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Abstract. This paper investigates algebraic and continuity properties of increasing set operators 
underlying dynamic systems. We recall algebraic properties of increasing operators on complete 
lattices and some topologies used for the study of continuity properties of lattice operators. We 
apply these notions to several operators induced by a differential equation or differential inclusion. 
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1. Introduction 

A complete lattice [ 15, 16, 61 is a partial ordered set such that every subset 
% has a supremum and an infimum denoted by V’H and AK As an important 
example for the following, we mention, that the power space F(X), the space 
of all closed subsets of X supplied with the inclusion order, is a complete lattice 
and the supremum and the infimum are given by 

w-l c F(X), v-?-l= u K, A?l= (7 K. 
KE3t KElfl 

By an operator, we mean a mapping of a complete lattice into itself. 
In this paper, we focus on set operators defined on a complete lattice induced 

by a differential inclusion (in particular, on the power space ‘P(X), or on the 
space F(X) of closed subsets of X). 

An algebraic dilution S distributes over suprema, and dually an algebraic 
erosion E distributes over infima. The pair (E, S) is called an adjunction if for 
all z,y, we have 6(y) < 2 ti y < E(Z). It is well known [32, 121 that if the 
operators E and 6 constitute an adjunction, then E is an erosion, and S a dilation. 
Furthermore, to every dilation there corresponds a unique erosion such that the 
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pair forms an adjunction; dually, to every erosion can be associated a unique 
dilation that both operators constitute an adjunction. The composite operators 
have such algebraic properties as increasing, extensive (or anti-extensive) and 
idempotent. An operator which is increasing extensive (resp. anti-extensive) and 
idempotent is an algebraic closing (resp. an algebraic opening). From a theoretic 
point of view, the dilation, the erosion, the adjunction, the opening and the closing 
are the most important algebraic notions in mathematical morphology. 

A differential inclusion z’(t) E F(s(t)) where F: X w  X is a set-valued 
map (i.e. F(z) c X), corresponds to a generalisation [4, 51 of the notion of 
the differential equation z’(t) = f (z(t)) where the dynamic is multivalued and 
nondeterministic. The main example is given by the control system F(z) = 

Many set operators [2] can be deduced from the framework of differential 
inclusions. For example, we associate with any set-valued map F the set S(Q), 
called the reachable set, of solutions to the differential inclusion z’(t) E F(z(t)) 
starting from 20 and the reachable map 8~ defined by 

6F(h, X0> := {X(h)),(.),s(zo), 

where z(.) range over S(Q). Then, we show that under adequate assumptions, 
the operator K I+ tiF(h, K) = lJzC,EK 6~(h, ~0) commutes with the supremum, 
and is an algebraic dilation. The set EXitF(K, t) (resp. EXITF (K, t)) is the 
subset of initial states x E K such that one solution (resp. all solutions) z(v) to 
differential inclusion z’(t) E F(z(t)) starting at 20 remains in K for all time 
in [0, t]. The operator ViabF which, with any closed subset K associated with 
its ‘viability kernel’, corresponds to the EXitF( ., oo) operator. Furthermore, it 
is increasing anti-extensive and idempotent. We deduce that it is an algebraic 
opening. In the same way, the operator InvF which, with any closed subset K 
associated with its ‘invariance kernel’, corresponds to the EXITF( ., co) operator 
and it is an algebraic opening which commutes with the infimum. 

We deduce from these previous results some continuity properties of these 
operators. 

In the last part, we will study a particular example: the differential constant 
inclusion z’(t) E B, where B is a symmetrical compact convex set. As a particu- 
lar case of the previous results, we provide algebraic and continuity properties of 
the induced operators which appear to be usual morphological operators where 
B is usually called the structuring element. 

2. Lattice Framework 

In this section, we briefly recall some basic notions and some results that we 
shall use later on. For more details on lattice theory, consult [ 15, 16, 61. 
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2.1. ALGEBRAIC DEFINITIONS AND PROPERTIES ON A COMPLETE LATTICE 

By an operator, we shall mean a mapping of a complete lattice L into a complete 
lattice M. 

