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Abstract. When gases are released from a pulsed nozzle or 
when solids are sputtered with intense laser pulses, effusion- 
like expansions take place which terminate abruptly. The 
resulting gas-dynamic processes depend on 7, the heat 
capacity ratio, as well as on whether particles backscattered 
to the effusing surface are subject to recondensation or 
reflection. Certain aspects of these terminating expansions 
have already been treated but we consider it appropriate 
to examine the problem further. In particular the following 
topics are emphasized. (a) Following previous work, the 
expansions are shown to consist of a series of regions 
separated by lines of contact, i.e. abrupt changes of slope. 
(b) For conditions of recondensation, there are two regions 
separated by one line of contact, the first region lying in 
part behind the effusing surface. For conditions of reflection, 
there are three regions, the first of which begins at the 
surface. Both types of expansion terminate with a region 
which is a remanent of the release process. (c) The near- 
surface region under conditions of reflection permits an 
analytical approximation valid for all 7 in which the sound 
speed is invariant with distance and the flow velocity is 
linear with distance. (d) The surface itself under conditions 
of recondensation permits an analytical approximation valid 
for all 7 for the sound speed. More generally the near-surface 
region can be resolved by the method of Stanyukovich. 
(e) The various analytical solutions and approximations are 
shown to compare favorably with numerical results. (f) Plots 
of density and flow velocity versus distance are found to 
be roughly independent of 7, thence of the nature of the 
sputtered particles. (g) Tabulated results are presented to 
enable a more general use of gas-dynamic ideas. 

PACS: 79.20, 81.60, 47.10 

One-dimensional expansions which do not terminate, also 
termed centered waves [2], have been well understood since 
the appearance of the book (actually a doctoral thesis) 

* For Part II, which deals with recondensation, see [1] 

of Stanyukovich in 1959 [3] but have taken on a new 
significance in view of current work on emission of gas 
from nozzles and on laser sputtering of solids [4]. We 
have subsequently noted [5] that the solutions have two 
basic forms, depending on whether the expansions originate 
from the removal of the wall of a semi-infinite reservoir or 
from an effusion-like process. From an experimental point 
of view, wall removal occurs when, for example, particles 
incident on a solid cause instantaneous bond breaking at 
the surface, while effusion-like behaviour occurs when, for 
example, a laser beam heats the surface to a sufficiently high 
temperature. 

Let us recall the mathematical expressions which describe 
non-terminating expansions into vacuum [5]. This is the 
"simple expansion regime" of [2] or the "flow phase" of 
[6]: 

wall removal 

a - -  a o 1 
7 + 1  : ' 

u - -  a 0 1 +  , ~2-- 
7 + 1  

effusion-like process 

a = u K ( e  7 - - 1 U - ~ )  
7 7 1  t ' 

u = u  K 1 +  , ~2-- 
7 + 1  t 

(la) 

2a o 
(lb) 

7 - 1 '  

(lc) 

7 + 1  
7 -  1 uK" (ld) 

Here a is the sound speed, u is the flow velocity, x is 
distance normal to the wall or effusing surface, ~ is time, 
and 7 = C p / C v  is the heat capacity ratio (also termed 
adiabatic coefficient [2]). ~2 is the maximum possible value 
of u, as occurs at the expansion front where we have 
a = 0. a 0 characterizes the undisturbed reservoir, 2a0 / (7+  1) 
characterizes the surface of the reservoir, and %: = a K 
characterizes the outer boundary of the Knudsen layer (KL) 
formed by the effusing particles [3]. The corresponding 
density is given by 

8 c~ a 2/('r-1) (le) 
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Table 1. Various numerical constants relevant to terminating expansions 
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Species Heat The exponent The value of The value of The value of 
capacity in the relation ~ with A 0 with A~ ef with 
ratio, 7 p = A2/(,v-1> recondensation, recondensation, reflection, 

-- - (3 - "r)/('Y - 1) A0 = (3 - -y)/(-y + t) A~ ef = (3 - -~)/2 
(3c) (5b) (6b) (1 lb) 

Atoms 5/3 3 - 2 1/2 2/3 
Rotating diatomics 7/5 5 - 4 2/3 4/5 a 
Diatomics which both 9/7 ° 7 - 6 3/4 6/7 b 

rotate and vibrate 
Intermediate molecules 11/9 c 9 - 8 4/5 8/9 
Large molecules which both 1 c~ - cx~ 1 1 

rotate and vibrate 

a Agrees with (A10) of [2] 
b Agrees with (All) of [2] 
° Useful also for hot molecules (Table 2 of [9]) 

for any adiabatic, reversible, isentropic process involving a 
perfect gas. Values of  2 / (  7 - 1) are included in Table 1. 

We would recall that the KL is the near-surface region 
where the emitted particles come to equilibrium with each 
other [7-10]. The equilibration process has a number of  
consequences, including the development of  a formal flow 
velocity, a slight cooling, and a scattering of  some particles 
towards the emitting surface. In the most rigorous sense, a 
KL is infinitely thick [7] but in practice it can be taken as 
having the thickness appropriate to 3 to 5 mean free paths 
[11,12]. This in turn means that, when a KL is coupled to 
an expansion extending over many mean free paths, the KL 
can be taken as having zero thickness and therefore becomes 
a boundary condition. This will be true of  the present work. 

For 7 = 1, Sibold and Urbassek [2] have shown that (ld) 
remains valid but that (lc) and (le) are replaced with 

a = u K , Q = ~K e x p ( - z / u K t ) ,  (2a) 

a (3( • (v-I)/2 7- 1. (2b) 

Equation (2a) follows easily by taking the limit of  

1 7 -  1 :c ~2/(-r-a) 

'771 
for "7 --~ 1. ~K characterizes the outer boundary of  the KL. 
These unusual relations are discussed further in Sect. 1.1. 

One-dimensional expansions which terminate are proba- 
bly more important from an experimental point of  view, be- 
cause most work with nozzles and lasers is done under con- 
ditions of  pulsed release. The same work by Stanyukovich 
[3] showed how to resolve them for wall removal and it 
was subsequently proposed that the sputtering of  condensed 
gases such as Ar(s) or Kr(s) by heavy ions proceeds as if 
a wall were removed [13, 14]. Effusion-like processes oc- 
cur when gases are released from a pulsed nozzle as well 
as when solids are sputtered with intense laser pulses. We 
here recall that explicit photographs of  laser-sputtered parti- 
cles have recently become available [4, 15] and the expan- 
sions were found to be reasonably one-dimensional and with 
a more or less wall-defined contact front  (Figs. la, lb). (A 
contact front  is the analog of  an expansion front  when there 
is an ambient gas. Provided the driving gas density, here ~K, 
is sufficiently large, however, it is not necessary to make a 

distinction.) We also note that there are two limiting vari- 
ants both for wail removal and for effusion-like processes. 
When the expansion is due to wall removal one must decide 
whether particles scattered towards the back of  the reser- 
voir recondense or reflect. Likewise, when the expansion is 
effusion-like one must decide whether, at the moment when 
the release process terminates, particles scattered towards 
the effusing surface recondense (Fig. 2a) or reflect (Fig. 2b). 
This leads to a total of  four basic types of  terminating ex- 
pansion, as outlined in Table 2. 

Solutions thus far available for terminating expansions 
include that for wall removal with 7 = 5/3  and reflection 
[14]. For effusion-likeprocesses, explicit solutions are avail- 
able with '7 = 5/3,  7/5,  and 9/7,  and either recondensa- 
tion or reflection [2, 6, 16]. Tabulated values of  a and u are 
available only for 7 = 5/3 and reflection [16], while com- 
parisons of  analytical with numerical results have yet to be 
made. Only the solutions for 7 = 5/3  and reflection were 
made by the method of  Stanyukovich [3], which is perhaps 
the simplest approach currently known. 

