
Computational Optimization and Applications, 5,39-48 (1996) 
@ 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

A New Algorithm for Solving the General Quadratic 
Programming Problem 

REINER HORST AND NGUYEN VAN THOAI 
Department of Mathematics. University of Trier. D-54286 Triec Germany 

Received January 18, 1994; Revised November 4, 1994 

Abstract. For the general quadratic programming problem (including an equivalent form of the linear comple- 
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1. Introduction 

We consider the following general quadratic programming problem 

min{f(x) = XQX + qx : Ax ( b, x > 0}, (QP) 

where Q is an arbitrary real (n x n)-matrix, q E lR”, A is a real (m x n)-matrix and 
b E lR”. We assume that the feasible set D = {x E lEY : Ax 5 b, x 5 0) of Problem (QP) 
is bounded. 

Quadratic programming has many diverse applications and includes as special cases the 
equivalent formulations of many important and well studied combinatorial optimization 
problems, e.g., the linear zero-one programming problem, the assignment problem, the 
maximum clique problem, the linear complementarity problem, etc. (cf., e.g. [9, 6, 1, 4, 

71). 
When Q is positive semi-definite Problem (QP) can be solved by many efficient al- 

gorithms which are discussed in almost all classical books on nonlinear mathematical 
programming. If Q is negative semi-definite, then the function f is concave, and hence 
Problem (QP) can be solved by each algorithm developed for concave minimization pro- 
gramming problems (cf. e.g. [6, 1, 71). Algorithms for the case where the matrix Q is 
indefinite are presented e.g., in Pardalos and Rosen [9], Muu and Oettli [8], Bomze and 
Danninger [2], Floudas and Visweswaran [4] and references given there. 

One of the most successful approach for handling global optimization problems is the 
well known branch and bound scheme. Algorithms of the branch and bound type consist of 
two basic operations: branching and bounding. Every new procedure for branching and/or 
bounding operation leads to a new branch and bound algorithm. The purpose of this article 
is to propose a new branch and bound algorithm for solving the general problem (QP) in 
which the branching procedure uses the well-known radial simplex subdivision, and the 
lower bounding procedure is performed by solving certain ordinary linear programs. 
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In the next section we describe the algorithm formally. A detailed implementation of 
this algorithm is given in Section 3. Section 4 contains some illustrative examples and 
preliminary computational experiments. 

2. The algorithm 

The basic scheme of our approach is a standard simplicial branch and bound algorithm Of 
the following form. 

Initialization: 
Construct an n-simplex S c R” containing the feasible set D of (QP); 
Compute a lower bound p.(S) for f(x) in S tl D; 
Determine a finite set F(S) c S rl D; 
Set F t F(S); y t min{f(x) : x E F}; 
Choose a point u E F such that f(u) = y; 
Set w t p(S); S t {S}; stop t false; k t 1. 

while stop = false do 
Ify =pthen 

stop t true (U is optimal solution and y is optimal value of (QP)). 
else 

Divide S in r n-subsimplices Sr , . . . , S, satisfying 
&,&=S, int$n intSj=0fOri#j; 
For each i = 1, . . . , r compute a lower bound p(Si) for f in Si n D 
satisfying p(Si) >_ CL, and determine a finite set F(&) c Si n D 
(comment: F(Si) can be empty); 
Set F t F U {F(Si) : i = 1,. . . , r}; 
y t min{f(x) : x E F}; Choose u E F such that f(u) = y; 
Set S t S \ {S} U {Si : i = 1,. . . , r, /L(Si) < v}, 
p t min{p(S) : S E S}; Choose S E S such that p(S) = CL. 

end if 
k-+-k+1 

end while 

In order to investigate tbe convergence of the aIgorithm let us assign the index k to every 
quantity dealt with at the beginning of iteration k. If the procedure terminates at some 
iteration j, then, obviously the point uj is an optimal solution and yi is the optimal value of 
problem (QP). If the algorithm is infinite, then it generates at least one infinite “decreasing” 
sequence {Sq} of simplices, i.e., Sq+’ c Sq V q. For this case, the convergence of the 
above algorithm is stated below. 

Theorem 2.1 Iffor any infinite decreasing sequence { Sq}, the condition 

isfilf?lled, then 



GENERAL QUADRATIC PROGRAMMING PROBLEM 41 

and every accumulation point u* of the sequence {uk} is an optimat solution of problem 

(QP). 

Proof: This result follows from convergence conditions of a branch and bound scheme 
discussed, e.g., in Horst and Tuy [6]. For the sake of completeness of the paper, we present 
a proof, however, since it is quite short. 