DEFINITION 2.1. An operator $: L H M is: increasing if A 6 B implies 
+(A) < +(I?), extensive (resp. antiextensive) if L = M and $(A) > A (resp. 
+(A) < A), and idempotent, if L = M and Q2 = $J. 

It is obvious that if 1c, is an increasing operator, then for any family Ki E C, we 
have 

If L and M are lattices included in Boolean lattices* (for example, F(X) in 
P(X)), then every element K in L (resp. in M) has a unique complement in the 
Boolean lattice which we denote by KC (in P(X), we have KC = X \ K). The 
dual operator** of an operator $J: L * M is given by $*: L* H M*, where 

G*(K) = (TWW)~ and C* = {KC 1 K E L}. It is clear that $* is increasing 
if and only if $J is, $* is idempotent if and only if $ is, and $* is extensive if 
and only if + is anti-extensive. 

For example, the space F(X) of all closed subsets of X and the space 3*(X) 
of all open subsets of X are duals, and we have 

v’31 c F(X), W= u K, AN= n K, 
KM KE31 

v-&f c F*(x), v31= u K, r\x =Int 
KE3t 

where Int(K) denotes the interior of K. 

2.1.1. Algebraic Dilation and Erosion 

DEFINITION 2.2. We say [32, 18, 131 that II, is an ulgebruic dilution (resp. an 
algebraic erosion) if $ distributes over the suprema (resp. over the infima), i.e. 
+(V G) = V WC) (rev. HA Kd = /WW$. 

* In a complete lattice C, there exists a smallest element denoted by 0 and a greatest element 
denoted by E. If  x, y  E 13 are such that x A y  = 0 and x V y  = E, the y  is called a complement of 
x. A lattice L is called complemented if all elements in L: have a complement. A Boolean lattice is 
a complemented distributive lattice, i.e. every element has a unique complement and such that the 
supremum distributes over the infimum and conversely the infimum distributes over the supremum. 

** The lattice structure of the dual lattice L’ = {Kc 1 K E ,C} is induced by the Morgan’s 
Laws. 
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DEFINITION 2.3 [13]. Let 6: .C I+ M and E: M I+ L: be two operators on 
a complete lattice .L. Then we will say that (E, 6) is an adjunction if for every 
A E L and for every B E M, we have 

6(A) < B H A <E(B). 

We will denote .? = 6 and 6w = E when (E, S) is an adjunction. 

(1) 

If (E, 6) is an adjunction, it follows automatically [ 17,32, 131 that 6 is an algebraic 
dilation and & an algebraic erosion. 

For example, in the case of Minkowski operations on P(Rn), the subtraction 
and the addition by a set B form an adjunction. 

An automorphism $J of L is both an algebraic dilation and an algebraic erosion 
and (q!~-‘, $J) and ($J, $J-‘) are adjunctions. 

PROPOSITION 2.4 [32, 131. 
1. For any algebraic dilation S: C ti M, there exists a unique algebraic 

erosion P : M I+ L such that (Jw, 6) is an adjunction. 
2. For any algebraic erosion E: M I+ C, there exists a unique algebraic 

dilation ? : .C I+ M such that (E, ?) is an adjunction. 

2.1.2. Algebraic Opening and Closing 

DEFINITION 2.5 [29]. We will say that $I: L H L is an algebraic opening 
(resp. an algebraic closing) if + is increasing, idempotent and anti-extensive 
(resp. extensive). 

The topological opening K e Int(K) is an algebraic opening on P(X). The 
closed convex closure operator K H E(K) is an algebraic closing on F(X). 

PROPOSITION 2.6 [29]. Given an adjunction (E, 6) then we have 6&S = S and 
.E~E = E. The operator SE is an algebraic opening and the operator ~6 is an 
algebraic closing. 

Remark 2.7. We observe that if $J is an algebraic dilation (resp. an algebraic 
erosion), then its dual operator $* is an algebraic erosion (resp. an algebraic 
dilation). Furthermore, if $ is an algebraic opening (resp. an algebraic closing), 
then $* is an algebraic closing (resp. an algebraic opening). 