We wish here to extend the available information for 
one-dimensional effusion-like expansions which terminate 
beyond what is available in previous work [2, 6, 16] and us- 
ing, in so doing, what we hope are the simplest possible 
mathematical methods. Specifically, we consider processes 
with 7 taking on the values 5/3, 7/5, 9/7, 11/9, and 1 (Table 
1), with the argument developed essentially as follows. (a) 
Following Sibold and Urbassek [2], we emphasize that ter- 
minating expansions consist of  a series of  regions separated 
by lines of  contact (LOC), i.e. abrupt changes of  slope in 9 
and u. A LOC is also known as a weak discontinuity or a 
weak singularity [2]. (b) For conditions of  recondensation, 
there are two regions separated by one LOC, the first region 
lying in part behind the effusing surface. For conditions of 
reflection, there are three regions separated by two LOC, the 
first region beginning at the surface. Both types of  expansion 
terminate with a region which is a remanent of  the release 
process and progresses to the expansion front. (c) The near- 
surface region (i.e. region I) under conditions of  reflection 
permits an analytical approximation valid for all "7 in which 
a is invariant with distance and u is linear with distance. 
(d) The surface itself under conditions of recondensation 
permits an analytical approximation valid for all "7 for a, 
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Fig. la, b. Polymethylmethacrylate targets with a thickness of 700 gm 
were exposed to 5 laser pulses (248 nm, ~ 20 ns, diameter 700 gm, 
2.1 J/cm 2, normal incidence) in air [4, 15]. The emitted heavy particles, 
and the shock wave caused by the emitted light particles, were 
photographed by firing parallel to the target surface a second ("probe") 
laser (596 nm, ~ 1 ns). The contact front of the heavy particles (similar 
to an expansion front) is marked with a dashed line, the shock wave 
with a solid line. The contact front of the light particles is not imaged. 
a Delay of 2.9 gs; b delay of 4.9 gs and reduction of magnification by 
factor of 0.61. The arrows represent the recondensation process 

RESEALABLE SEMI-INFINITE TUBE 
WALL ~ \FOR EXPANSION 

SEMI-INFINITE ' c 
RESERVOIR I( I( u > O  
O=oo,T=T o, ',~ 
P=Po 'u=O l'  I I ,~ 

- I  0 I 2 

b DISTANCE (arb. units) 

Fig. 2. a A terminating, effusion-like expansion with recondensation. 
Gas in a semi-infinite reservoir effuses into a vacuum from t = 0 (when 
the wall effectively becomes porous and u is everywhere positive) to 

= ~-r (when the wall is resealed and u becomes negative near the 
surface). The resealing is equivalent to the termination of the release 
process; b Same but for a terminating, effusion-like expansion with 
reflection 

but  not  for u. More generally,  the near-surface region (i.e. 
region II) can be resolved by the method of Stanyukovich  
[3], which has the advantage of  s implici ty  compared with 
the method of  characteristics as used in [2]. (e) The var- 
ious analytical  solutions and approximat ions  are compared 
with numer ica l  results. No errors are found,  al though (A12), 
(A13), (A16), and (A17) of  [2] are found to lack an impor-  
tant simplification. (f) Plots of  ~ versus z and u versus z are 
found  to be roughly independent  of 7, thence of  the nature  
of the sputtered particles. This  si tuation was not  previously  
recognized and should facilitate the analysis  of  informat ion  
as in Fig. 1. (g) Final ly,  we give extensive tabulated results, 
inc luding for the previously  untreated case of 7 = 11 /9  and 
partly treated case of  "7 = 1, to enable  a more  general  use 
of gas -dynamic  ideas. 

Our just if icat ion for extending the unders tanding of  ter- 
mina t ing  expansions to values of  7 other than 5/3 is that 
in real examples  of  pulsed-laser  sputtering there are well-  
defined roles for diatomics,  as with bombardment s  of  the 
superconductor  YBaaCu 3 07_  x [ 17], and for large molecules ,  
such as the monomers  and m o n o m e r  fragments  released in 
the bombardmen t  of  polymers  [18, 19]. Some of  the differ- 
ences are minor:  for example,  it will  be seen in Figs. 4 and 
5 to matter  little to the profiles of O versus z or u versus 
:c whether  ",/ is 7/5, 11/9 or 1. On the other hand,  some of  
the differences are quite important:  for example,  the quan-  

T a b l e  2 .  Classification of terminating 
expansions Basic process Knudsen Behaviour at Condensation 

layer? surface or back efficiency 
of reservoir 

Suggested name a 

Wall removal No Recondensation 1 
No Reflection 0 

Effusion-like Yes Recondensation 1 
Yes Reflection 0 

Outflow with recondensation 
Outflow with reflection 

Effusion with recondensation 
Effusion with reflection 

a There is apparently no established terminology to describe the various types of expansion, 
with a different choice being made, for example, in [4, 6, 16] 
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tity of recondensation, which plays a fundamental role when 
pulsed-laser sputtering is used to fashion integrated circuits, 
increases by a factor of 3 as 7 passes from 5/3 to 1 [1, 20]. 

We do not intend to discuss the problems that occur at 
low densities and the particles go into freeflight [5, 21]. In 
effect, the flow equations and any solutions derived from 
them, break down. This breakdown is less serious with a 
and ~ since these in any case evolve to zero as the distance 
increases but rather more serious with the temperature T. In- 
deed, T finally begins to increase (instead of decrease!) with 
distance at low enough densities [22, 23] and temperatures 
parallel and perpendicular to the direction of flow cease to 
be equal [22]. Nor do we discuss the following: (a) three- 
dimensionality, as must inevitably occur far enough away 
from the target [20, 24, 25]; (b) the presence, for whatever 
reason, of ions amongst the sputtered particles [26, 27]; (c) 
the presence of a recondensation Knudsen layer, whenever 
backscattered particles are absorbed by the surface, in which 
the particles cease to be in equilibrium [28, 29]. 

1 Solution of the Problem of a Terminating, 
Effusion-Like Expansion 

1.1 Underlying Relations 

of density [2]: 

o P / o r  + ( o / o x ) ( P u )  = ol 
(continuity equation) (4b) 

OU/OT + UOU/OX + P-]OP/OX = O, 

(Euler equation; 7 = 1) (4c) 

The Euler equation in this form is valid only for 7 = 1 
and only with adimensional variables. We here recall that 
a better known form, e.g. (4) of [2] and (3b) of [6], is the 
following: 

OU/OT + UOU/OX + (Az/P)OP/OX = O. 
(Euler equation; all 7) (4d) 

To help in comparing the present work with [2], we note 
the following major notational differences: 

here a 2 X I X n )(  

[2] c Xmi n ~ Cl  + Xma x 

here --211 2A~ 2A n 7_1+r2 7 - 1  7 - 1  
[2] - 2 F  1- 2 [  + 2F  + 

For 7 ~ 1 we use the flow equations in their usual form. 
We will express the variables adimensionally and therefore 
write 

A = a / u K ,  U=U/UK, P = ~ / ~ K ,  
X = x / u K % ,  T = t / r r ,  

r r being the length of the release ("r") process. 9- r could 
also be said to define the instant when the porous wall is 
resealed (Fig. 2) or when the expansion terminates, and is 
not necessarily the same as the laser pulse length r.  u K and 
OK, which characterize the KL boundary, can be understood 
in terms of KL theory, as pioneered by Ytrehus [7] and 
Cercignani [8] and as first applied to pulsed-laser sputtering 
by one of the present authors [9, 10]. The flow equations 
[2, 16] thus become: 

OA OA ( 7 -  1)A OU 
O-T + U ~-~ + ~ OX - O, (continuity equation) 

(3a) 
OU OU 2A OA 
O---T + U - ~  + --7 - 1 0 X  - 0, (Euler equation) (3b) 

and that for density (le) becomes 

P = A 2/(7-1) , (3c) 

with an equalitiy instead of proportionality. 
For 7 = 1 Sibold and Urabassek [2] have argued that 

there is a physical problem in that the gas particles leave 
the surface with a uniform T no matter what is the value of 
7. But if there is a large number of degrees of freedom, as 
when 7 --+ 1, the energy tends to infinity. This requires the 
relation P = A 2/(~-1) to be replaced with [cf. (2b)] 

A = p(,y-1)/2 = 1, (4a) 

the system becomes isothermal, and A ceases to be variable. 
Equations (3a) and (3b) must therefore be written in terms 

1.2 Results for a Terminating, Effusion-Like Expansion 
with Recondensation 

At the moment that an effusion-like expansion terminates 
there is an abrupt change of boundary conditions at the 
effusing surface. When particles backscattered to the surface 
undergo recondensation, U falls from 1 to a negative value 
- U  0 and A falls from 1 to A 0. As already noted [2, 6] the 
expansion, as a result of these changes, evolves from that 
described by (lc) and (ld) to one with two parts (Fig. 3). 
These will be termed region H (the "post-pulse regime" 
of [2]) and region III (the "simple expansion regime" of 
[2] or "flow phase" of [6]), such that region II begins at 
the virtual expansion front or minimum X at X,  continues 
through the surface at X = 0, and ends with an abrupt 

i i i i i i 

VIRTUAL 
EXPANSION SURFACE FIRST SECOND EXPANSLON 

=~ FRONT (~) (X = O) LOC (X I) L~C (X x) FRONT (X) 

