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Abstract. A temporal variant of Foldiak’s first model with lateral inhibitory synaptic weights is 
proposed. The usual symmetric scalar values of the lateral weights are replaced with data driven 
asymmetric memory based lateral weights, which take the form of Finite Impulse Response (FIR) 
coefficients. Linear anti-Hebbian learning, as defined by Foldiak (IEEE/INNS International Joint 
Conference on Neural Networks, 1989) and Matsuoka et al. (Neural Networks, Vol. 8, pp. 411- 
419, 1995), is employed in the self-organisation of the network weights. The temporal anti-Hebbian 
learning, when applied to the separation of convolved mixtures of signals, causes the network weights 
to converge to the truncated FIR filter coefficients of the unmixing transfer function and so recover the 
original signals. Simulation results are presented for separating two natural speech sources convolved 
and mixed by a priori unknown direct and cross-coupled transfer functions. We compare temporal 
anti-Hebbian learning with information maximisation learning when applied to the blind separation 
of convolved sources. 

1. Introduction 

Foldiak’s first proposed network model of anti-Hebbian learning [l] was motivat- 
ed by Barlow’s ‘law of repulsion’ [2]. The law states that a ‘repulsion constant’ 
increases between variables which are correlated. If two cells have pre- and post- 
synaptic activities yi and yj, and the synaptic strength between them is WQ then the 
law of repulsion is governed by the anti-Hebbian rule Awij = -q yiyj : i # j. If 
the activities of the cells are positively (or negatively) correlated a negative (or pos- 
itive) weight will build up between them making simultaneous firing more difficult 
and so eliminating the correlation between them. The model, (a two input/output 
version is discussed for clarity of presentation) is shown in Figure 1, at convergence 
the output covariance matrix C,, will be diagonal with the off-diagonal terms all 
being zero, thus indicating the reduction in the output correlation. The governing 
equation of the neuron dynamics is given as 

dyi N 

r dt = -Yi + xi + c wijyi 
j=l 
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Figure I. Two neuron version of Foldiak’s lateral inhibition network. 

Taking the adiabatic approximation (1) can then be written as 

N 
yi = xi + c wij Yi 

j=l 

and in matrix format 

y = (I - w)-1 x 

(2) 

(3) 

2. Blind Separation of Sources 

Jutten and Herrault [3, 151 were the first to propose the network architecture of 
Figure 1 within the context of blind separation of source signals. They developed a 
nonlinear learning algorithm for weight update (which can be considered as non- 
linear anti-Hebbian learning) and exhibited higher order decorrelating properties. 
This established the initial understanding of the requirements of the blind separa- 
tion of sources problem, where a priori unknown instantaneous mixtures of source 
signals could be separated into the original components (up to a permutation and 
scaling). The asymmetric nonlinear learning introduced higher order statistics into 
the self organisation and broke up the symmetry of the weight matrix. Recently, 
Cichocki [4] has derived a nonlinear learning algorithm and the associated nonlin- 
earity from information theoretic principles, this is applied both to the Jutten and 
Herrault network and a variant which has self connected neurons. 

These algorithms deal with the case of instantaneous mixing, which in the 
domain of signal processing is an artifice. Direct and cross coupling channels 
can be defined as transfer functions, which in the discrete z domain are given 
as polynomials of degree M and are modelled as either infinite impulse response 
(IIR) or FIR filters. Weinstein et al. [5] considered the problem of multi-channel 
separation, and used the maximisation of a decor-relation criterion in estimating 
the unmixing transformations. The simplifying assumption of constant gain direct 
coupling is made by both Weinstein et al. [5] and Yellin and Weinstein [6], which is 
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Figure 2. Temporal model of Foldiak’s anti-Hebbian network. 

unrealistic in acoustic environments. The use of higher order statistics to order four 
is used in [6] as the criterion for identifying the inverse filters, with decorrelation 
being the special case of order two. 

Nguyen et al. [ 161 extend the original network and learning proposed by Jutten 
and Herrault to deal with convolutive mixtures, proposing algorithms based on 
fourth order and second order statistics. Van Gervan et al. [ 171 provide a compara- 
tive empirical study of the separating performance of algorithms based on second 
order statistics and those based on fourth order statisitics. Although making the 
simplifying assumption of constant gain direct coupling, they show that there is 
no real advantage of using higher order statistics over second order for separating 
strictly causal convolutive mixtures of sources. 

Torkkola [7] has recently developed a variant of the Bell and Sejnowski [8] 
information maximisation network and learning algorithm to separate mixtures of 
delayed and convolved sources and has reported encouraging results in acoustic 
environments. The simulations reported in [7] are more general than those in [5,6, 
16, 171 in that the constant gain direct coupling assumption is dispensed with. 

We show in the following sections that for causal convolutive mixtures of 
sources temporal anti-Hebbian learning yields comparable results to the entropy 
maximisation algorithm developed in [7] by Torkkola. 

3. Temporal Anti-Hebbian Model 

We take Foldiak’s first model, Figure 1, and apply ‘memory based’ synaptic lateral 
connections. Figure 2 shows the temporal model where the weights are written as 
z-transforms, and where the z-t operator is shown explicitly for two tapped delays. 

