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0. Introduction 

The results of Antosievicz and Cellina [l] appeared to be fundamental to study 
an existence problem for continuous selectors of multivalued maps with closed, 
nonconvex, decomposable values [5, 23-26, 341. In this paper, we develop the 
method based on the Baire category theorem to prove the existence of continuous 
selectors the values of which are extreme points of a multivalued map with values 
in a Banach space. 

The contents of the paper can be represented by the following theorems for- 
mulated for simplicity in a special case. 

Let T be a metrisable compact with a positive, nonatomic Radon measure ,UO, 
(X, 11.11) be a separable Banach space, M be a a-compact metric space, &(T, X), 
1 < p < +ou, be the Banach space of eqiuvalence classes of Bochner-integrable 
functions II: T t+ X with the norm 

IblIP = (s, IlwQP0) lb 

THEOREM 0.1. Let r: M +-+ L,(T, X), 1 < p < 00, be a multifunction the 
values of which are decomposable, convex, weakly compact subsets of L,(T, X). 

* Supported in part by RFFI Grant 93-01 l-264. 
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Zf r is continuous in the Hausdorfs metric generated by the topology of 
L,(T, X) and bounded on M, then there exists a continuous selector u: M I+ 
L,(T, X) of the multifunction r, such that 

49 E ext r(l), E E M. 

THEOREM 0.2. Let F: M I-+ LP(T, X), 1 6 p < 00, be a multifunction the 
values of which are decomposable, closed, bounded subsets of L,(T, X). 

If the multifunction 

satisjes all the assumptions of Theorem 0.1, then there exists a continuous selec- 
tor u: M I-+ L,(T, X) of the multifunction F, such that 

u(t) f extmF(t), [ f M. 

(About the definitions of ext, 55, etc., see Section 1.) 
As is well known, in the general case, the set of extreme points of a closed, 

convex set is nonconvex and nonclosed. Theorem 0.1 can be considered to be 
one of the results on the existence of continuous selectors of multifunctions with 
nonconvex, nonclosed values. 

In Theorem 0.2, it is not assumed that the multifunction F possesses any 
properties similar to continuity or lower semicontinuity, as is usually required [ 1, 
5, 231. The multifunction CG F must have such properties. However, in this case, 
the multifunction F has a continuous selector. 

It should be mentioned that Theorem 0.2 does not follow from Theorem 0.1, 
since under the assumptions of Theorem 0.2, 

extmF(J) Qt F(t), [ E M. 

The present results supplement the well-known theorems on the existence of 
continuous selectors for multivalued maps with closed, nonconvex, decomposable 
values [l, 5, 23, 24, 25, 26, 341. 

This paper is organized as follows. 
Section 1 contains notations and terminology. 
In Section 2, some nonstandard resuits concerning a continuous partition of 

the space T and the connections between various convergence types in L,(T, X), 
p > 1, are given. 

In Section 3, a class of functions for choosing extreme points is introduced, 
and their properties are established. 

In Section 4, we present some new results concerning decomposable sets, in 
particular, the properties of the Hausdorff metric generated by the topology of 
L&Y X>. 

Section 5 is devoted to functions for choosing extreme points of decompos- 
able sets, their properties and their connections with the functions introduced in 
Section 3. 
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In Section 6, we prove an auxiliary approximate theorem. 
The main results are given in Section 7. 
In Section 8, the results from Theorems 0.1 and 0.2 are reformulated for 

multifunctions often appearing in multivalued differential equations. 

1. Notations and Definitions 

Let 
- (X, // . 11) be a separable Banach space, 
- (X’, 11 1 I]) be its topological dual, 
- CT - X’ be a space X’ endowed with the weak c(X’, X) topology [2], 
- R be the numerical line, 
- M be a separable metric space, 
- T be a metrisable compact with a positive, nonatomic Radon measure ~0 

and a a-algebra C of PO-measurable subsets of T, 
- L,(T, X), 1 < p < +oo, be the Banach space of eqiuvalence classes of 

Bochner-integrable functions K T I+ X with the norm 

IlGI = ( s, IW /I%o) lip7 
- Lb(T, X) be its topological dual. 

Let, for a normed space Y, 

- c(Y) be the family of nonempty, closed subsets of Y, 
- cb(Y) be the family of nonempty, closed, bounded subsets of Y, 
- cc(Y) be the family of nonempty, closed, convex subsets of Y, 
- c&(Y) be the family of nonempty, closed, convex, bounded subsets of Y, 
- cwk(Y) be the family of nonempty, convex, weakly compact subsets of Y, 
- C/C(Y) be the family of nonempty, convex, compact subsets of Y, 
- x(A) be the characteristic function of some subset A of a given set, 
- d(z, K) be the distance of a point z E X to a subset K c X, 
- dP(v, Q) be the distance of a point u E L,(T, X) to a subset Q c L,(T, X). 

If A and B are subsets of X, then e(A, B) = sup{d(a, B); a E A} is the 
excess of A over B, and h(A, B) = max{e(A, B),e(B,A)} is the Hausdorff 
distance between A and B. 

Let 

- B, B be the open and closed unit balls of X, respectively, 
- B’, B’ be the open and closed unit balls of X’, respectively. 

If A and B are subsets of &(T, X), then e,(A, B) = sup{d,(a, B); a E A} 
is the excess of A over B and /+,(A, B) = max{ep(A, B),e,(B, A)} is the 
Hausdorff distance. 
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Let lMlp_= suP#% . u E A}, where A is a subset of &(T, X), 1 6 p < co, 
and let BP, B, be the open and closed unit balls of L,(T, X), respectively. 

A set A c L,(T, X) is said to be decomposable if, for any U, w  E A and 
E E C, the element X(E)u, + X(T \ E)v belongs to A. 

For a set A E L,(T,X), we denote by dec A the decomposable hull of A, 
i.e. the smallest (with respect to inclusion) decomposable set containing A. 

Let 

- dec A be the closure of dec A in L,(T, X), 

- dcL,(T, X) be the set of nonempty, decomposable, closed subsets of L,(T, X), 

- dcbL,(T, X) be the set of nonempty, decomposable, closed, bounded subsets 
of &(T x>, 

- dcc&(T, X) be the set of nonempty, decomposable, closed, convex subsets 
of qT, X)9 

- dccb&(T, X) be the set of nonempty, decomposable, closed, convex, bound- 
ed subsets of L,(T, X), 

- dcwkLn(T, X) be the set of nonempty, decomposable, convex, weakly com- 
pact subsets of L,(T, X). 

A multifunction F: T t-) c(X) is called measurable if, for any closed subset 
U c X, the set {t E T; F(t) n U # 0) is measurable. 

If F: T e c(X) is measurable, then the function IIF(t is measurable [28]. 
A multifunction F: T e cb(X) is called p-integrally bounded if there exists 

a function X E &(T, R) such that /IF(t)]] < X(t) a.e. on T. 
A multifunction F from a topological space Y into a topological space 2 

is called lower semicontinuous at a point yo E Y if, for any open set V c 2, 
F(yo) n V # 8, there exists a neighbourhood U(y0) of T/O such that F(y) fl V # 8 
for every y E U(y0). 

A multifunction F from a topological space Y into a topological space 2 
is called upper semicontinuous at a point yo E Y if, for any open set V c 2, 
F(yo) C V, there exists a neighbourhood U(yo) of yo such that F(y) c V for 
every Y E U(YO>. 