= 4 

" I I COMMO 
/ 

~IREGION I~-REGION ~ - ~  

= CoMMON'~" [. ~6,ON = ~l 
>" REFLECTION l / I -  

, / < , ' t  
Oj / RECONDENSATION 
,, / ! 7 "=  5 / 3  

-2  --~ VIRTUAL REGION[I. REGION W ~1 T = t / T  r = 4 

-8 - ,  o 8 ,'2 ,6 20 
DISTANCE RATIO, X = X/UKT r 

Fig. 3. Flow velocity vs distance for 3' = 5/3 and T = 4. Shown 
are the expansion fronts, lines of contact (LOC), and regions. For 
recondensation region II could also be regarded as extending from 
the virtual expansion front (~7) to the second LOC (X n) 
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change of  slope at the second LOC at X H. Reg ion  III begins  
at Nil and ends at the real expansion front or m a x i m u m  

X at X .  The existence of  two instead of  three parts, as 
when  there is reflection (Fig. 3), can be expla ined as follows. 
The first LOC for reflection arises from the lower  part of  
the dis turbance at the surface and has a posit ive veloci ty 
g iven  by d X t / d T  = U I + A I. This LOC is absent  for 
recondensat ion  because  the init ial  veloci ty of  propagation,  
d X t / d T  = A o + U o, is, as we show below, zero. We now 

discuss the expans ion  as it proceeds form X to ) ( .  

1.2.1 The Virtual Expansion Front at ~2 (all T).  The only  

u n k n o w n  quanti ty  at the virtual expansion f ivnt  at 3~ is U-. 
To evaluate  it we proceed as in [16] and conserve particles 
in the l imit  T = 1 + A T .  This is done in Appendix  A, the 
overall  results be ing  

2 --  3 - 7 ( T  - 1), (all 7) (5a) 
7 1 

/ l = 0 ,  ~ = _ 3 - 7  (all 7)  (5b) 
7 _  1 " 

The quant i ty  2 A / (  7 - 1) + U plays an important  role in the 
theory of  te rminat ing  expansions,  as seen in Appendices  C 

and D. The value at X is 

2e l / (  7 - 1) + U = - ( 3  - 7 ) / ( 7  - 1). (all 7)  (5c) 

Equat ions (5), since they are based on a near-surface prop- 

erty, are val id for all 7, even  7 = 1. Numer ica l  values of 
are g iven in Table 1. 

1.2.2 The Surface at X = 0 (T  = 1). U n k n o w n  quanti t ies 
at the surface at X = 0 ( T  = 1) include both A 0 and U 0. A 
part icularly s imple way to derive A o and U 0, and examine  
the relat ion d X i / d T ,  is as follows. We first note  that, at the 
m o m e n t  when  the expans ion  terminates abruptly at T = 1 
and recondensa t ion  sets in, the change at the surface can be 
regarded as occurr ing in two steps. First the effusing surface 
is sealed and we have the same situation as for reflection 
(Sect. 1.3): 

A = Aref U; ef -0 = ( 3 - 7 ) / 2 ,  U =  = 0  (all 7 ; T = l )  (6a) 
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The sealed surface is now removed and the factor seen in 
( la )  is applied to A~ ef g iving the result, 

A 0 = (3 - 7 ) / ( 7  + 1). (all 7; T = l )  (6b) 

The quant i ty  U 0 now follows by analogy with ( lb) :  

g 0 = - A  0 = - ( 3  - 7 ) / ( 7  + 1), (all 7; T = 1) (6c) 

and we see that, at the surface, the initial  veloci ty of 
propagat ion of  the dis turbance d X ~ / d T  = A o + U o, is indeed 
zero. In  mak ing  these arguments  we neglect  the outward 
m o v e m e n t  of the surface as the recondensat ion  proceeds. 
Again  the quant i ty  2 A / ( 7  - 1) + U plays an important  role 
as in Appendices  C and D, and again the results are valid 
for all 7, even 7 = 1. Numer ica l  values  of A o are given in 
Table 1. 

Alternat ively,  one can derive A 0 by conserv ing  particles 
in the l imit  T = 1 + A T  (Appendices  A and B). 

1.2.3 Approximate Results for  X = 0 (all T).  We are not  
aware of  a r igorous descript ion val id for X = 0 (all T )  other 
than that obtained by us ing the full solutions for region II 
with X = 0 (Appendices  C and D). Approximate  results 
are readily obtained,  however ,  by no t ing  that the fol lowing 
expressions satisfy the flow equat ions for all 7, and are exact 
a t X = 0 a n d T =  1: 

A ~ Ao T-('r-~)/2 , (all 7)  
(7) 

U ~ - A  o + X T  -1 . (all 7)  

To establish to what  extent  (7) is useful,  we include with 
the tabulat ions of Table 3 not  only  exact analyt ical  and 
numer ica l  results but  also values at X = 0 according to 
(7). The approximat ion for A, but  not  that for U, is seen to 
be acceptable. We have not  yet  succeeded in obta in ing  an 
approximat ion for P valid for 7 = 1. 

1.2.4 Region II (all T).  It is region II, the "post-pulse 
regime" of  [2], which is the fundamenta l  obstacle to de- 
scribing analyt ical ly  a te rminat ing  expansion.  We explored 
previous ly  [16], for 7 = 5 / 3  and condi t ions  of  reflection, a 
method pioneered by S tanyukovich  [3] for resolving prob- 

Table 3. Comparison of analytical, numerical, 
and approximate results for terminating, 
effusion-like expansions with T = 2 and 
recondensation. The temporal and spatial 
steps were taken as AT = 0.0002 and 
AX = 0.00125 

a For 7 = 5/3, (C6) and (C7) were used. For 
7 = 7/5, (D3) and (D4), as well as (A6) and 
(A7) of [2] were used with identical results. 
For 7 = 9/7, (A8) and (A9) of [2] were used. 
Values at X n are in all cases from (8) 

7 X A A A U U U 
analytical a numerical approx, analytical a numerical approx. 

from (3) from (7) from (3) from (7) 

5/3 0 0.4022 0.4103 0.397 -0.3358 -0.3009 -0 .5  
0.2 0.4348 0.4354 .. .  -0.1572 -0.1558 . . .  
1 0.5535 0.5541 .. .  0.5751 0.5767 .. .  
2 0.6742 0.6746 .. .  1.5350 1.5364 .. .  
2.3431 (XH) 0.7071 . . . . . .  1.8787 . . . . . .  

7/5 0 0.5814 0.5855 0.580 -0.4712 -0.4637 0.667 
0.2 0.6037 0.6063 .. .  - 0.2800 - 0.2674 . . .  
1 0.6847 0.6851 .. .  0.5015 0.5032 . . .  
2 0.7654 0.7657 .. .  1.5227 1.5245 . .. 
2.4756 (Xn) 0.7937 . . . . . .  2.0315 . . . . . .  

9/7 0 0.6785 0.6806 0.679 - 0.5428 - 0.5557 - 0.75 
0.2 0.6953 0.6979 .. .  - 0.3452 - 0.3279 .. .  
1 0.7566 0.7570 . . .  0.4613 0.4631 .. .  
2 0.8173 0.8176 . . .  1.5125 1.5145 . . .  
2.5457 (Xn) 0.8409 . . . . . .  2.1137 . . . . . .  