Let u* be an accumulation point of {uk). Then it is easy to see that an infinite decreasing 
subsequence {Sq) of (Sk) exists such that limq+oou~ = u*. From the continuity of the 
quadratic function f, it follows that lim q+oof(~q) = f(u*). Let p and y be the limits of 
{ &) and (Yk), respectively. Then F and y exist, since { &) is monotonically increasing and 
bounded by the optimal value f * of (QP) and { yk) is monotonically decreasing and bounded 
by f*. Obviously, we have ,U 5 f* 5 limk+, f(uk) = y. Therefore condition (1) implies 
(2), and u* is an optimal solution to (QP). Cl 

3. Implementation 

In order to implement the above branch and bound algorithm we have to perform two basic 
operations: the simplicial division and the (lower and upper) bound estimation. These basic 
operations are discussed in this section. 

Initial simplex and radial simplex division 

An initai simplex S which tightly encloses the feasible polytope D can be constructed 
in several ways (cf. [6] and references there). For example, if a nondegenerate vertex 
u” of D is known and let Z(u”) = {i : A~u’ = bi), where Ai are columns of A, then 
one can choose S = {x : Aix 5 bi, i E Z(u’),dx 5 y), where d = -i CiGICV,,) Ai, 
y = max{dx : x E D). An other simple choice is S = {x E lR1 : CT=‘=, xj 5 v), where 
Y = max{CLi xj : x E D). 

The subdivision of simplices is defined in the following way. 
Let S = [v’, . . . , v”+‘] be a n-simplex in lR” and u E S. Then u is uniquely represented 

by 

n+l n+l 

U= Chg’, a.i > 0, Ch’ = 1. 
i=l i=l 

Foreachi E (l,..., n + 1) such that hi > 0 let US define an n-simplex Si = [u’ , . . . , ui-‘, 
u, ui+l, . . . , u”+l 1. ThenwehaveS = U 11,0SiandSif3Sj=0fori#j, ;li,hj>O. 
This kind of division is called the radial simplex division and is used in many algorithms 
in global optimization (cf. [6] and references there). A special case where u is chosen in 
the middle point of an edge of S with the largest length is called simplicial bisection. 

Lower bound estimation 

For each simplex S = [u’ , . . . , u”+t ] c RF we intend to compute a lower bound p(S) for 
the function f in the set S n D. This operation is the essentially new part of our algorithm 
and is based on the following result. 
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Theorem 3.1 Let U be the matrix with columns u’, . . . , II”+‘, e = (1, . . . , 1) E R”+l, 
andforeachi E {l,..., n + 1) let dt be the optimal value of the following linear program 
(in the variables A. = (hl, . . . , &+I) and y  = (~1, . . . , y,,)): 

min u’y 

s.t. AUhsb 

Uh 2 0 

QUA-y=0 

ek = 1 

a 2 0. 

Then a lower bound F(S) for f on S f~ D can be computed by 

(Lpi > 

p(S) = min C Cihi 

i=l 

s.t. AUh 5 b 

Uh > 0 

eh = 1 

J. L 0, (W 

wherect =dt+qu’(i = l,..., n + 1). We understand that p(S) = +CG ifthe feasible 
set of (LP) is empty. 

Proof: Let d : IR” + R be the function defined by 

d(x)=qx+~;{xy:~ESnD, Qe-y=O}. (3) 

Then d is a concave function whenever S n D # 0, since it is the sum of a linear function 
and the pointwise minimum of a family of linear functions. Let 6 (x) be the convex envelope 
of d(x) over the simplex S defined by S(x) = ~~~~ d(u’)kt, where A. = (At, . . . , h,+t) 
satisfies Uh = x, ek = 1, A. 2 0 (cf., e.g. [3, 61). 

Then we have 6(x) 5 d(x) for each x E S, and therefore it follows that 

min(qx+xQx:x~S~D)=min(qx+xy:x~StlD, Qx-y=O} 

Moreover, the constraint x E S fl D is equivalent to the constraint A. E (h : AUh 5 
b, Uh > 0, eh = 1, h > 0}, and the constraint Q< - y = 0 is equivalent to QUh - y  = 0. 
Therefore, it follows that 

n+l 

p(S) = x~~~DcS(~) = min Ed(u : AUh 5 b, ek = 1, h L 0 , 
i=l I 

where,foreachiE{l,..., n+l}, 

d(u’) = qu’ + min{u’y : AUA. 5 b, QU;C - y  = 0, eh = 1, A 2 0) = qU’ + dt = Ci. 