A multifunction F from a topological space Y into a Hausdorff locally convex 
space 2 is called Hausdorff lower semicontinuous at a point yo E Y if, for any 
open neighbourhood V about zero in 2, there exists a neigbourhood U(yo) of 
ye such that F(yo) c F(y) + V for every y E U(y0). 

A multifunction F from a topological space Y into a Hausdorff locally convex 
space 2 is called Hausdorlf upper semicontinuous at a point ya E Y if, for any 
open neighbourhoods V about zero in 2, there exists a neigbourhood U(yo) of 
Y/O such that F(y) c F(yo) + V for every y E U(y0). 
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A family K of measurable p-integrally bounded multifunctions F: T ti 
cb(X) is called uniformly p-integrable if, for any E > 0, there exists 8(c) > 0 
such that 

J 
IIWllPd~o < E 

E 

for every subset E E C with PO(E) < 6 and for every F E K. 
For a set A c Y, co A is its convex hull and CZ A is its closed convex hull. 
For a set A C c&(Y), ext A is the set of all extreme points of A. 
A set K c M is a-compact if K = U,“=, K,, where K,, n 2 1, are some 

compact sets. 

2. Preliminaries 

We recall some results that are applied in the next sections. 
Denote by M the space of numerical measures p: C e R of bounded 

variation, absolutely continuous with respect to the measure ~0, with the norm 

MM = Irw)~ where lPl(~> means the total variation of p on T. 
Let po(AnB) be the pseudometric on C. Here n stands for the symmetric 

difference of sets A and B. 

PROPOSITION 2.1 ([26]). Let P,: M c) M, n > 1, be Hausdor- upper 
semicontinuous multivalued mappings with nonempty relatively compact values, 
{Vn}p be a locallyjnite open covering of the space M, and {e,}r be a contin- 
uous partition of unity subordinated to { Vn}‘p with their supports supp e, c V,, 
n> 1. 

Then, for any E > 0, there exists a sequence of mappings B,: M H C, n 2 1, 
continuous with respect to the pseudometric po (An B), possessing the following 
properties: 

(i)for any E E M the sets {&(<)}‘p are disjoint and po(IJ,“=, B,(c)) = 

PO(T); 
(ii) for any < E M, n 3 1, the set B,(t) = 0 if and only $-e,(c) = 0; 

(iii)forany[E M, nd 1, PEP,([) 

I/@&>> - dam < E. 

PROPOSITION 2.2. Let F: M I+ dcL,(T, X), 1 < p < 00, be a lower semi- 
continuous multifunction. Then F has a continuous selector 

Proof For p = 1, it is well known [5]. In the case where p > 1, one can 
prove this analogously by the obvious transformation. 

PROPOSITION 2.3. Let H c LI (T, R). Then thefollowing properties are equiv- 
alent: 
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(i) H is weakly relatively compact; 
(ii) H is uniformly integrable. 

rfUk, k > 1, iS a Unifor??dy integrable sequencefrom L1 (T, R), z&(t) + U(t), 

u E L1 (T, R) a.e. on T, then the convergence in LI (T, R) holds: 

lim 
J k-+x y- 

luk(t) - u(t)1 dpuo = 0. 

Proof. From the famous Lyapunov theorem, we know that the set 

9-z = {po(-q; E E q 

is compact and convex. In particular, this theorem implies the following: for 
arbitrary A E C there is B E C such that B c A and pa(B) = ipo(A). Hence, 
we obtain that, for any S > 0, there exists a family A, E C, 1 < n < N, of 
disjoint sets such that T = IJ,“=, A,, &A,) 6 6. Therefore, if H is uniformly 
integrable, then H is a bounded subset of L1 (T, R). Now, Proposition 2.3 follows 
from the Dunford-Pettis theorem [22]. 

PROPOSITION 2.4. Let fn, f E Lp(T, X), n 2 1, 1 < p < CO. 
If the sequence fn, n 3 1, is uniformly p-integrable and fn(t) converges to 

f(t) a.e., then the strong convergence in L,(T, X) also takes place: 

(J > 

IlP 
lim Ilf&> - f(t)llP@o = 0. 

n-i00 y- 

Proof. Consider the sequence z,(t) = ]]fn (t) - f(t) ]]P, n > 1, that converges 
pointwisely a.e. to zero. From the inequality 

Ilfn@> - .f(t)llp G Wn(t>ll + Ilf(WP 
6 2P-‘llfn(t)llp + 2’-’ Ilf(t>llp~ 

it follows that the sequence Z, E L1 (T, R), n 3 1, is uniformly integrable. 
Having used Proposition 2.3, one obtains that 

lim J n+x T zn(t)dpo = lim njoo T IIf&> - fMIPdPO = 0. J 
Therefore, the sequence fn, n 2 1, converges to f in L,(T,X). 

3. Functions for Choosing the Extreme Points and their Properties 

Let {zi}r be a countable, dense in weak topology, balanced subset of the set 
B’. For any A E c&(X), u E A, and E’, define the functions 

dS(A, u) = sup{ (y - 2, cc’,); y, 2 E A, u = (x + y)/2}, s 3 1. (3.1) 

The following lemma is the infinite-dimensional version of Lemma 1 in [32]. 
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LEMMA 3.1. For every s 2 1 

(i) the function u I+ dS (A, u) is nonnegative, concave and, if u E A c B E 
ccb( X), then 

dS(A, u) < dS(B, u); 

(ii) u E ext A if and only if 

(3.2) 

dS(A,u)=O forullsbl; (3.3) 

(iii) if Y is a topological space, A: Y I+ ccb(X) is a Huusdofl continuous 
multifunction, and u(y) is one of its continuous selectors, then the function 
y c) dS(A(y), u(y)) is upper semicontinuous. 

Proof. (i), (ii) can be proved analogously [32]. Let us show (iii). 
Put B(y) = A(y) - u(y). Then B: Y I+ ccbX is the Hausdorff continuous 

multifunction. 
Denote by X” the topological dual space of the space (X’, 11. II), and let a-X” 

be the space X” endowed with the weak a(X”, X’) topology [2]. Consider X 
as a subspace of X”. Then B(y) C X”, y E Y, is relatively compact in the 
space a - X”. Denote by B(y) the closure of the set B(y) in the space u - X”. 
It is easy to prove that the multifunction B(y) is continuous in the Hausdorff 
metric h(., .), generated by the norm of space X”. Then B: Y I+ c&(X”) is 
Hausdorff upper semicontinuous in the topology of u - X”. 

By using the compactness of sets B(y), y E Y, in the a(X”, X’) topology, 
one can get that the multifunction B(y) is upper semicontinuous in the c(X”, X’) 
topology. So the multifunction C(y) = B(y) fl (-B(y)), y E Y, is upper 
semicontinuous in the a(X”, X’) topology. It is easy to prove that 

dS(A(y), u(y)) = sup {(z - 2, z’s); 2, z E B(y), z + x = 0) 

= sup { (22, z’s); z E C(y)}. 

From this and the upper semicontinuity of C(y) in the 0(X”, X’) topology, it 
follows that the function dS(A(y), u(y)) is upper semicontinuous. 

For a set A E ccb(X) denote that 

#(A) = sup{(x - y,x$); x,y E A}. 

Obviously, 0 6 dS(A,u) < gS(A) for any u E A. Let 

LS(A, u) = {T E R+; dS(A, u) 6 T 6 gS(A)}, 

A, E ccb(X), u, E A,, n 2 1, 

A E ccb(X), u E A, T E LS(A,u). 