11/9 0 . . .  0.7403 0.741 .. .  -0.6142 -0 .8  
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Table 4. Explicit results for region II of 
terminating, effusion-like expansions with 
recondensation. XII, AII, and UII are from (8). 
The temporal and spatial steps were taken as 
AT = 0.0002 and AX = 0.00125 for T = 2, 
and AT = 0.0016 and AX = 0.01 otherwise 

T X 

0 
0.5 
1 
1.5 
2 
2.3431 (XII) 
2.4756 (Xn) 
2.5 
2.5457 (X u) 

0 
1 
2 
4 
6 
8 (Xli) 
8 
8.8809 (Xli) 
9 
9.3726 (XII) 

0 
2 
4 
8 

12 
16 
2O 
20.6863 (XII) 
22 
24 (Xu) 
24 
25.9454 (Xn) 

R. Kelly, A. Miotello 

A for U for A for U for A for U for 
7 = 5/3 7 = 5/3 7 = 7/5 3' = 7/5 7 = 9/7 3' = 9/7 
(analytical (analytical [numerical 
from from from (3)] 
App. C) App. D) 

0.4022 
0.4815 
0.5535 
0.6180 
0.6742 
0.7071 

0.3228 
0.3592 
0.3919 
0.4464 
0.4844 
0.5 

0.2528 
0.2808 
0.3007 
0.3333 
0.3558 
0.3660 
0.3578 
0.3536 

-0.3358 0.5814 -0.4712 0.6806 -0.5557 
0.1140 0.6356 0.0098 0.7198 -0.0443 
0.5751 0.6847 0.5015 0.7570 0.4631 
1.0482 0.7282 1.0051 0.7898 0.9820 
1.5350 0.7654 1.5227 0.8176 1.5145 
1.878 . . . . . . . . . . . .  
. . .  0.7937 2.0315 . . . . . .  
. . . . . . . . .  0.8390 2.0612 
. . . . . . . . .  0.8409 2.1137 

-0.2222 0.5071 -0.3307 0.6038 -0.4799 
0.0982 0.5327 0.0058 0.6356 -0.0382 
0.4233 0.5558 0.3467 0.6526 0.3070 
1.0883 0.5939 1.0423 0.6818 1.0196 
1.7766 0.6200 1.7598 0.7017 1.7528 
2.5 . . . . . . . . . . . .  
. . .  0.6312 2.5071 0.7102 2.5119 
. . .  0.6300 2.8502 . . . . . .  
. . . . . . . . .  0.7085 2.9002 
. . . . . . . . .  0.7071 3.0503 

- 0.1451 0.4422 -0.2315 0.5358 -0.4225 
0.1372 0.4584 0.0618 0.5665 -0.0017 
0.4222 0.4730 0.3574 0.5810 0.3219 
1 0.4967 0.9560 0.5991 0.9305 
1.5896 0.5129 1.5654 0.6117 1.5515 
2.1947 0.5206 2.1881 0.6177 2.1845 
2.8263 0.5177 2.8290 0.6161 2.8329 
2.9393 . . . . . . . . . . . .  
. . .  0.5111 3.1594 0.6118 3.1646 
.. .  0.5 3.5 . . . . . .  
. . . . . . . . .  0.6046 3.5024 
. . . . . . . . .  0.5946 3.8378 

lems such as that of  region II. This  is reconsidered for 
7 = 5 / 3  in Appendix  C and for 7 = 7 / 5  in Appendix  
D, in both cases under  condi t ions  of  recondensation. The 
case 7 = 9 / 7  is discussed in  [2]. Various analytical ,  
numer ica l  [30, 31], and approximate results are compared,  
with favorable  outcome,  in Table 3. 

It is important  to note that the analyt ical  results,  both 
here and in [2], imply  the existence of  a vir tual  region from 

to X = 0, whereas the numer ica l  results such as those 
of  Table 3 were based on equat ing A to zero "one spatial 
step" beh ind  the surface. This might  seem to alter, perhaps 
unacceptably ,  the details of  how one conserves particles in 
the l imit  T = 1 + A T ,  as in Appendix  A. Conserva t ion  
of  particles is therefore reconsidered in Appendix  B in a 
way which is compat ible  with equat ing A to zero "one 
spatial step" behind  the surface. The same values  of  A 0 and 
U 0 are obtained,  showing  that the analyt ical  and numer ica l  
approaches are indeed equivalent .  

We chose not  to derive general  analyt ical  solutions for 
7 = 9 /7 ,  11/9, and 1 because of  the extreme complexi ty  of  
the problems.  Instead, numer ica l  results were obta ined as in 
Tables 4 and 5. 

1.2.5 The Second LOC a t  XII (all T). Region  II terminates  
with an abrupt  change of  slope at the second LOC  at XII 
governed by dXn/dT  = UII + A n. In v iew of  ( l c )  and ( ld )  

we therefore have for 7 # 1 

Xi  I _ "y ÷ 1 ( r  - T(3-7)/(7+1)),  (-,/7~ 1) (8a) 
7 - 1  

Aii = T-2(~/-1)/(7+1), (7 ¢ 1) (8b) 

UII _ -y + 1 2 T_2(7_1)/(7+1) ("y ¢ 1) (8C) 
7 - - 1  7 - - 1  

2AH/(  7 - 1) + U~I = (7 + 1) / (7  - 1). (7 # 1) (8d) 

Equat ions (8), being based on ( lc )  and ( ld) ,  are val id for 
all 7 except 7 = 1. g i i  is shown in Fig. 3. (For problems 
connected with U n in [6], see Appendix  F.) 

For  3/ ---- 1 the velocity of  the second LOC is again 
dXn/dT  = g i i  ÷ All, but  in view of  ( ld )  and (2a) we now 
have 

X n = 2 T l n T ,  (7 = 1) (9a) 

Aii = 1, PII = T - 2  , (7 = 1) (9b) 

UII = 1 + 2 1 n T .  (7 = 1) (9c) 

1.2.6 Region IlI and the Real Expansion Front at X (all 
T). Region  III, the "s imple  expans ion  regime" of [2] or 
"flow phase" of  [6], is the remanent  of  the release process 
described by ( l c )  or (2a) and ( ld) .  It begins  at XII as in 
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Table 5. Continuation of explicit results for 
region II of expansions with recondensation. 
X n, A H, and U~I are from (8) and (9). 
For 3" = 1 we list P = 0/OK instead of 
A = a /u~  = 1. The temporal and spatial 
steps were as in Table 4 

T X A for U for P for U for 
"3, = 11/9 3' = 11/9 3" = 1 3" = 1 
[numerical [numerical 
from (3)1 from (4)1 

0 0.7403 -0 .6142  0.0622 - 0.8703 
0.5 0.7723 -0 .0789 0.0887 -0.2261 
1 0.8022 0.4378 0.1201 0.3279 
1.5 0.8285 0.9659 0.1569 0.8922 
2 0.8508 1.5072 0.1964 1.4682 
2.5 0.8680 2.0636 0.2337 2.0574 
2.5890 (XII) 0.8706 2.1650 . . . . . .  
2.7 . . . . . .  0.2454 2.2985 
2.7726 (X H) . . . . . .  0.25 2.3863 

0 0.6733 - 0.5465 0.0248 -0 .8634  
1 0.7004 - 0.0737 0.0348 -0 .2476  
2 0.7144 0.2793 0.0415 0.1585 
4 0.7380 1.0015 0.0527 0.9162 
6 0.7541 1.7438 0.0621 1.6997 
8 0.7612 2.5107 0.0675 2.4978 
9.6857 (Xn) 0.7579 3.1793 . . . . . .  

10 . . . . . .  0.0661 3.3181 
11.0904 (XH) . . . . . .  0.0625 3.7726 

0 0.6128 -0 .4953 0.0101 - 0.8682 
2 0.6391 -0 .0426  0.0141 -0 .2597 
4 0.6518 0.2938 0.0168 0.1390 
6 0.6600 0.6031 0.0189 0.4946 
8 0.6668 0.9124 0.0205 0.8298 

12 0.6771 1.5402 0.0228 1.4836 
16 0.6822 2.1793 0.0242 2.1491 
20 0.6813 2.8325 0.0244 2.8242 
24 0.6731 3.5043 0.0231 3.5106 
27.2197 (XII) 0.6598 4.0622 . . . . . .  
28 . . . . . .  0.0205 4.2109 
32 . . . . . .  0.0168 4.9251 
33.2711 (XH) . . . . . .  0,0156 5.1589 

I i I i I i 

o.15 T = t / T  r = 4 
F I R S T  S E C O N D  
L O C  ( X  I )  L O C  ( X I I )  

a. 0 . I 0  

_o- 

P r r  

m~O.05 

O.OI3 
4 8 12 16 20 24 

DISTANCE RATIO, X = X/UK'r r 

Fig. 4. Density vs distance for three values of 3' and Y = 4. The 
branching at the left of each curve corresponds to conditions of 
reflection (upper branch, dashed) and recondensation (lower branch, 
solid). It will be noted that the density profile varies only weakly with 
3 .̀ The information is numerical up to X n and analytical beyond Xii 

28 

8 

!6 
d 

- I  

I I ' I ' t ' I ' I ' 

SECOND J ~  FOR ]¢ = 7/5 

~ - r ' " / 9  T = t / ~  = 4 - 

' ,'6 2', 20 
DISTANCE RATIO, X = X/UK'r r 

Fig. 5. Flow velocity vs distance for three values of 3, and T = 4. 
The branching at the left of the profile for ,7 = 7/5 again corresponds 
to conditions of reflection (upper branch, dashed) and recondensation 
(lower branch, solid). It will be noted that the flow velocity profile 
varies even more weakly with 3" than does the density profile. The 
information is numerical up to X n and analytical beyond Xli 

(8a) or  (9a), and  t e rmina te s  at the  real expansion f ron t  at 2 ,  
de sc r ibed  for  all  3' by  

2 = 7 +  1 
T ,  (all 7)  (10a)  

7 - 1  

A = / 5 = 0 ,  ~ _  3 ' + 1  (all 7)  (10b)  
7 - 1  

As  a l ready  po in t ed  out  by  [2], for  7 = 1 b o t h  2 and  Cr t end  
to infini ty.  