The network output is now given as a time delayed weighted version of (2), that 
is 

N M 

(4) 
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where N is the number of neurons and M is the total number of delays. We note 
that this structure is similar to the double feedback adaptive filter proposed in [ 16, 
171. Written as a z domain matrix we have the compact form of (4) 

y(x) = (I-w(z))-’ x(z) (5) 

The anti-Hebbian rule given in Section 1, has been shown to yield an output 
with identity covariance [I]. For second order independance the following should 
be satisfied {yi(t)yj(t - Ic)} = 0 ‘di # j A Ic = l...M and so we require an 
adaptive algorithm which adapts the dependant variable of the network output (i.e 
the weights) to yield decorrelated outputs in the expectation. By utilising the anti- 
Hebbian rule given in Section 1 for each temporal output we can then force the 
output cross-correlation terms to zero. Foldiak proves the inherent stability of the 
anti-Hebbian rule for the instantaneous case in [18], a similar stability analysis 
of the fixed points is required for the temporal case to identify potential spurious 
attractors and will be the topic of further work. However, our simulations, and 
those reported by Van Gervan et al. [ 171 have not found this to be a problem. The 
proposed anti-Hebbian learning for each of the tapped delay weights is therefore 

Aw&) = -qy&)y$ - k) vi # j A k = l...M (6) 

So the cross weights will grow in an inhibitory fashion if there is correlation 
between the output yi(t) and each of the tapped outputs of the adjacent neuron 
yi(t - Ic) until th e o f 11 owing holds. E {yi(t)yj(t - Ic)} = 0 V’i # j A k = l...M. 
The weight connecting the current output at node i to the historical output at time 
(t - k) of node j is denoted as WQ (k). Note that in the non-temporal model Awij = 
-7 yiyj = Awji = -7 yjyi and so th e anti-Hebbian learning will give a symmetric 
weight matrix. In the temporal case AWQ (Ic) # Awji (Ic) : -71 yi (t) yj (t - Ic) need 
not equal -7 yj(t)yi(t - Ic) and so an asymmetric polynomial weight matrix is 
generated. As (Awij(Ic)) = (yi(t)yj(t - k)) + 0 V’i # j A k and using (5) the 
following polynomial matrix expressions are given. 

C,,(z) = (I - w(z))-l C,,(x) (I - w(Z)y = I 

* ((I - W(z)) = (Gx(~))“2 

(7) 

(8) 

Which imposes the restriction that the input polynomial covariance is decom- 
posable. The linear anti-Hebbian learning decorrelates the delayed outputs of all 
neurons i : (i # j Vi) with the instantaneous outputs of neuron j. 

4. Blind Separation of Convolved Source Signals 

The use of higher order statistics (HOS) has become almost ubiquitous in this 
particular problem domain. This is driven by the need for cross cumulants of all 
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orders to be null if two distributions are factorable and independent. Statistical 
independence is the criterion on which most blind separation algorithms are based 
[3, 6-131. Weinstein et al. [5] and Van Gervan et al. [17] proposed the use of 
second order independence as the criterion for the identification of the inverse 
coupling filters. We now reconsider this criterion in view of the temporal model of 
anti-Hebbian learning developed. 

Matsuoka et al. [14] propose an algorithm based on second order statistics for 
blind separation of symmetric instantaneous mixtures of signals. By exploiting the 
nonstationarity of certain signals, Matsuoka et al. [ 141 argue that source separation 
is possible by minimising a time varying scalar function of the network weights and 
the output signal variance. The algorithms developed utilise second order statistics 
only and can be considered as a normalised version of the anti-Hebbian rule. 
We utilise a temporal form of these algorithms in separating asymmetric convolved 
signal mixtures and report on the improved performance over the standard temporal 
anti-Hebbian rule. 

Consider two speech sources st and s2 the signals received at two points dis- 
placed in space (~1 and 22) from the sources will be given as the matrix multipli- 
cation of the transfer function matrix H(z) and the source vector vis, 

Xl [I [ = hl(4 h2(4 Sl 

x2 I[ 1 h21(.4 h22(4 s2 
(9) 

x=Hs (10) 

For clarity we drop the use of (z) as it is now implied in the relevant equations. 
To recover the original sources then s = H-lx must be satisfied up to an arbitrary 
filter, using (5) then for y to be an approximation to s at convergence we can write 

y=&(I-W)-‘x=H-‘x (11) 

Some algebraic manipulation will yield, in the discrete z domain 

(1 - W12W21)Yl = (hl + W12h21)Sl + (hl2 + Wl2h22)S2 

(1 - w12w21)y2 = @22 + WZlh12)S2 + (h21 + W2&&1 

and so 

w12(4 = 412(&21(4 and w2t (z) = -h21 (z)&‘(z) 

The values of the network output will then be a filtered representation of the original 
uncorrupted speech source. 

(14) 
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Table I. FONMC measures of original, mixed and retrieved signals. 

