eliminating the constraint matrix g that describes the hydraulics. 

In solving the ROM by a nonlinear programming algorithm, the Jacobian of 
the matrix g(h,Q,r) will be required as well as the gradients of the functions F(r), 
h(r), and Q(r), which are also called the reduced gradients. The Jacobian matrix 
is defined as 

J(h,Q,r) = [dg/ah,dg/dQ,dg/&] = [B,C] (20) 

or 

J(y,r) = [Wdy,Wdrl = [JACI , (21) 

where y denotes the state variable (h,Q) and B is the basis matrix. The basis matrix 
of the optimal control problem is the same as the Jacobian matrix used in the 
Newton-Raphson solution procedure in the simulation model (DWOPER). Thus, 
the two elements of the Jacobian matrix J are available (with the basis B explicitly 
computed, and terms in C already available) after a simulation run. The basis 
matrix is a banded sparse matrix with at most four nonzero elements in each row 
around the matrix’s main diagonal. 

The reduced gradients can be calculated by applying the two-step scheme used 
by Lasdon and Mantel1 (1978) and also by Wanakule et al. (1986). Letting B,= 
dg,/dy, denote the basis matrix for time step t, the following scheme is adapted 
for the ROM: 

(i) Solve the system of finite difference equations for the last time step T to 
find the values of the Lagrange multipliers rry 

~TBT = df/$‘, > (22) 

then solve for the rr backward in time 

rtB, = JfW, - rt+l (dg,+,/dy,), for t=T- l,T-2, . . . . 2,l . (23) 

(ii) Calculate the value of the reduced gradient 

dF/dr, = df/dr, - rrt (dg,/dr,), for t = 1,2, . . . . T . (24) 

The Lagrange multipliers, ~~ can be used in a sensitivity analysis as they show 
the effect of a small change in the corresponding term in the objective value. 

3.3. SOLUTION OF REDUCED PROBLEM 

The reduced problem, ROM, can be solved by a nonlinear programming algorithm. 
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As the reduced problem still contains bound-type constraints on the state variables 
h and Q, the algorithm adopted should have provisions to assure the feasibility 
of the simulation model solutions for the state variables. An augmented Lagrangian 
(AL) algorithm that incorporates the bounds on the state variables into the objective 
function is used for this purpose. An application of this type can be found in 
Hsin (1981) where the bounds on the state variables are violated until the solution 
converges. The reduced problem with AL terms is 

min LA(r,u,a) = F(r) + 0.5 Cj oi min [0, (b(-ui/ai)]* + 0.5 Cj~i’/Uj , (25) 

where i denotes the constraint set which is formed of the bounds on the state 
variables, i.e. the water surface elevations and discharges, and ai and ui are, 
respectively, the penalty weight and the Lagrange multiplier associated with the 
ith bound. The term bi is the violation term defined as 

b; = min L(Y~-J~), CJi-Yi)l . (26) 

The constraints of the new problem are the bounds on the control variables and 
the operating constraints. 

A reduced gradient approach is adopted to solve the reduced problem with AL 
terms. This new problem, which will be referred to as the reduced operations model 
with augmented Lagrangian (ROMAL) can be expressed as 

Minimize LA(r,u,p) 

subject to Equations (5) and (6). 

(27) 

The solution to this is a two-step procedure with an inner and an outer problem 
that must be solved. The objective function of this inner-outer problem combination 
is 

(28) 

where r is selected from S, the set of feasible gate settings defined by Equation 
(5). The inner problem involves the optimization of the augmented Lagrangian 
objective by using GRG2 to determine optimal values of r while keeping p and 
u fixed. Then the outer problem is iterated by updating the values of F and u 
for the next solution run of the inner problem. The overall optimization is attained 
when u and u need no further updating, within a given tolerance interval. The 
updating formula used for u is 

pi - aibi, if Ci < ki/~i , 
,++‘I = (29) 

0, otherwise, 

where k is the number of the current iteration. The value of u is normally adjusted 
once during early iterations and then kept constant (Powell, 1978). 
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In applying the generalized reduced gradient approach to the ROMAL formulation 
the gradient of the new objective function is evaluated as 

VLA(r,k,u) = dLA/dri - TT (dg/6’ri), for all i= I to 2N. (30) 

The solution of the inner problem, i.e. finding the optimal r for fixed u and u 
is accomplished by GRG2 (Lasdon and Waren, 1983), which is based on the 
generalized reduced gradient technique. The basic steps of the optimal control 
algorithm are shown in Figure 3. 