Tables  4 and  5 g ive  resul t s  for  r eg ion  II u n d e r  cond i t ions  
o f  r e condensa t i on ,  wh i l e  Figs.  4 to 7 show e x a m p l e s  o f  the  
va r i a t ion  o f  P and  U wi th  X .  O t h e r  i n f o r m a t i o n  o f  this  
type  is g i v e n  in [ 2 , 4 , 6 , 1 6 ] .  (Note  tha t  Fig. 4c o f  [4] has  
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\ ~ l  4 I FIRST "D = t/-r r 
"--\ ..... ~ ~ P l l  eoc (X I) 1 

4 8 12 16 20 24 
DISTANCE RATIO, X = X/UK'r r 

28 

Fig. 6. Density vs distance for 3' = 1 and four values of Y. The 
branching at the left of each curve corresponds to conditions of 
reflection (upper branch, dashed) and recondensation (lower branch, 
solid). The information is numerical up to X H and analytical beyond 
XII 

8 

~ 4  SECOND ~ U~ FIRST n,- 

~ 2 ~ ~- LOC ,X H) U.r . . . . . . . . .  LC~ (XI) UZ 8 - - T  " t / ' r  

o 

- I ~  ~ I n n I n I i I n I a 
4 ; 12 16 20 24 28 

DISTANCE RATIO, X = X/UKT r 

Fig. 7. Flow velocity vs distance for 3' = 1 and four values of T. 
The branching at the left of the profile for T = 2 again corresponds 
to conditions of reflection (upper branch, dashed) and recondensation 
(lower branch, solid). The information is numerical up to X n and 
analytical beyond X n 

a surface boundary condition differing from that of  (6). 
This is because it was attempted to take into account the 
recondensation Knudsen layer [28, 29].) An important aspect 
of the solutions, evident in Figs. 4 and 5, is that P and U 
for a given T are roughly independent of  7, a situation not 
previously recognized. Analysis of  information as in Fig. 1, 
where the emitted particles have a range of  masses [18, 19], 
should be correspondingly facilitated. Table 8 summarizes 
the availability of  analytical solutions, approximate forms, 
and tabulations. 

1.3 Results for  a Terminating, Effusion-Like Expansion 
with Reflection 

At the moment that an effusion-like expansion terminates, 
and conditions of reflection apply, there is again an abrupt 
change of  boundary conditions at the effusing surface. U 
falls from 1 to 0, and A falls from 1 to a still undetermined 
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value A~) ef (identical to the quantity L of  [16]). As a result 
the expansion evolves from that described by (lc) and (ld) 
to one with three parts beginning at the surface (Fig. 3). 
These will be termed region I (the "reflection regime" of  
[2]), region II and region IlL The regions are separated by 
two LOC's  at X I and XII, and we note that the part of  region 
II lying beyond the first LOC at X I, as well as the entirety of  
region III are identical to what is applicable under conditions 
of recondensation (Sect. 1.2). 

1.3.1 The Surface at X = 0 ( T  = 1). At the moment when 
the expansion terminates abruptly at T = 1 and reflection 
sets in, the change at the surface involves simply a sealing 
as in Fig. 2b. U and A therefore change to 

A = A ~  ee, U = U ~  e l = 0 .  ( a l l T ; T = l )  ( l la )  

Since (1 la) already satisfies the flow equations, the quantity 
A~ ef is not determined at this point. Rather, it is necessary to 
conserve particles in the limit T = 1 + A T  [16], the result 
being 

A~ ef = (3 - 7) /2 ,  (all 7) ( l lb )  

2A~ef/( 7 - 1) + U6 ef = (3 - 7 ) / (7  - 1), (all 7) (1 lc) 

with representative values as in Table 1. Equations (1 lb) and 
(1 lc), since they are based on a near-surface property, are 
valid for all 7, even 7 = 1. 

1.3.2 Region I for  7 = 5/3  (all T). We have already shown 
[16] that the first part of  the expansion ("region I") is 
described for ",/= 5 /3  by the remarkably simple relations: 

A = AroefT -(7-1)/2 , U = X T  -1 , (7 = 5/3) (12) 

results which are easily shown to satisfy the flow equations, 
the conditions at X = 0, and the LOC which terminates 
region I at X I. 

1.3.3 The first LOC at X I for  7 = 5/3 (all T). Region I 
terminates with an abrupt change of  slope at the first LOC 
at X I, governed by d X i / d T  = Ui + A I. In view of  (12) we 
therefore have for 7 = 5/3 

X I = [(3 - 7 ) / (7  - 1)] (T - T(3-7)/2), (7 = 5/3) (13a) 

A I = AroefT -(~-1)/2 , U~ = X I T  - I  , (7 = 5/3) (13b) 

2AI/ (  7 - 1) + U I = (3 - 7) (7 - 1). (all 7) (13c) 

U I is shown in Fig. 3. We have taken (13c) as being generally 
valid, in agreement with (20a) and (43) of [2], since it can be 
justified as a near-surface property. (For problems connected 
with closely related equations in [6], see Appendix F.) 

1.3.4 Approximate Results for  Region I and X I (all T).  As 
will be discussed in Appendix E, (12) and (13) are rigorously 
valid only for 7 = 5/3. Nevertheless, they satisfy the flow 
equations for all 7, and are exact at X = 0 and T = 1. 
Only the boundary condition at X~ is violated for 7 < 5/3,  
as is discussed in Appendix E. One might therefore expect 
the equations, which have a remarkably simple form, to be 
generally applicable provided small errors can be tolerated. 

To establish to what extent (12) and (13) are generally 
useful, we include with the tabulations of Tables 6 and 7 not 
only exact analytical and numerical results but also values at 
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Table 6. Explicit results for region I of 
terminating, effusion-like expansions with 
reflection. Unmarked values are exact and 
those marked "simple" or "s" are approximate 
forms from (14) 

a For 3' = 5/3, (12) and (13) were used. For 
3" = 7/5, (A10) and (All )  of [2] were used 
for X < X l, and the present (D5) and (D6) 
for X = X x. For 3" = 9/7, (A14-A17) of [2] 
were used 

T X  

2 0 (rigorous) 
0 (simple) 
0.5 
0.8252 (XI) 
1 

1.0515 (X I) 
1.036 (X x, s) 
1.1603 (Xi) 
1.131 (Xx, s) 

4 0 (rigorous) 
0 (simple) 
1 

2 
2.9603 (XI) 
3 
3.9730 (X 0 
3.874 (XI, s) 
4 
4.5004 (X x) 
4.312 (XI, s) 

8 0 (rigorous) 
0 (simple) 
2 
4 
6 
8 (Xi )  
8 

10 
11•2341 (Xx) 
10.888 ( x  x, s) 
12 
13.0268 (Xi) 
12.336 (X> s) 
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A for U for A for U for A for U for 
3 `=5 /3  7 = 5 / 3  3 ' = 7 / 5  3"=7/5  3"=9/7  ~ , = 9 / 7  
(analytical) a (analytical) a (analytical) a 

0.5291 
0.5291 
0.5291 
0.5291 

0.4200 
0.4200 
0.4200 
0.4200 
0.4200 

0•3333 
0.3333 
0.3333 
0.3333 
0.3333 
0.3333 

0 0.6908 0 0.7695 0 
0 0.696 0 0.776 0 
0.25 0.6905 0.2628 0.7690 0.3095 
0.4126 . . . . . . . . . . . .  
• . . 0.6896 0.5257 0.7679 0.5802 
.. .  0.6895 0.5527 . . . . . .  
. . .  0.696 0.518 . . . . . .  
. . . . . . . . .  0.7675 0.6558 
. . . . . . . . .  0.776 0.566 

0 0.5977 0 0.6921 0 
0 0.606 0 0.703 0 
0.25 0.5974 0.2597 0.6918 0.2954 
0.5 0.5966 0.5196 0.6909 0.5567 
0.7401 . . . . . . . . . . . .  
. . .  0.5953 0.7796 0.6897 0.7699 
• . . 0.5934 1.0328 . . . . . .  
. . .  0.606 0.969 . . . . . .  
. . . . . . . . .  0.6885 0.9399 
. . . . . . . . .  0.6880 1.0119 
. . . . . . . . .  0.703 1.078 