2.1.3. Subset of Fixpoints of Algebraic Opening and Closing 

DEFINITION 2.8 (Subset of fixpoints). Let $J be an operator on I!Z and K E L. 
We say that K is a Jixpoint of $J if Q(K) = K. The set of all fixpoints of QJ is 
called the subset of fixpoints of $ and it is denoted by 

Fix($) := {K E L 1 $J(K) = K}. 
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It is obvious that Fix(+) is $-closed, because VK E Fix($) we have $(K) = K, 
and +(+(K)) = $(K) implies that $J(K) E Fix($). Then, for every opening 
$J: L I-$ 13, there is an associated subset of fix points. Since 1c, is idempotent, 
Fix(+) is nothing but the image of L under $J, i.e. Fix($) = $(C). 

THEOREM 2.9 (Tarski fixpoint theorem) [ 191. Let I/J be an increasing idempo- 
tent operator on L. Then Fix($) is a nonempty complete lattice included in l. 

Algebraic opening and closing are completely characterized by their subset of 
fixpoints. 

PROPOSITION 2.10 [17]. Ifll, is an opening, then its subset of fixpoints is 
closed under suprema, i.e. if Ki E Fix($) for i E I, then viE1 Ki E Fix($). 
Conversely, every subset l? of L which is closed under suprema is the subset of 
fixpoints of a unique opening + given by 

$(K) = V{B E 17 1 B c K}. 

For example, in P(R”), the subset of fixpoints of the topological opening 
K c) Int(K) is the family of all open sets which is closed under union and 
invariant under translation. Moreoven the interior of a set K is the union of all 
open balls inside K, i.e. Int(K) = U{B E I? 1 B c K}, where I3 is the family 
of all open balls. 

PROPOSITION 2.11 [17]. Ifq5 is a closing, then its subset offixpoints is closed 
under injima, that is tfKi E Fix($) for i E I, then ~\i~l Ki E Fix(+). Conversely, 
every subset t? of L which is closed under injima is the subset of jixpoints of 
unique closing 4 given by 

4(K) = A{B E l3 1 B > K}. 

For example, in P(R?), the subset of fixpoints of the closed convex closure 
K I+ S(K) is the family of all closed convex sets which is closed under inter- 
section and invariant under translation. Moreoven the closed convex hull of a 
set K is the intersection of all closed half hyper-planes which contain K, i.e. 
m(K) = n{B E 27 1 K c B}, w  h ere f3 is the family of all closed half hyper- 
planes. 

PROPOSITION 2.12 [29]. Let $ b e an algebraic opening and 0 be an increasing 
anti-extensive operator. Then the following four statements are equivalent: 

1. $J < 8, (i.e. VK E fZ, +(K) < B(K)), 
2. $8 = T/J, 
3. ep!J=q!J, 
4. Fix($) c Fix(B). 
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From this proposition, it follows that an algebraic opening is uniquely determined 
by its subset of fixpoints. 

COROLLARY 2.13 [29]. Let $1 and $12 be two algebraic openings, then $1 = 
$2 ifund only ifFix = Fix(&). 

2.2. ORDER CONTINUITY OF LATTICE OPERATORS 

Throughout this section, we assume that L is a complete lattice. 

DEFINITION 2.14 [ 141. For a sequence K, in ,C we define lim sup K, = 

l\NaI Vn)N Kn. 

It is clear that 

- lim sup( K, A L,) < (lim sup Kn) A (lim sup L,), 
- limsup(K, V L,) 3 (limsup Kn) V (limsupL,). 

For example, on the lattice F’(X) of the closed subsets of X, the limsup is 
given by 

lim sup K, := 
+ ) 

Kn 

Na1 n>N 

If we now consider the complete lattice 3(X), where X is a topological space 
which is Hausdorff, locally compact and admits a countable base. On F(X), we 
can first define limits of sets introduced by Painleve in 1902, and called the 
Kurutowski upper limits of sequences of sets: 

DEFINITION 2.15 [5]. Let (Kn)nC~ be a sequence of subsets of a metric space 
X. We say that the subset 

Lim SUP++,~ K, := {zr E X 1 l\n&f d(z, K,) = O} 

is the upper limit of the sequence K,. 