Cl 
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Remark 3.1 

(a) If S c lR’$, then obviously constraint Uk > 0 in (LP)i and (LP) is trivially fulfilled, 
because u1 2 0 (i = 1, . . . , n + 1) and k > 0. 

(b) For computing the values ci (i = 1, . . . , n + 1) we have to solve n + 1 linear programs 
(LP)i. Note, however, all these programs have a common feasible set, so that they can 
be solved efficiently by the simplex algorithm. 

The following property ensures that the sequence {pk} of lower bounds computed 
throughout the algorithm is monotonically increasing. 

Theorem 3.2 It holds p(S) 5 p(s)f or each pair of n-simplices S, S satisfying S E: S. 

Proof: Let S = [vi, . . . , u”+l] and S = [V’ , . . . , i?+i]. If S tl D = 0, then the theorem 
is true, because ~(3) = -l-co. So, we assume that S tl D # 0. Let d(x), d(x) be the 
concave functions defined by (3) according to S, S, respectively, and let S(x), 6(x) be the 
convex envelope of d(x), C?(X), respectively. Since S g S, it follows that d(x) >- d(x) for 
all x E S, and hence 6(x) > S(x) for all x E S. Thus, ,X(S) = min{6(x) : x E S n D} > 
min{J(x) : x E S rl D) 2 min(b(x) : x E S n D} = p(S). 0 

Upper bound estimation 

At every iteration of the algorithm the upper bound y of the optimal value is improved 
by using a set of new feasible points which are generated while computing the lower 
bounds. For each simplex S, let (hi, y’) be an optimal solution of problem (LP)i, (i = 
1 . . , n + 1). Then, obviously, the points xi = Uh’ (i = 1, . . . , n + 1) are feasible. In 
addition, let h* be an optimal solution of problem (LP), then the point x* = Uh* is feasible, 
too. So, while computing the lower bound p(S) we obtain a set F(S) = (x’, . . . , x”+‘, x*) 
which is used to update the upper bound for the optimal value of problem (QP). 

Convergence of the algorithm 

Theorem 3.3 Assume that the algorithm, implemented as above, is injnite and assume 
that each in$nite decreasing subsequence {Se} of simplices generated throughout the al- 
gorithm satisfies n,“=, P = Is*}, where s* E D. Then every accumulation point of the 

sequence {uk} is an optimal solution of problem (QP). 

Proof: In view of Theorem 2.1 we need to show that lim,,,(y, - F~) = 0 for each 
decreasing sequence {Sq). For each q, let x@ (i = 1, . . . , n + 1) and x*4 be the feasible 
points generated by solving (LP)i (i = 1, . . . , n + 1) and (LP) according to the simplex 
Sq. Since ,!V shrinks to s* as q + 00 it follows that x@ + s* (i = 1, . . . , n + 1) and 
x*q + s* as q + co. 

Thus,letting@ (i = l,...,n+l)d enote the vertices of Sq, we have uqi -+ u*j = 
s* (i = l,..., n + l), and hence lim,,,d(u~‘) = d(u*‘) = f (s*) (i = 1,. . . , n + 1). 

Therefore, limq,,l.Lq = lim4+oo~(Sq) = Cyz; d(u*“ki = f (s*) Cyzrr & = f (s*), and 
hence lim,+,(y, - pq) 5 lim,,,y, - f (s*) 5 f (s*) - f (s*) = 0. This implies that 
lim 4+oo(yq - p4) = 0, since v4 - cLq 2 0 V 4. 0 
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Remark 3.2 

(a) A decreasing subsequence {Sq} satisfying n,“==, Sq = {s*} is usually called exhaustive. 
A simplex division procedure is called exhaustive if each decreasing subsequence of 
simplices generated throughout the algorithm is exhaustive. An exhaustive sequence 
{Sq} can be constructed if, e.g., for each q the simplex Sq is generated from Y-l by 
a simplicial bisection. The exhaustiveness is needed for proving the convergence of 
the algorithm. However, in the implementation the following (heuristic) subdivision 
procedure yields better results (cf. also [7] and references given there). 
Let (A;,..., a:+,) be an optimal value of problem (LP) according to a simplex S. If 
min{hf : ;1T > 0} > o (where o is a chosen positive numbel; e.g., CJ = 1/2n2), then 
perform a radial simplex division of S using the point x* = Uh*. Otherwise, perform 
a simplicial bisection. 