Take the point r, E Ls (A,, un) such that 

IT, - ~1 = min{lr - k-1; Ic E LS(A,,u,)}. 

(3.4) 

(3.5) 
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LEMMA 3.2. Let u, E A, E c&(X), n 3 1. Suppose that A, + A in the 
Hausdorf metric h(., .) and u, + u in X. 

Then, forfied s 2 1, T E LS(A,u), the sequence r, E LS(A,, u,), n 2 1, 
converges to r. 

Proof. Let us show that gS(A,) + g”(A). Take an arbitrary E > 0. Then for 
some number N, 

AcA,+e.B, A,cA+E-B, n>N. (3.6) 

Fix 2, y E A. According to the left-hand inclusion in (3.6), there exist z,, yn f 
A,, un,2u, E E. B such that 

J: = 2, + w,, Y = Yn + wn- 

Since 

(3 - 37 z/s) = (% - Yn, XL) + (% - Wn, x’,), 

the definition of gS(An) implies that 

gS(A,) 6 gS(A) + 2~, n 2 N. (3.7) 

Analogously, by using the right-hand inclusion of (3.6), we obtain 

gS(A) < gS(An) + 2~, n > N. 
Then (3.6), (3.7) yield that gS(A,) + g”(A). 

Now, by virtue of Lemma 3.l(iii), for an arbitrary E > 0 there exists a number 
N such that for any n > N 

dS(An, un) < dS(A, U) + ~7 #(A) < gS(&) + E. 

Thus, for each n 2 N 

LS(A, u) c LS(An, u,) + E . C, 

where C = {r E R; Ir] < 1). This implies that jr, - r] < E, n 2 N. Conse- 
quently, T, + T. 

LEMMA 3.3. Let F: T t-+ c&(X) be a measurable map, and u(t) be one of its 
measurable selectors. 

Then thefinctions dS(F(t), u(t)), g”(F(t)) and the multivalued map LS(F(t), 
u(t)) are measurable. 

Lemma 3.3 is proved by using standard arguments and Lemma 2.1 [27]. We refer 
to [28] for details concerning measurable multifunctions. 

From Lemma 3.3 and the properties of measurable multivalued maps with 
compact values, it follows [28] that, if F,, F: T I+ c&(X) and u,(t) E F’(t), 
u(t) E F(t), r(t) E -q~(~),‘Ll(~)), n > 1, are measurable, then there exists the 
sequence of measurable selectors r,(t) E LS(Fn(t), un(t)), t E T, such that 

IT,(t) - r(t)1 = Gn{lr(t) - ICI k E LS(G(t),un(t))}- (3.8) 
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LEMMA 3.4. Let a sequence of measurable multifinctions F,: T H ccb(X) 
converge in the Hausdolfs metric h(., .) pointwisely a.e. to a measurable mul- 
tifunction F: T ti ccb(X), and a sequence u,(t) of measurable selectors of 
F,(t) converge a.e. to a measurable selector u(t) of F(t). 

Then for any measurable selector r(t) of the map Ls (F( t), u(t)), the sequence 
of;;wrable selectors T,(t) ofLS(Fn(t), un(t)), satisfying (3.8), converges a.e. 

The result follows from Lemma 3.2. 

4. Some Properties of Decomposable Sets 

Let F: T H c(X) b e a measurable multifunction. For 1 < p < 00 define the set 

9’(F) = {f E L,(T,X); f(t) E F(t) a.e.}. (4.1) 

As is readily verified, P(F) is a closed subset of Lp(T, X). 
In short, we call a function f E Lp(T, X) p-integrable. 
It is well known [27] that, for r E dc&(T, X), there exists a unique (up 

to a set of zero measure) measurable multifunction Fr : T e) c(X) such that 
I’ = P(Fr). 

Put for r E dcbL,(T, X), 1 < p < CO, 

PROPOSITION 4.1. Let I’ E dcbLp(T, X), I < p < 00. 
Then the multijknction F r: T t-+ c(X) is p-integrally bounded and 

IIriip = (s, IIFr(~)llpd~o) “’ 

(4.2) 

Proof. For p = 1, equality (4.3) is well-known [27]. If 1 < p < 00, then 

iirlip = sup (S, iif(Wd~~J’~ 
fcr 

( I > 

IlP 
= - g THfMP) d/Q 

In virtue of Theorem 2.2 [27] 

= 
I inf T zEFr(t) (- I141p> dpo 

(4.4) 

(4.5) 
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From (4.2), (4.4), (4.5) it follows that (4.3) holds. 

PROPOSITION 4.2. Let Pl, lY2 E dcb&,(T, X), 1 6 p < co. 
Then 

hp(h, F2) 6 

l/P 

hP(Frl (t), Fr2 (t)) dpo 6 2W2,(r,,r2). (4.6) 

Proof. From the well known inequality 

hpPrl @>, Fr2 @>> 

6 w’wl + II~r2(wP 
< 2P-‘llFrl(t)]]p + 2P-111Fr2(t)llp, 

Proposition 4.1, the measurability of the function h(Frl(t), Frz(t)) [27] and 
Theorem 2.2 [27], it follows that 

I/P 

Ildt) - y(t) IIPdpo 

Analogously, 

(4.7) 

dp(~,rl) G hp(Fr’(t), Fr2(t)) dpo 
> 

l/P 

(4.8) 

By joining (4.7) and (4.8), we obtain the left-hand inequality of (4.6). 
Let us show that the right-hand inequality of (4.6) is true. From the definition 

of the function h(Frl (t), Fr2(t)), it follows that there exists a set E E C such 
that 

h(Fr’(t), Fr2(t)) = sup{+, Fr’(t); z E Fr2(t)}, t E E, (4.9) 

h(Fr’(t),Fr2(t)) = sw{d(y,Fr2(t); y E Fr’(t)}, t E T \ E. (4.10) 

Since the function d(z, Frl (t)) is measurable in t for every 2 and continuous in 
z for almost every t, without loss of generality, one may assume that d(z, Frl (t)) 
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is continuous in x for every t. Then Theorem 2.2 [27] is applicable and 

I/P 

I 
sup @‘(G Fr’ (t>>} dpo 

E XEF~Z(~) 
I/P 

{-8(x, Frl (t))} dpo 

G sup dp(Y,C) < hp(hr2). 
Ya 

In the same way, we obtain 

IlP 

s 
sup @?Y, Fr2(t))) &o G hp(rl, r2). 

T\E you’d (t) 

(4.11) 

(4.12) 

From (4.9)-(4.12) we obtain the right-hand inequality of (4.6). 

PROPOSITION 4.3. jet rn, r E dcbLp(T, x> and r, + r in the HUUS~~~ 
metric h,(., .). 

Then the sequence IIFn(t)jl, n 2 1, where Fn(t) = Fr”(t), n 2 1, is 
uniformly p-integrable. 

Proof For any E E C from the inequality 

s IIw>llPdPo 
E 

< 2’-’ \ 
s E IlI~&>ll - IIF(t>llIPdtio + 2’-’ J, IIF(t)llPd~o 

< 2p-’ 
J 

hP(Fn(t), F(f)) dpo + zp-’ 
T J 

E llF(~)llpd~o, 

Propositions 4.1 and 4.2 we obtain that the sequence F,(t), n 2 1, is uniformly 
p-integrable. 