Upper limits are obviously closed and we have on F(X), Lim supK, = lim sup K, 
It is easy to check that: 

PROPOSITION 2.16 [5]. Zf(K n nGN is a sequence of subsets of a metric space, ) 
then Lim SUP~+~ K, is the set of cluster points of sequences 2, E K,, i.e., of 
limits of subsequences x,1 E K,I. 

A weak notion of continuity can be defined using the limits of sets as follows: 
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DEFINITION 2.17 [5]. Let TJ: F(X) c) F(X) be an operator. We say that $J is 
upper-semi-continuous (U.S.C.) if Lim ~up~+~$‘(K,) 5 $(Lim supndmK,). 

We can show that: 

PROPOSITION 2.18 [ 17,32, 121. Every increasing erosion is U.S.C. on F(X). 

3. Operators Induced by Differential Inclusion 

In this section, we recall some operators induced by differential inclusions as the 
reachable map, the exit tube, the viability kernel map and the invariance kernel 
map. For more details on the differential inclusion theory and viability theory, 
see [4, 21 or [ 111. 

3.1. DIFFERENTIAL INCLUSION, REACHABLE SET AND ACCESSIBILITY SET 

Indeed, control systems provide the main example of differential inclusion, and 
are governed by a family differential equation 

4t> = few, u(t))7 where u(t) E U(C@)). 

The single-valued map f describes the dynamics of the system: it associates with 
state 2 of the system and the control u with the velocity j(z, u) of the system. The 
set-valued map U describes a feedback map assigning to the state 2 the subset 
U(z) of admissible controls. If we put F(z) := f(z, U(z)) = {f(z, u)},,u(~), 
then the control system is governed by the differential inclusion 

d(t) E F(z(t)). 

More generally, let F: X cu X be a set-valued map from the vector space X 
to itself. We define the notion of solution of differential inclusion z’(t) E F(z(t)) 
as follows: 

DEFINITION 3.1. We denote by SF(Q) the set of solutions z(.) to the differ- 
ential inclusion: 

vt E I, z’(t) E F(z(t)), x(0) = 20 (2) 

starting at the initial state ~0, where CC(.): I e X is an absolutely continuous 
function (i.e. z(.) E W’*‘(O, oo, X)). 

We also denote by 29~(h, ~0) the set of the values s(h) at time h of the solutions 
2 of (2). 

DEFINITION 3.2. For all subsets K c X, 19p(h, K) = lJyEK 6p(h,y) is the 
reachable set from K at time h of F. 
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The reachable map t - 19~(t, ~0) enjoys the semi-group property: Vt, 
s 2 0, fl& + s, x0) = &(4 @F(S, x0)). 

DEFINITION 3.3. The set-valued map Acc~(t, .): y - Acc~(t, y) = 
lJsGt 19~(s, y) is called the accessibility map fir F at t [2]. The accessibility 
tube of K is the set-valued map t --+ Acc~(t, K) = lJYEK Acc~(t, y). 

3.2. EXIT TUBE 

Let K be a closed subset of X and z(e): [0, +oo[c, X be a continuous function. 
We denote by TK the exit functional associating with CC(.) its exit time TK(X(-)) 
defined in [2] (See Figure 1) as 

w(x(*)) := Act E (0, +4( xc(t) # K). 

It is obvious that Vlt E [O,TK(Z(.))[ , z(t) E K, and if TK(z(.)) is finite, then 
z(r~(z(.))) E 8K, where 8K denotes the boundary of K. 

Then we can associate the function ri: K ti lR+ U {+oo} defined by 

T$: K ++ R+ U {+cm} (resp. rk: K ++ R+ U {+co}) which is defined by 

&x0) := v -&(*))7 
4.)ESF(m) 

i 
resp. &(Q) := A -&4)) 

3C(.)ESF(ZO) ) 

and is called the exit function (resp. the global exit function). 
When the set-valued dynamic is sufficiently regular (Marchaud), in a sense 

we precise below, the exit functions satisfy some continuity properties. 
We denote by llF(~>ll := V?IE~(2) IIYII and say that F has tinear growth if 

there exists a positive constant c such that: t/x~Dom(F), \lF(x)II < c(~~x~~ + 1). 