0 0.5179 0 0.6235 0 
0 0.528 0 0.637 0 
0.25 0.5176 0.2574 0.6232 0.2849 
0.5 0.5169 0.5149 0.6224 0.5387 
0.75 0.5158 0.7725 0.6215 0.7481 
1 . . . . . . . . . . . .  
• .. 0.5142 1.0303 0.6205 0.9165 
• . . 0.5120 1.2884 0.6195 1.0530 
•.. 0.5104 1.4478 . . . . . .  
. . . 0.528 1.361 . . . . . .  
. . . . . . . . .  0.6186 1.1658 
. . . . . . . . .  0.6182 1.2166 
. . . . . . . . .  0.637 1.542 

X = 0 and X I according to (12) and (13) (marked "s imple"  
or "s"). There is seen to be agreement  to wi thin  6% and, for 
this reason, we propose that (12) and (13) rather than exact 
analyt ical  or numer ica l  solutions be used for 3` < 5 /3 :  

X I ~ [(3 - 3`)/(y - 1)] (T  - T(3- ' r ) /2) ,  (7 7 £ 1) (14a) 

A ~ A I ~ AroefT -('y-1)/2 , (all 3') (14b) 

U ~ X T  -1 , g I ~ X I  T - 1  . (all 3') (14c) 

For  some purposes it may  be useful,  notwi ths tanding the 
obvious  simplici ty of  (14), to have exac t  expres s ions  for X t, 
A I, and U I. For  7 = 7 / 5  they can be obtained by in t roducing 
5A + U = 4 into (D3) and (D4) with results as in (D5) and 
(D6). For  3` = 9 / 7  one substitutes 7 A  + U = 6 into (A16) 
and (A17) of  [2]. (These results, it might  be noted,  consti tute 
a s implif icat ion of  (A12), (A13), (A16), and (A17) of  [2]. 
The latter equat ions are, however ,  otherwise correct.) 

Equat ions  (14) are not  all useful  for 3` = 1 and we now 
indicate the corresponding approximate forms. For A and U 
we have, in accordance with (2a) and (14b), 

A = A t = 1, (3` = 1) (15a) 

U ~ X T  -1 , U I ~ X I T  -1 . (all 3") (15b) 

the latter expression being best justif ied numer ica l ly  (Table 
7). By subst i tut ing (15b) into (4b) we obta in  

P ~ £'I ~ Po T - I "  (all 7)  (15c) 

The first LOC  at X I is again governed  by d X l / d T  = 

U I + A I, but  in v iew of  (15a) and (15b) we now have 

X I ~ T l n T ,  U r ~ l n T .  ( 7 =  1) (16) 

Final ly  p ~ = l ,  applying specifically for 3` ----- 1, is evaluated 
by conserving particles in the l imit  T --- 1 ÷ AT .  The 
quanti ty in region I is just  QI = P X I ,  that in region II is 

QII = P (XI I  - XI) + ½(1 - P ) (XII  - XI),  and that in region 

III has the value Qm = T - I  seen in (A1). The condi t ion  
QI + QH + QHI = 1 finally yields 

p ~ = l  ~ 1 / 3 .  (7 = 1) (16c) 

1•3.5 Region  II and the Second LOC  at  Nil  (all T) .  With 
regard to 3` = 5 /3  and 7/5, we note that the solutions 
discussed in Sect. 1.2 for region II and here reproduced 
in Appendices  C and D apply equal ly  under  condi t ions  of 
recondensat ion and reflection. This is because region II lies 
beyond X 1 and "knows noth ing"  about  the existence of  the 
first LOC in those instances where there is one. Thus  we 
have the fol lowing inequali ty:  

Xii  > X I . (0,11 3`) 

The solutions are valid from X I to X n. 
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Table 7. Continuation of explicit results 
for region I of expansions with reflection. 
Unmarked results are exact and those marked 
"simple" or "s" are approximate forms from 
(14) and (16). The temporal and spatial steps 
were taken as AT = 0.0016 and A X  = 0.01 

T X 
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A for U for P for U for 
7 =  11/9 7 =  11/9 7 : 1  2/= 1 
[numerical ]numerical 
from (3)] from (4)] 

0 (rigorous) 0.8164 0 0.1598 0 
0 (simple) 0.823 0 0.167 0 
0.5 0.8159 0.2757 0.1587 0.2956 
1 0.8133 0.5291 0.1567 0.5630 
1.186 (Xr, s) 0.823 0 . 5 9 3  . . . . . .  
1.386 (XI, s) . . . . . .  0.167 0.693 

0 (rigorous) 0.7512 0 0.0719 0 
0 (simple) 0.762 0 0.0833 0 
1 0.7509 0.2715 0.0716 0.2875 
2 0.7501 0.5404 0.0708 0.5722 
3 0.7489 0.8122 0.0694 0.8569 
4 0.7461 1.066 0.0676 1.142 
4.568 (32i, s) 0.762 1 . 1 4 2  . . . . . .  
5 . . . . . .  0.0649 1.436 
5.545 (XI, s) . . . . . .  0.0833 1.386 

0 (rigorous) 0.6919 0 0.0329 0 
0 (simple) 0.706 0 0.0417 0 
2 0.6917 0.2664 0.0328 0.2807 
4 0.6910 0.5315 0.0325 0.5600 
6 0.6898 0.7968 0.0320 0.8394 
8 0.6882 1.062 0.0312 1.119 

10 0.6858 1.331 0.0303 1.399 
12 0.6825 1.582 0.0293 1.679 
13.20 (Xl, s) 0.706 1 . 6 5 0  . . . . . .  
14 . . . . . .  0.0280 1.959 
16 . . . . . .  0.0265 2.232 
16.64 (XI, s) . . . . . .  0.0417 2.079 

Table 8. Overview of the availability of 
analytical solutions, approximate forms, and 
tabulations for terminating expansions 

7 

Recondensation (region II only) Reflection (region I only) 

Analytical Approx .  Tabulations Analytical A p p r o x .  Tabulations 
solutions forms solutions forms 

5/3 App. C (7) Table 4 (12, 13) ...  Table 6 
7/5 App. D (7) Table 4 [2] (14) Table 6 
9/7 ]2] (7) Table 4 [2] (14) Table 6 

11/9 ... (7) Table 5 ... (14) Table 7 
l [2] ... Table 5 ... (15, 16) Table 7 

1.3.6 Region III and the Real Expansion Front at f (  (all T).  
Region III requires no comment, as it is exactly the same 
for all surface conditons in the sense that it begins at XII 
as in (8a) or (9a), is described by ( lc)  or (2a) and (ld), and 

terminates at X as in (10a). 
Tables 6 and 7 give results for region I under conditions 

of reflection. Also Figs. 4 to 7 are relevant to conditions of 
reflection, with region I represented by the dashed portions. 
The availability of analytical solutions, approximate forms, 
and tabulations is summarized in Table 8. 

2 Discussion 

We have considered terminating, effusion-like expansions 
as are relevant when gases are released from a pulsed 
nozzle or when solids are sputtered with intense laser pulses, 
a subject treated previously in [2,6, 16]. We recognize 
that some of the results appear in [2,6, 16] but justify 
the present work on the basis that we have used what 
we feel to be simpler mathematical methods. Furthermore, 

we have supplemented the analytical solutions both with 
approximations and numerical results. 

We found that one of the biggest uncertainties in obtain- 
ing analytical solutions was to be convinced of the correct- 
ness of the changes of boundary conditions at the surface at 
X = 0 when the expansions terminate abruptly at Y = 1. It 
should be recalled, in this regard, that the relation appropri- 
ate to reflection, 

A~ ef = (3 - 7 ) / 2 ,  (all 7) ( l l b )  

satisfies the flow equations for all A~ ef and it is therefore 

non-trivial to deduce the correct A~ el. Indeed, a value correct 
only for 7 = 5/3,  namely (7 + 1)/4, was proposed in [6] 
(Appendix F). Also the idea, when there is recondensation, 
of making the changes in two steps so as to obtain the result, 

A 0 = (3 - 7 ) / ( 7  + 1), (all 7; T = 1) (6b) 

may possibly be naive. Nevertheless, our analytical values 
of AD ee and A 0 agree fully with those of [2] and, in addition, 
have been tested numerically. For example, for 7 = 7/5  
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the numerical value of A~ ef was 0.80005 (instead of the 
analytical value 0.8) and of A 0 was 0.688 (instead of 0.667). 
If A~ ef is taken as (7 + 1)/4 then we obtain for 7 = 7/5 the 
unacceptable analytical values A~ ef = 0.6 and A 0 = 0.5. 
Nevertheless, the surface conditions used both here and in 
[2] for recondensation are wrong in so far as they do not take 
into account the recondensation Knudsen layer [28, 29]. 