THEOREM 4.4. Let F: T I+ cwk(X) b e a measurable, p-integrally bounded 
map, 1 <p < 00. 

Then SP( F) is the decomposable, convex, weakly compact subset of L,(T, X). 
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Proof. For p = 1, this result is well known [31]. Setting F(t) = (0) on the 
exceptional pa-zero set, we can assume, without loss of generality, that F(t) E 
cwlc(X) for all t E T. From [22], it is known that each element g of the space 
Lb(T, X), 1 < p < 00, can be represented in the form 

M !?> = ~Lf(tMt)) Go7 

where g: T c-) X’ is a weakly measurable function [22] such that 

lbllq = (s, Ilg(t)IIYd~o) “’ < m, j + i = 1. 

Clearly, Sp (F) is a closed, convex, bounded subset of L,(T, X). Taking g E 
LL(T,X), we have 

sup (f>9) = 
f cSP(F) 

Since (xc, g(t)) is measurable in t for every J: and continuous in 2 for t a.e., by 
changing values of g on the exceptional PO-zero set, we can assume, without loss 
of generality, that (z,g(t)) is continuous in II: for every t. Hence, Theorem 2.2 
[27] is applicable for the function (z,g(t)). Consequently, we obtain 

fEypl;F) /T(fttMt)) dP0 = /- sup (WI(t)) dpo. 
T XE F(t) 

Let 

R(t) = {y E F(t); 

Since F(t) E cwrC(X) for all t E T, we have R(t) # 8 for all t E T. Put 

a Y> = 4) - (Y7 dtb 

where a(t) = sup{(lc,g(t)); J: E F(t)}. Clearly, qS(t, y) is measurable in t for 
every y and continuous in y for every t. Then, for the graph, we have 

GrR={(t,y)ETxX; 4(t,y)=O}nGrFEC@!?x, 

where Ux is the Bore1 field of X. So applying Aumann’s selection theorem [28], 
we can find a measurable function f*: T I+ X, f*(t) E R(t) for all t E T. 
Notice that f* E SP(F). Hence, we have 

s sup (xc, g(t)) Go 
T SF(~) 

= T(f*(t), g(t)) dpo 
s 
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Since g E Lb(T, X) is arbitrary, using James’s Theorem [20] we conclude that 
,9’(F) is the weak compact in L,(T, X). 

5. Functions for Choosing the Extreme Points of Decomposable Set.s and 
their Properties 

Let F E dccbL,(T, X) and u E F. Put 

qr, 4 = sup((y - 2, x1, - x(T)); y, z E r, u = (y + z)/2}, 

GS(r) = SUP{(Y - V; .X(T)); Y,Z E r}, 
where 

(Y - z, XI, 1 x(T)) = L(Y@) - 4% x/, - x(W)) +o. 

According to Proposition 4.1, there exists a unique (up to a set of zero measure) 
p-integrally bounded, measurable multifunction Fr : T I-+ c&(X) such that 
(4.3) is true. So one is able to define the functions dS(Fr(t),u(t)), gs(Fr(t)) 
and the multifunction Ls(Fr(t), u(t)) (see (3.1), (3.9, (3.6)). From Lemma 3.3, 
it follows that dS(Fr(t), U(Y), gs(Fr(t)) are measurable, p-integrally bounded, 
.aaT;y multifunction LS(F (t), u(t)) is measurable, and their values belong to 

LEMMA 5.1. Let I? E dccbL,(T,X) and u E I?, F(t) = Fr(t). 
Then for every s 2 1: 

(9 

wr, 4 = s, d?F(t), u(t)) dpo; 

(ii) 

G’(r) = ~sV’(t)) Goi 

(5.1) 

(5.2) 

(iii) 

u E extl? ifand only ifD”(J?,u) = Ofor every s z 1; (5.3) 

(iv) IfF,, F E dccbL,(T, X), n > 1, I?, converges to r in the Hausdorfmetric 
hp(-, a), and un E r,, n > 1, converges to u in L&F, X), then 

JlmsupDE(r,,~,) G P(~,u). (5.4) 
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Proof. Put 
ro = {Y E JqT, X); y E r - u, -y E r - u} 

and 

Fe(t) = {x E x; 2 E 8-(t) - u(t), -x E F(t) - u(t)}. 

Obviously, ro E dccbL,(T, X), Fo: T I+ c&(X) is measurable, p-integrally 
bounded and I?0 = Sp( Fo). One may verify that 

w-, 4 = su~{(2~, 4 . X(T)); Y E ro) (5.5) 

and 

cP(F(t),u(t)) = sup{(2z,4); z E Pi@)}. (5.6) 

Since, for every y E ro, 

PY 7 4 . x(T)) = /J~Y(% 4) +o, (5.7) 

by using (5.5)-(5.7) and Theorem 2.2 [27], we obtain equalities (5.1), (5.2). 

We now pass to the proof of statement (iii). If u E extr, then equality (5.3) 
follows from the definition of an extreme point. 

Let P(l?, u) = 0 for every s 2 1. It should be mentioned that the set 

does not separate points of the space L,(T, X), therefore statement (iii) does not 
follows directly from Lemma 3.l(ii). 

Suppose that u $ ext r. Then there exist y, z E r, y # z, such that u = 
(y+z)/2. Fix E > 0. By using (5.1), take a compact subset TE c T, po(T\T,) 6 E 
such that u(t), y(t), z(t) are continuous on T,, y(t) # z(t), u(t) = (y(t) + 

4w2, 4% Y(% e> E W)~ and #(F(t),u(t)) = 0, t E TE, s 3 1. 
Since the set {x’,};” separates points of the space X, then for every t E T,, 

there exists a number s(t) 3 1, depending on t, such that 

(YW - 4~)JB(t,) > 0. 

By the continuity of y(t), z(t) on T,, there exists a neighbourhood V(t) in T, of 
the point t such that 

(Y(T) - 44&) ) >O foreveryTEV(t). 

The family {V(t)}, t E T,, is the open covering of the compact T,. Then there 
exists some t* E T, with po(V(t*)) > 0. From the definition of the Radon 
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measure, it follows that there exists a compact To c V(t*) with &To) > 0. 
Then for s* = s(t*) 

0 < 
J 

4,(~(d - 44>&) dl.Lo G /- 
T 

ds* (F(T), U(T)) dl.Lo = Ds* (I’, U) = 0. 

But the last inequality gives us the contradiction. Statement (iii) is proved. 
Statement (iv) follows from Lemma 3.l(iii). 

COROLLARY 5.2. Let I? E dccb& (T, X). 
Then u E ext I’ if and only if u(t) E ext F(t) a.e. on T. 

The result follows from Lemma 5.1(i), (iii) and Lemma 3.l(ii). 
Let us take a separable metric space M and a multifunction I’: M ti 

dccb&,(T, X), 1 < p < 00, continuous in the Hausdorff metric I+(., .). From the 
famous Michael theorem [30], we know that there exists a continuous selector 
U: M w  L,(T, X) of the multifunction r. 

For every [ E M, denote by F(t)(t) = Fr(t)(t) the measurable, p-integrable 
function F(t): T + c&(X) such that I’([) = P(F(E)). Then the functions 

w4>> = ww7 437 G”(E) = GYWL 

W4S)) < G”(E), 

and the multifunctions 

are defined. 
As we know, for every t E M, the functions ds(u([)(t)), g”(<)(t) are measur- 

able, p-integrable and the multifunction LS(u([)(t)) is measurable, p-integrally 
bounded, and its values belong to &(I?). According to Lemma 5.1, for every 
s>l,J~M,wehave 

(5.8) 

G”(E) = /Ts”(E)(t) Go. 