(b) If in the algorithm, the stopping criterion y = p is replaced by y - p 5 E, where 
E > 0 is a given tolerance, then whenever the algorithm terminates, the point u is an 
approximate optimal solution of Problem (QP) in the sense that f(u) 5 f(x) - E for 
every feasible point x. Usually, this kind of approximate solutions is called s-optimal 
solution. From Theorem 3.3 we obtain immediately the following result. 

Corollary Assume that throughout the algorithm an exhaustive simplex division pro- 
cedure is used. Then for each given E > 0, whenever the stopping criterion y - p 5 E 
is used, the algorithm terminates after finitely many iterations yielding an e-optimal 
solution of Problem (QP). 

(c) If we formulate Problem (QP) in the following equivalent biconcave minimization 
problem 

min{g(x, y) = xy + qx : Ax 5 6, Qx - y = 0, x > 0}, (4) 

then the algorithm presented in this article for solving Problem (QP) can be interpreted 
as a specific realization of the general biconcave minimization algorithm developed in 
Horst and Thoai [5] for the case of Problem (4). 

4. Illustrative examples and preliminary computational experiments 

In the first part of this section we present two numerical examples for illustrating our 
algorithm. Some preliminary computational experiments are reported subsequently. 

Example 1 We consider Problem (QP) with following input data: 
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0.488509 0.063565 0.945686 
-0.578592 -0.324014 -0.501754 
-0.719203 0.099562 0.445225 

A= -0.346896 0.637939 -0.257623 , 1, b= 

45 

2.865062 
-1.491608 

0.519588 
1.584087 
2.198036 

-1.301853 
-0.738290 

-0.202821 0.647361 0.920135 
-0.983091 -0.886420 -0.802444 
-0.305441 -0.180123 -0.515399 

Iteration 1 A first simplex containing the feasible set is S’ = [u”, Y”, u13, u14] with 

u ” = (O.O,O.O, o.oy, d2 = (20.0, O.O,O.O)T, 

d3 = (0.0,20.0,0.0)‘, d4 = (0.0,0.0,20.0)T. 

Solving the linear programs (LP)i (i = 1, . . . ,4) we obtain 

dl = 0.0, Cl = 0.0, 

(a’, y’) = (0.488071,0.260534,0.251395,0.000000,3.156646,0.000000, 5.718817), 

x”=(5.210677,5.027908,0.000000), f(x”) = -31.528496, 

d2 = -24.024761, c2 = -43.839029, 

(a2, y2) = (0.803216,0.027475,0.147788,0.021521,0.0000005.085268, 2.371314), 

xl2 = (0.549500,2.955757,0.430420), f(x12) = -5.707612, 

d3 = -148.625705, c3 = -145.409224, 

(a”, y3) = (0.488071,0.260534,0.251395,0.000000,3.1566460.000000,5.718817), 

xl3 = (5.210677,5.027908,0.000000), f(x13) = -31.528496, 

d4 = 17.390460, c4 = 43.450860, 

(h4, y4) = (0.871100,0.128900,0.000000,0.000000,3.7610165.781067,0.000000) 

xl4 = (2.577995,0.000000,0.000000), f(x14) = 4.045042) 

Solving the linear program (LP) we obtain 

A* = (0.488071,0.260534,0.25 1395,0.000000), 

X *I = (5.210677,5.027908,0.000000), 

f(x*‘) = -31.528496 lower bound F(S’) = -47.976758 

Current best feasible point at Iteration 1: u i = (5.210677,5.027908,0.000000), current 
best function value: yi = -3 1.528496, lower bound: ,QI = -47.976758. 

Iteration 2 S’ is divided into three subsimplices S: , Si and Si by a radial simplex division 
using the point (5.210677,5.027908,0.000000). 

Computing lower bounds we have 

~(5’;) = -31.528496, ,u(S;) = -31.528496, ,+;) = -31.528496. 

Algorithm terminates yielding an optima1 solution (5.210677,5.027908,0.000000) with 
the optimal value -31.528496. 
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Example 2 We consider the quadratic problem formulation of the linear complementarity 
problem which seeks a solution of the system 

x~O,Mx+p~O,n(Mx+p)=0, (5) 

where M is a real (n x n)-matrix and p E IR”. 