Fig. 3. Block diagram of optimal control algorithm. 
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Fig. 4b. Highland Lakes system in Texas: Lake Travis (Texas Water Development Board, 1971). 
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4.1. CASE STUDY-OPERATION OF LAKE TRAVIS 

Lake Travis is one of the seven reservoirs of the Highland Lake system located 
on the Colorado River in central Texas near Austin (Figure 4) with a total contributing 
drainage area of 27 352 miles*. A major tributary is the Pedernales River, which 
has a watershed area of approximately 1280 miles’. Lake Travis is about 64 miles 
long with a designated flood control capacity of 3 223 000 acre-feet. Mansfield Dam 
originally was built primarily for flood control and hydroelectric production. Of 
the seven reservoirs in the lake chain, Lake Travis is the only reservoir with designated 
flood control stage. Development in the flood plain of the Highland Lakes has 
caused severe problems in operation of the reservoir under flooding conditions. 

Lake Travis is operated by the Lower Colorado River Authority for purposes 
of flood control, water supply, hydropower generation, and low flow augmentation. 
Historically, flood operations for the lake were prescribed by a schedule set by 
the U.S. Army Corps of Engineers, based on the forecasted lake elevations. Unver 
et al. (1987) modeled the lake using DWOPER in the framework of a real-time 
simulation model. The original DWOPER model consisted of 82 cross-sections; 
however as an effort to reduce the problem size for the optimization model, 24 
cross-sections were selected uniformly from among the previous 82 cross-sections. 
The storm event that was used for the original model calibration was resimulated, 
The resulting discharges and water surface elevations were the same as using 82 
cross-sections within practical limits. Prior to the application of this model there 
was no computational procedure used by LCRA for flood forecasting. 

The available data and existing operational and legal restrictions on the operation 
of the lake dictate that the optimization objective consider both lake elevations 
and releases. Extensive development along the shores of the lake and the existence 
of a downstream urban area (Austin) are two major concerns in the flood operation 
of Lake Travis. The critical elevations in the existing flood operations schedule 
were used to set up an elevation versus penalty weight table for the lake area. 
Similarly, a release versus penalty weight relationship was established to model 
the damages resulting from excessive releases from the lake. The objective function, 

Table I. Components of two objective functions for Lake Travis 

Lake Levela 
(feet) 660 670 680 685 687 689 691 695 700 
Penalty weight 
(feet-‘) 30 20 10 0 10 15 20 30 40 

Release 
(1000 cfs) 0 50 60 70 80 85 90 100 200 
Penalty weight 
( 1000 cfs) 0 0 0.3 0.3 0.4 0.5 0.6 0.9 1.0 

a Lake elevation at 18 miles upstream of Mansfield Dam. 
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Fig. 5. Initial feasible policy for Lake Travis runs. 

given by Equation (12) was adopted for Lake Travis. 
The components of the objective function are given in Table I. The penalty weights 

and the corresponding discharges and water surface elevations were selected so 
that some nonzero objective value would result even at the optimum. No lower 
limit was specified to the releases from the lake, whereas lake levels below 680 
ft were penalized as well as those over 680. The penalty weights were specified 
so a higher deviation from the target values would have a higher unit penalty 
associated with it. The flood control section where excessive water levels are penalized 
was chosen to be about 18 miles upstream of the Mansfield Dam to eliminate 
the effects of drawdown resulting from gate operations. The objective function, 
although based on the existing operations policy, does not function the same way 
as the standard policy, which takes action only when the set critical value is forecasted, 
thus eliminating the option of pre-emptying the reservoir to account for otherwise 
potentially damaging flow situations. This near-sighted nature of the standard 
operations is not followed by the optimization model, which seeks the set of 
operations that will result in the overall minimization of the set objective. In addition, 
the optimization model, through DWOPER, makes use of flood forecasts on a 
real-time basis. 

The optimization model was run to determine the optimal hourly operations 
of Lake Travis for the June 1981 flood event. Two different starting operation 
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policies were selected to test for local optima and study the convergence characteristics 
of the optimization model. The operation horizon was selected to be 24 h. The 
two sets of initial gate operations are given in Figure 5. 

The first set of initial gate operations (Run 1) was selected at random, whereas 
the second set (Run 2) is similar to the actual operations for the given period. 
Figure 6 shows the resulting objective function values corresponding to the initial 
operations for the two trial runs on a step by step basis, as a function of time 
period. The total initial objective function value is defined as the area under each 
of the two curves. The initial operations for run 1 were apparently closer to the 
optimum than those of Run 2. Solution of the model required 10 iterations of 
the optimizer (GRG2) to each an optimum for Run 1, whereas 19 iterations were 
necessary for Run 2. The objective functions at the end of the optimization are 
shown in Figure 7, as a function of time step. 

As improvement in the hourly objective value for Run 1 is shown in Figures 
8a and 8b. As Figures 7 and 8 indicate, a steady and consistent decrease in the 
objective function value was observed for Run 1, although the improvement during 
the second five iterations was somewhat slower (approximately half the rate during 
the first five iterations). The optimization results are guaranteed to be at least at 
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Fig. 8a. Penalty function for Travis Run 1, iterations 1, 3,4, 5. 