For every [ E M, put 

mw = sp(w4m. 

(5.9) 

(5.10) 
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THEOREM 5.3. Let a multifunction I’: M ++ dccb&(T, X), 1 6 p < 00, 
be continuous in the Hausdorfs metric hp(., e). Then 5 w  ,Cs(u(r)) is a rower 
semicontinuous in multifunction with values in cwkL,(T, R). 

Proof. For fixed < E M and every measurable selector r(t) of LS(u(E)(t)), 
the inequality 

0 6 w4J)W 6 m G 9”(W> G wwwll (5.11) 

is true. From (5.11) and Theorem 4.4, we immediately obtain that C,s(u(<)) E 
cwkL,(T, R), [ E M. 

Fix to E M. To prove the lower semicontinuity of ,C’(ZJ(~)) at the point to, 
one has to show that for any sequence & + to, n > 1, and any r. E C”(u(&))), 
there exists a sequence r, E ,C”(u(&)), n 2 1, converging to TO in L,(T, R). 

Since ro(t) E L’(u(<o)(~)), t E T, then there exists a sequence r,(t) E 
LS(u([,)(t)), n > 1, of measurable selectors such that 

ITO - rn(t)l = min(lro(t) - kl; k E L”(u(~~)(~))}, t E T. 

It is clear that T, E Lc”(u(&)), n > 1. Using Proposition 4.2, we find a subse- 
quence tnk, lc 2 1, of the sequence &, n 3 1, such that J’(&)(t), k 2 1, a.e. 
converges to F(Jo)(t), and u(&)(t), k > 1, a.e. converges to u([~)(t). Then, 
according to Lemma 3.4, the sequence rnk(t), lc 2 1, a.e. converges to TO(~). 
Inequality (5.11) and Proposition 4.3 give us that the sequence rnk E Lp(T, R) is 
uniformly p-integrable. Then, from Proposition 2.4, it follows that the sequence 
rnk, k > 1, converges to TO in L,(T, R). 

Let us show that the sequence T, E C’(~L(&)), n 2 1, itself converges 
to To E q4so>> in L,(T, R). We assume the opposite. Then there exists a 
subsequence r,, , m > 1, of the sequence T,, n 3 1, such that every subsequence 
of the sequence rn,, m > 1, does not converge to TO in L,(T, R). Since the 
sequence &, , m > 1, converges to 6, one should repeat the above arguments 
in order to get the contradiction that proves the lower semicontinuity of the 
multifunction L”(~L(<)). 

Denote by A’(u(.)) the family of all continuous selectors of the multifunction 
,C’(u(*)). From Theorem 5.3 and the Michael theorem, it follows that A”(u(.)) # 
8 and for every TO E ,Cs(u(,$)) there exists a continuous in Lp(T, R) selector 
r(z~([)) of the multifunction LS(u([)), < E M, such that r(u([o)) = TO. From 
this and (5.8), (5.9) follows the following lemma. 

LEMMA 5.4. Let a multifunction r: M t-+ dccbL,(T, X), 1 < p < co, satisfy 
all the assumptions of Theorem 5.1. Then 

(9 

W~(t>> = {+(C>>; +(.>> E A%(.))), I E M; 
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(iii)for every to E M there exists r(u(.)) E AS(u(.)) such that 

~“b(<o)) = L+(to))(t) dpo. 

6. Auxiliary Results 

Let A E c&(X), x’ E X’, x’ # 0, and C(A, z’) = sup{(x, z’); x E A}. If 
a! > 0, then 

C(A, x’, CY) = {x E A; (x,x’) > C(A, IC’) - CY}. 

DEFINITION 6.1 ([3]). Let A E c&(X) and 5 E A. The point 2 is a strongly 
exposed point of A if there is 5’ E X such that (x, x’) > (y, z’), whenever y # x, 
y E A and (C(A, x’, cu); Q > 0) is a neighbourhood base for x in A in the norm 
topology (or, equivalently, such that lim +,o+ (norm diameter C(A, x’, cx)) = 0). 

Denote the set of strongly exposed points of A by st A. It is well known [3] that 
if A E cwlc(X), then stA # 0, stA c extA and Co st A = Co extA = A. 

PROPOSITION 6.2. Let A E cb(X) b e such that st=A # 0 and costmA = 
EGA. 

Then sti%A c A. 
Proof. If the statement is not true, then there exists xc E sta A and an open 

neighbourhood 0(x0) of the point xc such that A fl 0(x0) = 8. Take x’ E X’ 
satisfying (xc, x’) > (x,x’), whenever x # xc, x E EA. 

Let {C(i% A, x’, Q); Q: > 0) be a neighbourhood base for x0 in Co A in the 
norm topology. Then there exists LYO > 0 such that C&GA, x’, ~0) c 0(x0). 
Since, for every x E A, 

(x,x’> < sup{ (y, 2’); Y E ~ A} - ao, 

then 

mA # =stmA. 

This contradiction concludes the proof. 

For short, any continuous in the topology of the space L,(T, X) function u: M I+ 
L,(T, X) will be called &,-continuous. - 

Denote by dec st I’ the closure of dec st I in L,(T, X). 
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PROPOSITION 6.3. Let l? M I+ L,(T,X) b e a lower semicontinuous multi- 
function. 

Then the multifunction deer, (&I’)(J) = dec l?(t), .$ E M, is lower semi- 
continuous with closed, decomposable values. 

Proof. Fix 6 E M. Let {un}r c I?(<c) be a countable dense subset and 
F: T I+ x, F(t) = uny un(t). F is a measurable multifunction with closed - 
values. According to Theorem 3.1 and Lemma 1.3 in [27], dec I’(,$) = S’p (F). - 
So dec l? is a multifunction with closed, decomposable values. For any u E 
decI’(&), we have u(t) E F(t) a.e. on 2’. Then, according to Lemma 1.3 [27], 
for any E > 0, there exists a finite measurable partition {Et, . . . , E,} of 2” such 
that 

/I 

m 

u - c X(Ei) * ui < E/2. 
i=l II P 

Since I’ is lower semicontinuous, there exists a neighbourhood V(&-J) of (0 such 
that for any [ E TV there are elements vi([) E l?(t), i = 1, . . . , m, satisfying 
the inequalities 

IlUi - TJi(<)llp < c/2m, i = 1,. . . ,m. 

Consider the element v(t) E decI’(e), 

v(E) = 5 x(J%) * %(S)* 
i=l 

Then lb - 4911p < E f or any < E V([O). This means that the multifunction 
dec l? is lower semicontinuous. Therefore, the multifunction dec r is lower semi- 
continuous. 

Define for any 2 E Lp(T, X) the numerical measure 

W(E) = s, IIWllPd~o, E E E 

PROPOSITION 6.4. Let x,, 2 E L,(T, X), n 2 1, and the sequence 2, con- 
verge in L,(T, X) to 2. Then the sequence x(x,), n 2 1, converges to K(z) in 
the topology of the space M. 

Proof. Take a subsequence z,~ (t), k 3 1, of the sequence zn(t), n 2 1, 
converging a.e. to z(t). Then the sequence ]]~~,(t)]]p, lc > 1, a.e. converges to 
I]z(t)]]p. From Proposition 4.3 we obtain that the sequence ]]z+(t)]]P, lc > 1, is 
uniformly integrable. Using Proposition 2.3, we obtain [21] 
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This means that the sequence K(zn,), k 2 1, converges to K(z) in the topology 
of the space M. 