It was noted that the remarkably simple relations for 
region I valid for 7 = 5/3 and conditions of reflection (12, 
13), if used for 7 other than 5/3, gave results which differed 
only slightly from more rigorous results. For example, A for 
X = 0 is obtained to within 2% (Tables 6 and 7). Simple 
relations can also be constructed for 7 = 1 (15, 16). The 
approximations amount to requiring that A or P retain, for 
X > 0, the values appropriate to X = 0 and that U is 
always given by U ~ X T  -1. The failure of (12-16) to be 
exact for 7 other than 5/3 is discussed in Appendix E. 

Simple relations for X = 0, valid under conditons of 
recondensation, are also readily devised as in (7). Only that 
for A is useful, however, agreeing with the more rigorous 
results generally to within 2% (Tables 4 and 5). 

Table 3 serves to compare the analytical, numerical, and 
approximate solutions for region II when there is recon- 
densation. The agreement is in all cases rather good and a 
possible conclusion is that the various analytical solutions 
[2, 6, 16] are correct. From another point of view the nu- 
merical solutions, obtained using the methods of Godunov 
and Lax-Wendroff with time-varying mesh [30, 31], are seen 
to be acceptable. That there should be doubt in either case 
rests mainly with the somewhat different approach used to 
describe the surface at X = 0 under conditions of reconden- 
sation. Thus the analytical solutions imply the existence of 
a virtual region from _X to X = 0, whereas the numerical 
results are based on equating A to zero "one spatial step" 
behind the surface. 

As overall conclusions we wish to indicate the following: 

(a) At least four types of terminating expansion can be en- 
visaged, as outlined in Table 2. 
(b) When an expansion terminates and there is recondensa- 
tion, U falls abruptly from 1 to - A  0, and A from 1 to A 0, 
with A 0 given by (3 - 7) / (7  + 1). As time increases, the 
solutions evolve into two well-defined regions, here desig- 
nated II and III. Region II begins at the virtual expansion 
front at )( ,  while region III terminates at the real expansion 
front at _~ (Fig. 3). 
(c) When an expansion terminates and there is reflection, 
U falls abruptly from 1 to 0, and A from 1 to A~ el, with 
A~ ef given by (3 - 7)/2. As time increases, the solutions are 
now more complex as they evolve into three regions, here 
designated I, II, and III. Region I begins at the effusing sur- 
face at X = 0, while region III again terminates at the real 
expansion front at X (Fig. 3). 
(d) An important simplification is that the solutions for re- 
gion II and III are the same no matter what are the surface 
conditions. This is because the different surface conditions 
affect only region I and the other regions lie beyond region 
I. In effect the inequality X n > XI holds for all 7. 
(e) Another simplification is that plots of Q versus x and u 
versus x are roughly independent of 7, thence of the nature 
of the sputtered particles (Figs. 4 and 5). 
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(f) The somewhat complicated analytical solutions for re- 
gion II under conditions of recondensation (Appendices C 
and D) can be approximated at X = 0 by the remarkably 
simple forms seen in (7). These forms satisfy the flow equa- 
tions, and are exact at X = 0 and T = 1, but only that for 
A is useful: 

A ~ Ao T-('~-I)/2 , (all 7) 
(7) 

U ~ - A  o + X T  -1 . (all 7) 

(g) Simple forms as in (12-16) can be devised also for 
conditions of reflection. They are valid for all of region I 
from X = 0 to X I, satisfy the flow equations, and are exact 
a t X = 0 a n d T = l :  

A ~ AroefT -(7-1)/2 , U ,-~ X T  -1 , (all 7) 

p ~ l T -1,  U'~ X T  - t .  ( 7 = 1 )  (14) 
3 

(h) The availability of analytical solutions, approximate 
forms, and tabulations is summarized in Table 8. 
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Appendix A 

Evaluation of (Y, A o, and U o with Virtual Region 

We here evaluate (7, A0, and U 0 under conditions of recon- 
densation by conserving the number of particles for a time 
near T = 1, namely T = 1 + AT,  when A for region II is 
rigorously linear both to the "left" and to the "right" of the 
effusing surface. To the "left", i.e. in the virtual region, QIl 
has a contribution 

-~AT 

o 

\ - U A T  / 
o 

_ _ [A(.~+I)/(.~-I)~ 7_ - 1 ( f A T  
- ~ o J~'T1 A o ' 

where we note that U is negative. To the "right" Qu has a 
contribution 

XII 
/ (  A A  ) 2/(W-l) 

Q{I = A o + ~ X dX  

o 

2z2T 

= / ( A ° +  1 - A ° x )  2 / ( ' v - I ) d X - 2 ~ T  

o 

= (1 - A ('Y+W('~-I~ 7_- 1 2 A T  
o J7-~1 1 ~-Ao" 
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Finally, the region from X H to .2  is the same as when there 
is reflection [16]: 

2 

= / Az / (7-DdX = T -1 = 1 - A T .  (A1) QIII 
, /  

X n  

By requiring conservation of  particles, Q{I + Q~I + Qm = 1, 

it follows without difficulty that A 0 and U are given by 

A 0 = (3 - 7 ) / ( 7  + 1), (A2) 

U- = - 2 A 0 / ( 1  - A0) = - ( 3  - 7 ) / ( 7  - 1). (A3) 

Note that (A3) can also be obtained by equating the 
slopes, A A / A X ,  to the "left" and to the "right" of  the 
surface. Similarly, by equating A U / A X  to the "left" and 
"right", one obtains 

U 0 = - A  0 . (A4) 

We take these results as showing that, in resolving ~P as 
in Appendices C and D there is no separate information 
contained in A 0 and U 0. Indeed, if  this assumption is not 
made the number of conditions exceeds the number of 
unknowns. We note also that if  the slopes to the "left" do 
not equal those to the "tight", then there would be a LOC 
at the surface, but there is no such LOC under coditions of  
recondensation. 

Appendix  B 

Evaluation of A o and U o without Virtual Region. 

We here evaluate A 0 and U 0 under conditions of  reconden- 
sation by conserving the number of  particles for a t ime near 
T = 1, namely Y = 1 + AT,  when A for region II is rig- 
orously linear to the "right" of  the effusing surface, while 
instead of  a virtual region to the "left" we allow for a recon- 
densing flux. This approach lies at the basis of the numerical  
method used for the various tabulations. 

We now have, instead of (~{I of  Appendix A, the recon- 
densed quantity, Q[~: 

Q~C = _ UoA~/('Y- 1)AT. (B 1) 

Q~I and QnI remain the same and the final results are 

A 0 = (3 - 7 ) / ( 7  + 1), (B2) 

U o = - A  o . (B3) 
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The description of  the recondensation problem is thus the 
same whether or not a virtual region is assumed and we are 
therefore not surprised that the analytical results (for which 
a virtual region is implied) agree with the numerical results 
[described by (B1)] in Table 3. 

Appendix  C 

Solutions for Region II for "7 = 5 /3  under Conditions of 
Recondensation 

The resolution of  region II has already been discussed [16] 
for conditions of  reflection and is now reconsidered as 
modified for recondensation. Without going into detail we 
will argue here simply that the flow equations (3) can be 
transformed to the following: 

3 - 7  0r  
[ - - /  - -  

( 7 -  I )A  OA \ 7 -  l /  OU 2 

02 g, 
+ ~ = 0 ,  (continuity equation) (C1) 

2 A T  O~P 
7 - 1 OA ' (Euler equation) (C2) 

X = U T  - Og'/OU. (an Ansatz) (C3) 

Equation (C1) is satisfied for 7 = 5 /3  by 

g, _ F(3A + U) C,~(3A + U) ~ 
A - E A ' (C4) 

as is easily shown by substitution into (C1). The fact that 
the same result will be obtained proves that region II for 
7 = 5 /3  is independent of  the surface conditions. As already 
noted in Sect. 1.3 this result is not surprising in view of  the 
inequality, valid for ",/> 1, 

x,, > x t .  
The constants C n can be deduced by evaluating (C2) 

and (C3) in terms of  (C4) at )~ and Xri. As seen in Table 
9 this gives four conditions and we therefore need four 
constants. Furthermore, since (C2) and (C4) together give 
3 A F  p - F = 3A3T, we choose n = 3 and the constants 
become Co, C 1 , C' 2, and C 3. It is easily shown that the values 
C 3 = 1/36, C 2 = 0, G = - 1 / 3 ,  and C O = - 4 / 9  (the same 
as those proposed in [16]) satisfy the four conditions and the 
expression for F(3A + U) is therefore 