MODEL FOR REALTIME OPTIMAL FLOOD CONTROL 41 

OPOO 0200 0400 0600 0800 1000 1200 1400 1600 1800 2000 2:00 

20 June 1981 

-Iteration 6 

Iteration 8 
- Iteration 10 

Fig. 8b. Penalty function for Travis Run 1, iterations 6, 8, 10. 

a local optimum since the Kuhn-Tucker conditions were satisfied at the final point. 
Figures 9a and 9b show the improvement in the hourly objective function value 

for Run 2. The improvement in the total objective function value for Run 1 and 
Run 2 is given as a function of the iteration number in Figure 10. (The total objective 
function value for an iteration is defined as the area under the hourly objective 
function for that iteration.) As the figure indicates, very little improvement was 
obtained during the last seven iteration cycles due to the very conservative value 
assigned as the stopping criteria. However, the model produced significantly different 
hourly objectives, as shown in Figure 8b, during the last five iterations, in an attempt 
to improve the total value of the objective function by an amount that is insignificant 
for actual operations. A realistic convergence criteria would terminate the opti- 
mization at the end of the 12th or 13th iteration cycle. The optimal operations 
found in Run 2 are also guaranteed to be at least a local optimum since the Kuhn- 
Tucker conditions were satisfied at the final point. The releases associated with 
the initial and optimal gate operations for the two runs are shown in Figure 11. 
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Fig. 9a. Penalty function for Travis Run 2, iterations 1, 3,5, 7 

4.2. COMPUTATIONAL ASPECTS 

The model development and optimization runs were made on the Control Data 
Corporation (CDC) Dual Cyber computer system at the University of Texas at 
Austin. The execution times for the two problems were 565 and 712 set, respectively. 
However, increasing the convergence criteria of the optimization model will 
significantly speed up the decision process. Similarly, larger tolerance intervals for 
the iterative simulation computations will result in less overall computation time. 
Although the execution times for the Lake Travis runs may seem excessive, since 
the results of each iteration are displayed on the screen during the model run, 
it may be sufficient, for practical purposes, to stop at a suboptimal point when 
sufficient improvement over the initial policy is obtained or when the rate of 
improvement is small. It is also recommended the initial policy be obtained by 
running the real-time flood forecasting model first. This will guarantee the feasibility 
of the initial solution given to the optimization model, assuming a successful 
simulation run can be obtained. It is also anticipated that the user will want to 
make a final run with the flood management model by modifying the optimal 
operations to reflect the actual operation of the dam (fractional values are typical 
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Fig. 9b. Penalty function for Travis Run 2, iterations 13, 17, 19. 

for optimization results whereas it may be desirable to operate gates by certain 
increments). 

5. Summary and Conclusions 

Multi-reservoir operation can be characterized by the integrated operation of multiple 
facilities on river systems for multiple objectives, flood control being one of the 
major purposes. Many reservoirs were built several years ago and operation policies 
were established. However, many of these reservoirs cannot be operated in the 
manner that they were initially intended to be operated. One of the major reasons 
is the uncontrolled urbanization into the floodplains of the river and reservoirs. 
Other reasons are due to inadequate spillways for passing floods, legal constraints, 
etc. Many of the reservoir systems are characterized by conditions which result 
in significant backwater conditions due to tributary flows, hurricane surge flows, 
tidal conditions, flow constrictions in the rivers, etc. These conditions cannot be 
described by the use of hydrologic routing methods or conceptual models, and 
as a result must be described by more accurate hydraulic routing models such 
as DWOPER. 
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Fig. 10. Total penalty function for Lake Travis runs. 

One example of the type of river-reservoir system described above is the Lower 
Colorado River-Highland Lake System in Texas. Development of the floodplains 
of the Highland Lake System has caused severe problems in operation of the reservoirs 
under flooding conditions as in many other systems around the U.S. Because of 
the severe limitations placed on many of these reservoir systems during flooding 
conditions, real-time data collection and transmission systems have been imple- 
mented. However, even with such real-time data collection systems in place, there 
is still a lack of available methodologies and software to use in conjunction with 
the real-time data to make the best possible flooding estimates and to optimally 
operate these systems in order to minimize flood damages. 

The modeling effort reported herein is essentially a step forward to enhance the 
previous type of modeling effort by Unver et al. (1987). Using the concepts of 
optimal control theory, it is now possible to link nonlinear optimization models 
with unsteady flow routing models such as DWOPER to solve the large-scale 
nonlinear programming problems associated with reservoir operation under flooding 
conditions. The next step forward will be to build upon and expand this model 
to include expert systems capability, reliability analysis, and updating and self- 
correction schemes. The benefits of real-time flood data and transmission systems 
and real-time operation models such as the one presented herein, go far beyond 
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Fig. 11. Initial and optimal releases for Lake Travis runs. 

the potential economic losses averted and greatly reduce the social disruption, deaths 
and injuries caused by floods. 
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