By arguments that we have used repeatedly, it is proved that the sequence 
K(z~), k > 1, itself converges to K(z) in the topology of the space M. 

HYPOTHESIS. A multifunction I? A4 I-+ dccbLp(T, X), 1 < p < 00, possesses 
the property (Hl) if stl?(c) # 0, I’(l) = mstI’(J) for every c E M. 

It should be mentioned that every multifunction I? M I+ dcwkL,(T, X), 
1 < p < 03, possesses the property (Hl). 

PROPOSITION 6.5. Let a continuous in the Huusdot#metric hp(., .) multijiinc- 
tion r: M cs dccbL#, X) possess the property (Hl). - 

Then the multifunction < t+ dec st I’([) ’ 1 ts ower semicontinuous and for any 
to E M, w. E decStr(() th ere exists a Lp-continuous selector w(E) of the - 
multifunction dec st I’(t) satisfying ‘w(t) = WO. 

Proof From Lemma 2 [33] it follows that the multifunction stI’(t) is low- 
er semicontinuous. By using Proposition 6.3, we obtain that the multifunction - 
dec st I’(<) is lower semicontinuous. Now the statement follows from Proposi- 
tion 2.2. 

THEOREM 6.6. Let a continuous in Huusdor-metric hp(., .) multifunction 

r: M k-k dccbL#, X), 1 < p < Ccl, 

possess the property (Hl), r#~i: M e (0, +oo), i = 1,2, be lower semicontinuous - 
and w(c) be a Lp-continuous selector of the multifunction dec st I’([). 

Then, for any s 3 1, there exists a L+ontinuous selector v(t) of the multi- - 
function dec st I’([) such that 

II40 - 4% < h(t), E E My (6.1) 

W45)) < 45269, 5 E Me (6.2) 

Proof. Denote by G the family of all L,-continuous selectors of the mul- 
tifunction decst I’(c). From Proposition 6.5, it follows that G # 0. For every 
V( .) E G take the collection As (w(.)) of all continuous selectors of the multi- 
function ,C,(V(.)) (see Lemma 5.4). 

Set 

4) = minbh (t>~4&h t E M. 

According to Lemma 3.6 [ 151, there exists a continuous function u: M F+ 
(0, +oo) such that 0 < v([) < c(t), [ E M. For every (w(.), T(w(.))), u(.) E g, 
+c>> E e4)) Put 
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Since the functions r#q([) - v(t), +2(J) - V(E) are lower semicontinuous, v(t), 
W(S) are &-continuous and the function r(v(<)) is continuous in topology of 
L,(T, R), then every set U,,,(,) is open. 

Let us show that 

M = { uu,,r(,); 4) E G, W.>> E A”(~(~))}~ 

Take <c E M. Then, for zu(<u), there exists ~0 E dec st I’(,$) such that 

According to Proposition 6.5, we find a &-continuous selector v*(e) of the 
multifunction dec stI’(t) satisfying v*(&) = ~0. Since wa E ext I’(&,), from 
Lemma 5.1, it follows that D”(~I*(&)) = 0. Using Lemma 5.4, we obtain that 
there is T*(v*(.)) E A”(v*(.)) satisfying 

0”(~*(6)) = LT*(w*(to))(t)dpo = 0. 

Therefore, CO E U,* ,r* tV*). 
Let {Vn}p be a countable, locally finite, open refinement of the covering 

{U,,,(,,}, and {e,}r be a continuous, locally finite partition of the unity subordi- 
nated to { Vn}y such that supp e, c V,, where supp e, is the support of the func- 
tion e, [29]. Then, for every n > 1, there exist v,(e) E G, T,(‘u,(.)) E hS(v,(.)) 
such that V, c U,n,,(,n) [29]. Since supp e, is a closed subset of the space M, 
there exists a continuous function h[supp em, Vn] satisfying 

0 < h[suppe,,V,] < 1, h[wm, WE) = 1, E E suPPen, 

and 

h[suppen, W(t) = 0, t E M \ K. 

Since supp e, c V,, n 3 1, and {Vn}y is a locally finite covering of the space 
M, we are able to define a continuous function k: M I-+ (0, +m) by 

k(J) = 5 +-wen, KIW 
n=l 

For every 2 E Lp(T, X), define the measure 

&(4(E) = /, I14t)llPd~o, E E C. 

Similarly, for every (v(.),T(v(.))) E $7 x hS(v(+)) and < E M, the measure 

~2(74E)> +KN)(~) = s, +40>(t) c&o, E E C, 

is defined. 
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From Proposition 6.4, it follows that for every n 2 1, the measure icr (vn(<) - 
w(t)) is continuous on M, in the topology of the space M. 

By using the equality 

= J T b-&n(~d>(~> - ?&d&))(t)( dpa, 

we obtain that, for every n > 1, the measure X2(21, (0, T,(w~([))) is continuous 
on M in the topology of the space M. 

Consider the multifunctions 

Since all the multipliers in the above-defined functions Pn([) are continuous 
and k([),v([) > 0, 6 E M, then the multifunctions P,: M t) M, n 2 
1, are Hausdorff upper semicontinuous in the topology of the space M, and 
their values are compact sets in M consisting of two elements. As follows 
from Proposition 2.1, there exists a sequence of continuous (with respect to the 
pseudometric /~u(.n.)) maps a,: M c) C satisfying Proposition 2.1(i), (ii), and 

MMS>> - 4%@N < tl t E M, P E R(t), n b 1. (6.3) 

According to Proposition 2.1(i), the function 

43 = g %(5> * x~w9> 
n=l 

is well defined. From the inequality 

l12)n(b> . X(h(tOO)) - %(6> . X(ht(E>)llp 
G ll%(s> * XPTm - %&o> * xPncmlp + 

+Ilwn(b> ’ X(&z(E)) - %x(b) ’ X(hz(~O))llp 

( 1 
I/P 

< llwng> - wn(to~p + J,,,, II~~~~~w~II~~~~ ’ 

where C(t) = &(5>~&(&), we get that every function wn(<) . x(&(t)) is 
continuous. 

Since {e,(.)};O is a continuous, locally finite partition of unity, from Proposi- 
tion 2.l(ii), it follows that the function w(t) is continuous. Moreover, the decom- - - 
posability of the sets decstI’(<), [ E M, implies w(t) E decstI’([), t E M. 

Let us show that inequalities (6.1) and (6.2) hold. Fix n > 1, [ E M. Then 
for the measure 
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the representation 

holds. By using (6.3), we obtain 

J a,(~) II%M~> - 4wIIPdP0 

6 e,(t) . J T ll%(O@> - W(wIIPdPo + 3. 

If e, (<) > 0, then < E V, c U,, ,Tn(Vn). Therefore 

or 

J 
T IIN - w(t)(t)((pdpo < (‘1(F); ‘(‘))*. 

(6.4) 

(6.5) 

From (6.4), (6.5), we have 

If e,(c) = 0, then according to Proposition 2.l(ii), we have &(t) = 0. Therefore, 
in any case inequality (6.6) holds. 