FONMC Voice 1 FONMC Voice 2 SSFONMC 

Original voices 4.46 7.55 76.89 
Mixed voices 2.76 5.10 33.63 
Retrieved voices 4.30 7.42 73.54 

It is straightforward to see that the temporal weights of the network can then be 
forced to converge to the inverse filters given in (13) using a suitable criterion. It 
is also clear that although this can be generalised to N sources the complexity and 
the length of the inverse filters required may grow to untenable lengths. 

We can use the temporal linear anti-Hebbian learning given in (6) to stochasti- 
tally maximise the second order independence criterion. It is clear that statistical 
independence is a ‘stronger’ criterion, indeed an adaption rule based on fourth 
order cross moments may be considered 

Aw&) = -qyi(t)yi(t - k)yj(t - k - l)yj(t - Ic - 2) Vii # j (15) 

However, by using a temporal form of the Matsuoka anti-Hebbian rules [14] sta- 
tistical independance of the network output can also be achieved without resorting 
to higher order statistics. 

Awij(Q = _ ~yi@)ydt - Ic) 
@i (t> vi # j 

a+(t + 1) = a&(t) + (1 - cu)yf(t> (16) 

5. Simulation Results 

Five seconds of male and female speech was sampled at 8Khz and mixed using the 
transfer function matrix used by Torkkola [7] in his simulations. 

We use the Sum of Squares of Fourth Order Normalised Marginal Cumulants 
(SSFONMC) (Fourth Order Normalised Marginal Cumulant, FONMC) as a mea- 
sure of the separation yielded [9]. The impulse response of the ideal inverting filters 
is graphed along with those of the converged linear temporal network, Figure 4. A 
memory length of 100 sample lags was used. 

We can see from Table 1 the drop in the absolute value of the FONMC of each 
source caused by the onset of central limit effects due to the convolutive mixing. 
The restored signals FONMC is within 4% of the original values. Scatter plots 
of the original, mixed and restored signals amplitude are given in Figure 3. The 
characteristic orthogonal cross shape shows clearly the independence of the original 
two signals; the plot of the mixed signals shows clearly the correlation now existing 
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Figure 3. Signal amplitude scatter plots. 
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Figure 4. Inverting filter weights. 

between the mixtures. The blurring of the plot indicates the colouring of each signal 
by the other due to the convolved mixing. The plot of the restored signals shows the 
characteristic orthogonal cross shape, indicating the approximative independence 
of the output signals. 

The impulse response coefficients given by (13) are plotted in Figure 4 along 
with the converged network weight values using the temporal linear anti-Hebbian 
learning of (6) and the Entropy Maximisation algorithm developed by Torkkola 
[71. 

The mean square value of the estimation errors caused by the use of linear 
anti-Hebbian and entropy maximisation algorithms were almost identical, (MSE 
Entropy Max = 2.28%, MSE Linear Anti-Hebb = 2.91%). The audible results were 
good with some echo still remaining in the output signals. Applying the learning 
of (16) gave slightly improved results over those given by the use of (6), though 
the learning parameters required careful1 selection. 
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Orifzinal Voices Convolved / Mixed Voices Network Outmt 

Figure 5. Original, convolved I mixed and retrieved voices. 

We then took the same original speech sources and used a polynomial mixing 
matrix which introduced convolved delays up to 7.8 mS to give our mixed and 
convolved signals. 

X1 [ 1 [ 1 - 0.452-‘0 + 0.32-15 - 0.22-35 - 0.12-60 0.52-30 - 0.3.c53 - 0.12-63 = s1 
x2 OSz-l5 + 0.25~-~~ - 0.15~-~~ - 0.1~~~~ 1 - 0.22-25 - 0.22-34 + 0.15258 I[ 1 s2 

The mixing was strong enough that both voices competed at almost the same 
volume. We now used the network learning of (16) and a memory length of 150 
time lags, the network weights converged to very good approximations (2% MSE) 
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Figure 6. Converged network weights and required FIR coefficients. 
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of the required FIR coefficients Figure 6, audibly the unmixing was near perfect as 
is indicated by Figure 5. 

6. Conclusions 

We have proposed a temporal model of Foldiak’s first linear anti-Hebbian decor- 
relating network. This network is similar to the filter model and network proposed 
in [16, 171 and is indicative of the convergence of research from the neural net- 
work and signal processing communities. By employing the linear anti-Hebbian 
learning (6,16) we have shown that second order based learning is capable of iden- 
tifying the inverse filter coefficients required to separate two convolved mixtures 
of naturally occurring speech. This is a more general case than that considered in 
[5, 6, 16, 171. We have empirically compared linear anti-Hebbian learning with 
the maximum entropy algorithm recently developed by Torkkola and have found 
the performance to be remarkably similar. This finding, of course, requires to be 
more assiduously tested, however initial results indicate that temporal linear anti- 
Hebbian learning may be sufficient for adaptive blind separation of two convolved 
speech sources. The simulations reported have shown promising results, and so 
this temporal second order model will be the subject of further work and analysis 
in this area. 
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