F(3A + U) = (3A + U)3/36 - (3A + U)/3 - 4 / 9 .  (C5) 

Table 9. Quantities used for evaluating the constants C n for 7 = 5/3 and 7/5 in Appendices C and D 

7 Position 2A/(7 - 1) + U Conditions from (C2) Conditions from (C3) 

5/3 )(, all Y - 2 (5c) F ( - 2 )  = 0 F ' ( - 2 )  = 0 
X = 0, Y = 1 1 (6b, 6c) F(1) = - 3 / 4  F'(1) = - 1/4 
X~, all Y 1 (13c) F(2) = - 8/9 F'(2) = 0 
XII, all Y 4 (Sd) F(4) = 0 F'(4) = 1 

7/5 P(, all Y - 4  (5c) F ( - 4 )  = 0 F ' ( - 4 )  = F " ( - 4 )  = 0 
20 1600 3 

X = 0, Y = 1 8/3 (6b, 6c) F ( ~ )  - ~ -  729 _ ', 5 / = 8 

X I, all T 4 (13c) F(4) ,~ lO24375 FI(4) ~ F'I(4) ~ 0 

Xn, all Y 6 (8d) F(6) = 0 F'(6) = 0, F"(6) = 1 



Pulsed-Laser Sputtering of Atoms and Molecules 

There is no additional information at X = 0 ( T  = 1), as 
is not surprising since the values of  A and U at this point 

are linear interpolations of  those for J f  and XII (Appendix 
A). As an unexpected bonus, however,  we find that the same 
set of  four constants describes the simple form of  X~ seen 
in (13) (Table 9 and Appendix E). 

The actual solutions are as follows. From X = U T -  
&P/OU, with g' as in (C4), one obtains 

12AX - 12AUT = - ( 3 A  + U) 2 + 4 .  (C6) 

From 3AT  = Off~/ OA one obtains 

108A3T = - ( 3 A  + U) 3 + 9 A ( 3 A  + U) 2 + 12U + 16. (C7) 

Equations (C6) and (C7) are easily checked by noting that 

they behave as required at _~, X = 0 ( T  = 1), X I, and X~I. 
The equations are best solved numerically and give values 
as in Table 4. 

Appendix D 

Solutions for Region II for 7 = 7 /5  
under Conditions of Reeondensation 

We again assume conditions of  recondensation and write 
as follows 

(p _ U ( 5 A  + U) F(5A + U) 

A 2 5A 3 
(D1) 

5nC~(5A + U )  '~-1 C~(5A + U) n 

= ~ A 2 - Z A 3 ' 

as is easily justified by substitution into (C1). 
The constants C,~ can be deduced by evaluating (C2) and 

(C3) in terms of  (D1) at ) (  and X H. The argument follows 
closely that for 7 = 5/3.  For  example,  as seen in Table 9, 
there are six conditions and we therefore need six constants. 
Furthermore, since (C2) and (D1) together give 

25A2F '' - 15AF' + 3 F  = 25AST,  

we choose n = 5 and the constants become C 0, C 1, C 2, C 3, 
C 4, and C 5. It is easily shown that the following values are 
required: 

C 5 = 0 . 0 0 0 1 ,  C 4 = 0 ,  C 3 = - 0 . 0 0 6 ,  

C 2 = - 0 . 0 0 8 ,  C 1 = 0 . 0 9 6 ,  C O = 0 . 2 3 0 4 ,  

and the expression for F(5A + U) is therefore 

5 

F(5A + U) = 5 Z C~(5A + U) ~ . (D2) 
0 

As with 7 = 5 /3  there is no additional information at 
X = 0 ( T  = 1). In contrast to 7 = 5/3 ,  however,  we find 
that the above set of  constants does not describe the simple 
form of  X l seen in (13) (Table 9 and Appendix E). The C n 
are easily shown to be correct by substituting F(5A + U) 
into the six conditions. 
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The actual solutions are as follows. From X = U T -  
&P/OU, with g' as in (D1), one obtains 

2000A3X -- 2000A 3 UT 

= - 20A(5A + U) 3 + 360A(5A + U) + 160A 

+ (5A + U) 4 - 36(5A + U) 2 - 32(5A + U) 

+ 192. (D3) 

From 5AT = Og'/OA one obtains 

50 ,000A5T 

= 500A2(5A + U) 3 - 9000A2(5A + U) - 4000A 2 

- 75A(5A + U) 4 + 2700A(5A + U) 2 

+ 2400A(5A + U) - 14,400A + 3(5A + U) 5 

- 180(5A + U) 3 - 240(5A + U) 2 + 2880(5A + U) 

-4- 6912. (D4) 

Numerical  solutions of (D3) and (D4) are given in Table 4. 
To obtain information on the first LOC at X I, we intro- 

duce 5A + U = 4 into (D3) and (D4) and thus obtain 

125A3X - 125A3UT = 20A - 16, (D5) 

3125AST = - 5 0 0 A  2 + 1200A + 384. (D6) 

Equations (D5) and (D6) can be rearranged to 

X = UT  - (16 - 20A)/125A 3 , (DV) 

AST = 1024/3125 - (100A 2 - 240A + 128) /625,  (D8) 

results which show the approximations of  (13) to indeed be 
reasonable. The simplifications seen in (D5-D8)  were not 
carried out with (A12) and (A13) of  [2]. The latter equations 
are, however, otherwise correct. 

Appendix E 

Validity of the Simple Forms of (12-16)for Region I 

We have noted that the somewhat complicated analytical 
solutions for region I under conditions of reflection as given 
in [2] can be approximated by the simple forms of  (12-16).  
We here consider more closely the validity of the latter. 

If  the simple forms are valid for 7 = 5 /3  then the first 
LOC at X~ is described by (13): 

2 T_I/3 A I =  ~ , U ~ = 2 - 2 T  1/3, 

3A~ + U I = 2. 

The existence of  the first LOC establishes two more con- 
ditions beyond the four used in Appendix C (see Table 9). 
In fact F(3A + U) as in (C5) does satisfy the additional 
conditions and we conclude that the simple forms are valid. 

Similarly, if  the simple forms can be used for 7 = 7 /5  
then again the first LOC is described by (13): 

4 T_I/5 A I = ~ , U I = 4 - 4T -1/5 , 

5A I + U~ = 4 .  
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It is now found that there are three more conditions beyond 
the six used in Appendix D (see Table 9). Furthermore, 
F(5A + U) as in (D2) satisfies none of  the additional 
conditions and we conclude that the simple forms cannot 
be used now. Such a failure was suspected previously [16], 
but not proven. 

Although the simple forms for region I are not generally 
valid, they are still useful for estimating A, U, and Xt 
(Tables 6 and 7). Estimating P is less successful since 
it involves a high power of  A, while estimating the total 
quantity of  particles in region I, QI, is unacceptable. Let us 
now consider Q r  

Written in terms of  the simple solution, QI is given by 

/ 3 - \ 2/(,7-1) 
Q I = A 2 / ( ' Y - 1 ) X I = ( ~ - - ~ - T  -('y-1)/2) X I . 

X~ is described in general by (13a) and for large T by 

3 - T T  ' X I N - -  
7 - - 1  

The large-time, i.e. large-T, limit of  QI follows as 

QI ~ 7 -  1 " (El )  

It follows from (El )  that 0 I  is given by 0.593 for 7 = 5/3 ,  
which is acceptable, but exceeds unity for all other 7. Since 

the largest possible value of  (~[ is 1.0, we conclude that 
the simple forms are unusable for treating QI starting at 
7 = 7 / 5 .  

The reason for the failure of  the simple forms can be 
shown to lie in the form of the function F such as that seen 
in (D2) starting with 7 = 7/5.  

Appendix F 

Corrections to [6] 

The following two changes serve to make the notation of  
[6] consistent with the present work: 
in (13b) replace u I with u I + ai; 
in (14b) replace u u with uii -[- aii- 

The following four changes arise because the quantity 
A~ ef as in the present ( l l b )  was taken as (7 + 1)/4, a 
distinction which does not matter for 7 = 5/3:  
in (12b, 12c, 13a, 13b) replace (7 + 1)/4 with (3 - 7 ) /2 .  
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