Let {In} be the sequence { 1 , 1, . . . , 1, . . .}. For every < E M, put 

Then, as follows from Proposition 2.l(ii), we have that m(c) < k(J), < E M. 
Now, from (6.6), we obtain 

J T Il4W> - ~K)wllPdPo 
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Hence, 

lb(r) - wK>ll, < h(r)7 t E M- 

We now pass to the proof of (6.2). Fix n 2 1, c E M. Then for the measure 

we get 

From (6.3) it follows 

If e,(t) > 0, then there is c E V, c UUn,rn(Vn). Therefore, 

and 

(6.7) 

If e,(E) = 0, then according to Proposition 2.l(ii) 23,(c) = 8. Therefore, in any 
case, inequality (6.7) is true. 

From the inequality @(v,(J)(t)) < T,(v,(<))(~) a.e., it follows that 

(6.8) 

By using (5.8) and (6.8), we obtain 

wm = c J ~%~J)(wP0 {n; &(E)#0} an(o 
Therefore, inequality (6.2) is proved. 

7. Main Results 

Let C(M, Lr,) be the space of all continuous, bounded functions from M to 
L,(T, X) with the topology of uniform convergence on M. Take a continu- 
ous in the Hausdorff metric hp(e, a), bounded on M multifunction I: M e 
dccb& (T, X), possessing the property (Hl). 
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Denote by C(dec st I’) and C(F) the families of all continuous functions from - 
M to L,(T, X) that are selectors of maps dec st F and l? respectively with the 
topology of uniform convergence on M. As it follows from Proposition 6.5, - 
C(decstI’) and C(F) are the nonempty sets. 

It is trivial that C(decst I’) and C(r) are the closed subsets of the space - 
C(M, Lp). So C(dec st I’) and C(I) are the complete metric spaces. 

Fix a dense, a-compact subset K of M. 

THEOREM 7.1. Let a continuous in the Huusdor# metric hP(., e), bounded on 
M multifunction I?: M I+ dcc&,(T, X) possess the property (Hl). 

Then for uny u(.) E C(decstl?) and any lower semicontinuous function 
$: M ++ (0, +oo) there exists II(.) E C(decst I’) such that 

II40 - v(C)Ilp < 4(t)> t E M> 

v(E) E extr(C>, I E K. 

if M is u-compact, then inclusion (7.2) is true for all < E 111. 

(7.1) 

(7.2) 

Let us subdivide the proof of Theorem 7.1 into several steps. 
For an Lp-continuous selector u(.) E C(dec st I’) and a function 4: M e 

(0, +oo) denote by ‘7-&, the closure in C(dec st F) of the set of all L,-continuous 
selectors w(e) of the multifunction dec st I’([), satisfying the inequality 

(7.3) 

- 
Obviously, ‘&+ is a complete closed subset of C(dec st I’). Fix 77 > 0 and s 3 1. 
Set 

LEMMA 7.2. The set Y-l; is a Gs subset of the set ‘?I,,+,. 
Proof. According to Theorem 6.6, the set ‘7-$ is nonempty. Let K = U,“=, K,. 

Denote by N;(n) the set 

7-L; = fi 31;(n). 
n=l 

The lemma will be proved if we show that N;(n), n 2 1, are open subsets of 
?l 4. 

Fix n 3 1. It is enough to prove that the set ?&j\%!;(n) is closed in 3t,,+ Let 
%(*) E 3-1u,4\qb4 b e an arbitrary sequence converging to v(-) E Y&,4. Then, 
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for each k > 1, there exists a point & E & such that D’(Uk(&)) > q. Since 
the set Kn is compact, passing to a subsequence (without change of notation), 
we can assume that the sequence [k, k > 1, converges to a point [ E Kn. As 
zLk(&), k > 1, converges t0 v(6), then according t0 Lemma 5.1, o”(Uk(&)) > 7. 
Therefore, u(.) E 3c,,+ \ 31;(n) and the set ‘H;(n) is open in ‘N,,+,. 

LEMMA 7.3. The set ‘I-l; is a dense subset of the set 3t,,4. 
Proof. Let w(e) E 3cU,+ and E > 0 be arbitrary. According to the definition of - 

FL,,4 there exists VI(.) E C(dec st I’) such that 

49 = min b%P - II40 - VI (0 I&> E - Ih (0 - w(t>ll,~~ 
The function d(t) is lower semicontinuous and d(t) > 0, 5 E M. By Lemma 
3.6 [15], there exists a continuous function c(E), 0 < c(E) < a!(<), < E M. 
As follows from Theorem 6.6, there exists an &-continuous selector u(e) of the - 
multifunction dec st l? such that 

lh (0 - ~mJ < 4% W49) < rl, I E M. 
Then 

Ibcc> - mll, 
G IMS> - G3llP + IId> - WIP < lb(E) - dE)llP + 40 
< IbK> - VI (alp + d4w - lb@> - G9ll, < 4m/27 I E M* 

Analogously, one can obtain that 

llW> - ml, < 6, t E M* 
Therefore, TJ(.) E 31; and ‘Hb is a dense subset of the set ‘H,,+. 

LEMMA 7.4. The set n,,, n,,, ‘Hi,, is a dense subset of the set ‘N,,d. 

The result follows from Lemmas 7.2, 7.3 and the Baire category theorem [29]. 

Proof of Theorem 7.1. Let u(a) E fin>, n,,, ‘Hsln. Then D”(v(E)) < l/n 
for any E E K, s 2 1. Therefore, P(v(~)) = 0, t E K, s > 1, and, as follows 
from Lemma 5.1, w(c) E extI’(E), [ E K. Since v(.) E 3tU,+ then 

and u(.) E C(decstI’). 
If M is o-compact, we can put K = M. This concludes the proof. 
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COROLLARY 7.5. Let a multifunction r: M I+ dccbLp(T, X) sati& all the 
assumptions of Theorem 7.1. 

Then there exists an Lp-continuous selector w( .) of r such that 

49 E exW>, t E K, 
w(t) E extI-‘((), [ E M \ K. 

(7.4) 

(7.5) 

If M is o-compact, then inclusion (7.4) holds for every [ E M. 

Since 
- 
decstP(c) c extr(,g, E E M, 

the result follows immediately from Theorem 7.1. 

THEOREM 7.6. Let a multifunction F: M t) dcbL,(T, X) be such that the 
mu~t~unction I’([) = EGF(<), [ E M, satisfies all the assumptions of Theo- 
rem 7.1. 

Then there exists an LP-continuous selector u(a) of the multifunction F, such 
that 

u(E) E extmF(e), t E K, (7.6) 
-- 

u(<) E extco F(c), [ E M \ K. 

If M is o-compact, then inclusion (7.6) holds for every c E M. 
Proof From Theorem 7.1 and Corollary 7.5, it follows that there exists a 

continuous selector u(.) of the multifunction dec st I? such that inclusions (7.4), 
(7.5) are true. As is proved in Proposition 6.2, stI’(<) c F(t), [ E M. Since F 
has decomposable, closed values, then decstI’([) c F(t), e E M. This proves 
Theorem 7.6. 

In Theorem 7.1, it is assumed that the multifunction I’: M N. dccbL#‘, X) is 
bounded on M. If M is a locally compact, separable metric space, the condition 
of the boundedness of P on M can be omitted. 

THEOREM 7.7. Let a continuous in the Hausdorff metric hp(., .) multijiinction 
I’: M I-+ dccbL,(T,X) h ave the property (Hl), and M be a locally compact, 
separable metric space. 