Obviously, Problem (5) has a solution in the simplex So := {x : x 1 0, ex 5 L}, where 
e = (l,..., 1) E IRn and L is a positive number, if and only if the optimal value of the 
program 

min(f(x)=xMx+px:x>O,Mx+p>O,xESO} (6) 

does not exceed zero. 
Thus, to find a solution of Problem (5) in the simplex So, we can apply our algorithm 

with the starting simplex So for solving the quadratic problem (QP) with Q = M, A = -M 
and q = b = p. Notice, in addition, that the algorithm will terminate immediately whenver 
a point u is found satisfying f(u) = 0, or the lower bound becomes positive. In the first 
case, u is a solution of the underlying complementarity problem; in the second case, it is 
indicated that the complementarity problem has no solution in the simplex So. 

Input data: 

n = 5, 

i 

0.022983 0.872869 -0.891371 0.578592 0.324014 
0.501754 0.719203 -0.099562 -0.445225 0.346896 

M= -0.637939 0.257623 0.202821 -0.647361 -0.920135 
0.983091 0.886420 0.802444 0.305441 0.180123 
0.5 15399 0.424820 -0.897498 -0.187268 0.591515 

-0.073726 
0.347034 

P= 

l I 

2.007665 
-2.723395 
-0.5815 14 

Iteration 1 Choose L = 100, and set S’ = So; Solving linear programs (LP)i(i = 
1 ,5) and (LP) we obtain ~1 = 0.0, h* = (0.966423,0.021762,0.0, 0.004489, 
01&326, O.O), current best feasible point u’ = (2.176197,0.0,0.448921,0.732582,0.0) 
with yl = 0.106030. 

Iteration 2 S’ is divided into two simplices S: and Si by a simplicial bisection. 
Computing lower bounds we obtain p(Si) = 0.0, p(S:) = 0.552728, current best feasi- 

ble point U* = (1.963712,0.0,0.607922,0.744995,0.430322) with y2 = 0.0. Algorithm 
terminates yielding u* as an optimal solution of the resulting quadratic problem. 

It is worth noting that actually, while computing p(Si) the point U* was found with 
f(~*) = 0.0, and therefore, the algorithm could immediately terminate yielding a solution 
of the underlying linear complementarity problem. 

Next, we present some preliminary computational experiments on our algorithm. We 
consider three types of the square matrix Q in Problem (QP): Type 1 consists of arbitrary 
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Table I. Preliminary computational results. 

Matrix Q m n ITER SIM TIME 

Type 1 6 5 3 6 0.12 

10 10 9 21 6.21 

13 10 12 46 13.35 

11 14 112 454 290.87 

5~ 2 11 14 18 70 60.47 

12 20 61 262 534.36 
11 25 99 365 1207.12 
10 30 160 438 1954.28 

Type3 I I 25 51 1.75 
8 8 220 657 33.2* 

9 9 55 120 10.98 
10 10 323 993 150.8' 

12 12 111 318 82.27 
15 15 401 1952 609.8* 

18 18 154 472 104.92 
20 20 202 594 194.67 

Notation: 
ITER: Avarage number of iterations, 

SIM: Avarage number of simplices generated throughout the 
algorithm, 
TIME: Avarage CPU-Time in seconds. 
Notice that in problems with Q of Type 3 we have m = n, and 

for problems marked by *, it was indicated that no solution of the 
original linear complementarity problems exists. 

real (n x n)-matrices, Type 2 consists of matrices of the form Q = - RT R with R being a 
real (n x n)- matrix, and Type 3 consists of matrices resulting from linear complementarity 
problems as considered in Example 2. Obviously, functions with Q of Type 2 are concave 
quadratic, so that minima are achieved at some vertices of feasible polytopes. Although 
in the quadratic problem formulation of linear complementarity problems the objective 
functions are in general nonconcave, the vertex optimal solution property does also hold 
whenever the optimal value is equal to zero. This property follows from the fact that 
whenever the linear complementarity problem (5) has a solution, there is a solution in the 
vertex set of the corresponding polyhedral set (X : x > 0, Mx + p 1 0). 

Some computational results on a large set of randomly generated problems with m 5 20 
and n 5 30 are given in Table 1. For all test probIems, the starting simplex is defined 
by (X : x 2 0, ex 5 IOO.}, the simplex subdivision procedure and the way to determine 
E-optimal solutions are as in Remark 3.2. For problems with Q of Types 1 and 2, the 
algorithm terminates if the stopping criterion y - p 5 y/100 is fulfilled. As a result, we 
obtain an s-optimal solution with E = 1% of the optimal value. 

Finally, we notice that for solving all linear subproblems generated throughout the algo- 
rithm we used a subroutine based on the simplex method, and test problems are run on a 
Sun SPARC station 10 Model 20 workstation. 
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