Then for any u(.) E C(dec st I’) and any lower semicontinuous function 
4: M t-+ (0, +oo), there exists v(.) E C(decstI’) such that 
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Proof. Denote by CJM, Lr,) the space of all continuous functions from M 
to L,(T, X) with the topology of uniform convergence on compact subsets of 
M. Then Cc(M, Lp) is a metrisable, complete metric space. Later, all the sets 
that are used in the proof of Theorem 7.1 (in particular, the sets C(dec st I’), 
C(I)) should be considered as subsets of C,(M, &). Since M is g-compact 
space, Theorem 7.7 can be proved analogously to Theorem 7.1 with obvious 
transformations. 

8. Some Examples 

In this section we present some examples of multifunctions which are used in 
the theory of multivalued equations. 

A multifunction F: T x X e cb(X) is said to be of the Caratheodory type if 
it is measurable with respect to t for every 2 E X and continuous with respect 
to x for almost every t E T. 

Let C(T, X) be the space of all continuous functions from T to X with the 
topology of the uniform convergence on T. Suppose that, a.e. on T, for every 
XEX 

II~h4ll G w + Ml4I~ (8.1) 
where m, n E L,(T, R). 

Take a fixed compact M c C(T, X). 

PROPOSITION 8.1. Let F: TxX t-+ c&(X) b e a multifunction of the Carathe- 
odory type, satisfying inequality (8.1). Then there exists a continuous function 
g: M t-+ Lp(T, X) such that for every x(a) E M a.e. on T 

g(x)(t) E extF@, x(t)>- (8.2) 

Proof. It is easy to prove that the multifunction F(t, x(t)) is measurable for 
any x(e) E M. Set 

r(x(.)) = if(.) E &(T,X); f(t) E F(t,x(t)) a.e.}, x(e) E M. 

From Proposition 4.2, Theorem 4.4 and inequality (8.6), it follows that I’(x(.)) is 
a continuous in the Hausdorff metric h,(e, .) multifunction from M to dcwkl,(T, 
X). By Theorem 7.1, there exists a &-continuous selector g(.) of multifunction 
r (.) satisfying 

9(x(-)) E extr(x(-)), 2 E M. 

Using Corollary 5.2, one proves the result. 

(8.3) 
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PROPOSITION 8.2. Let F: T x X I+ cb(X) be a multifunction such that 
Co F(t, x) satisfies all the assumptions of Proposition 8.1. 

Iffor every x(s) E M the multifunction F (t, x(t)) is measurable, then there 
exists a continuous function g: M I+ L,(T, X) such that, for every x(.) E M 
a.e. on T, 

g(x)(t) E W> x(t)>. 

Moreovel; 

g(x)(t) E extEF(t,x(t)). (8.4) 

If F: T x X I+ A(X), then the requirement of the measurability of F (t, x(t)) 
can be omitted. 

Proof. Set 

3(x(.)) = {f(.) E L,(T,X); f(t) E %x(t)) a.4, 4.) E M, 

and 

I’(x(+)) = {f(a) E L,(T, X); f(t) E E5 F(t, x) a.e.}, x(e) E M. 

By Theorem 1.5 in [27], I’(x(.)) = GF(x(.)), x(.) E M, and 3(x(.)) c 
dcbLn(T, X). As was established above, I’(z(.)) is a continuous in the Hausdorff 
metric hn(., .) multifunction from M to dcwkLn(T, X). Then, by Theorem 7.1, - 
there exists a L,-continuous selector g(e) of the multifunction dec st I’(.) such 
that inclusion (8.3) holds. By Proposition 6.2, we have that 

decstq) c F(x(.)), x(e) E M. 

From this and Corollary 5.2, we obtain the conclusion of Proposition 8.2. 
If F: T x X e ck(X), then, according to Proposition 8.1, there exists a 

continuous function g: M I+ L,(T, X) such that inclusion (8.4) holds for every 
x(e) E M a.e. on T. 

Since extE5 F(t, x(t)) c F(t, x), then the result is also true in this case. 
Now consider an example of a multifunction satisfying all the hypotheses of 

Proposition 8.2. 
Set X = R2, T = [0, 11. For all x = (21,x2), ]]x]] # 0 let the set Fl(x) on 

the plane (vi, ~2) be the ellipse arc 

211 = cos $4, ~2 = IW(l + ll41> . sin43 

IIxlIrl G 4 G Ilxll-’ + 27T - Il4l/U + ll41>~ 

and at the point x = (0,O) the set Fl(0) consists of two points: (- 1, 0), (1,O). 
Denote by a 55 Fl (x) the boundary of the set Co Fl (xc>, and by Q the set of all 

points x = (zi, 22) with rational coordinates. Consider the mapping F: T x X c) 
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X defined by the rule: 

F(t, z) = X(t) .FI (x) at J: E Q, 
F(t, z) = X(t) e aEEFl(z) at z E X \ Q, where X(t) > 0 is defined for every 
t E T and p-integrable on T. 

For every fixed t, the multifunction F is lower semicontinuous at every point 
z E Q, upper semicontinuous at every J: E X \ Q, and 

Consequently, the multifunction F(t, z) does not possess the property of lower 
semicontinuity at every point 2 E X. However, Co F(t, z) is a Caratheodory-type 
mapping. 

Take as fixed z(.) E C(T, X). Denote by To the set of all t E T such that 
z(t) is a point with rational coordinates. Then To is an F, set and the restriction 
of Fr (t, z(t)) to To is a lower semicontinuous multifunction. Hence, F(t, z(t)) 
is measurable on TO. Analogously, the restriction of F(t, x(t)) to T \ TO is a 
measurable multifunction. Therefore, for every z(e) E C(T, X) the multifunction 
F(t, z(t)) is measurable. 

Then the multifunction F(t, z) satisfies the hypotheses of Proposition 8.2. 

9. Comments 

In the present paper, the main results were obtained by the development of the 
method based on the Baire category theorem. 

It should be mentioned that the idea of applying the Baire category theorem 
to differential inclusions in R has appeared in [lo]. Subsequently, this method 
has been developed in [ 14, 16, 171 for proving the existence of solutions to the 
Cauchy problem for nonconvex-valued differential inclusions in Banach spaces. 
Further contributions concerning the existence of extreme solutions and relaxation 
theorems can be found in [4, 6, 7, 8, 18, 19, 33, 32, 341. 

The existence of extreme continuous selectors and relaxation theorems were 
realized for the first time by the Baire category method in [34] for some class 
of multivalued maps. The present paper is devoted to the development of the 
results 1341 for more general classes of multifunctions. It should be mentioned 
that the technique based on the Baire category theorem has been used in [4] in 
order to prove the existence of so-called directionally continuous selectors for a 
special class of multifunctions with nonclosed, nonconvex values. 

(1) Proposition 2.1 was proved in [26] in order to obtain joint continuous 
selectors for a finite set of multifunctions and can be used in different fields. 

(2) The functions under consideration in Section 3 were first introduced in [32] 
for proving the existence of extremal solutions and the relaxation theorems for 
differential inclusions in R”. The functions from Section 3 have similar properties 
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to the Choquet function [9, 111. It should be mentioned that the Choquet function 
has a restricted field of applicability and can be used only in separable, reflexive 
Banach spaces. 

(3) Theorem 6.6 is proved by using some ideas of [26]. 
(4) The proof of Theorem 7.1 is obtained in the standard way [14, 16, 171, if 

we apply the method based on the Baire category theorem. 
(5) In Section 8, we used some ideas from [35] for the construction of the 

example. 
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