Fig. 1. Exit time. 
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We shall say that F is a Murchaud map if it is upper semicontinuous, has compact 
convex images and linear growth. A set-valued map F: X -+ X is Lipschitz 
around z E Dam(F) if there exist a positive constant X and a neighborhood U 
of z such that 

where B is the unit ball of X. In this case, F is also called Lipschitz (or X- 
Lipschitz) on U. 

PROPOSITION 3.4 [2]. Let F: X -A X be a Marchaud map, and K c X be a 
closed subset. Then the exit function ok is upper semicontinuous. Furthermore, 
if F is Lipschitz, then the global exit function 7-k is upper semicontinuous. 

DEFINITION 3.5. If F is a Marchaud (resp. Lipschitz) set-valued map, we can 
respectively associate the two closed subsets 

ExitF(K,t) := {xu E K 1 &x0) 2 t}, 

EXITF(K,t) := {xc E K 1 &(x0) 2 t}, 

with any t 2 0. 
We shall say that the set-valued map t r-) ExitF(K, t) (resp. t e EXITF( K, t)) 

is the exit tube (resp. the global exit tube). 
When tl < t2, then 

ExitF(K, t2) C ExitF(K, tl) E ... C ExitF(K,O) = K. 

3.3. VIABILITY KERNEL AND INVARIANCE KERNEL 

Let K be a subset of the domain of F. A function x(a): I e X is said to be 
viable in K on the interval I c II@ if and only if 

vt E I, x(t) E K. 

DEFINITION 3.6 (Viability Kernel) [2]. Let F be a Marchaud set-valued map 
and K be a closed subset. The subset ExitF(K, +oc) = ntzoExit&K, t) is 
called the viability kernel of K for F, denoted by ViabF( K). It is the subset 
of initial states such that at least one solution of the differential inclusion (2) 
starting from them is viable in K, i.e. 

ViabF(K) = (~0 E K I 3x(.) solution of (2) such that x(t) E K}. 

We also can introduce the concept of invariance kernels: 
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DEFINITION 3.7 (Invariance Kernel). Let F be a Lipschitz Marchaud set-valued 
map and K be a closed subset. We shall say that 

EXITF(K, +co) = n EXITF(K, t) 
t>o 

is called the invariance kernel of K for F, denoted by Irrv~(X). It is the subset 
of the initial states such that any solution of the differential inclusion (2) starting 
from them is viable in K, i.e. 

InvF(X) = (20 E K 1 Vz(.) so u ion 1 t of (2) such that z(t) E K}. 

4. Algebraic and Continuity Properties of Operators Induced by 
Differential Inclusion 

4.1. REACHABLE MAP 

PROPOSITION 4.1. The operator K I+ 19~(h, K) is an algebraic dilution on 

wa 
Proof. 

4.2. EXIT TUBES 

Let F: X ,V X be a set-valued map. The operator K I+ ExitF(K, t) is an 
increasing anti-extensive operator. 

PROPOSITION 4.2. Let F: X w  X be a set-valued map. The operator 
EXIT& t): K t+ EXITF(K, t) is an algebraic erosion on F(X). 

Proof Since 

EXIT&t)(K) = {zo E K ) V’s < ~,@F(s,zo) c K), 

it is obvious that 

EXIT&t)(r)K,) = EXITF(nK,,t) = nEXITF(Ki,t) 

= nEXIT& t)(Ki). 

Let F: X w  X be a Marchaud map, then K I+ ti~(h, K) is semi-continuous 
in the sense of liminf, since this operator is an algebraic dilation on P(X), and 
K I+ EXIT& t)(K) = EXIT&K, t) is semi-continuous in the sense of lim sup 
as an algebraic erosion on F(X). Since K I+ EXITF(., t)(K) is increasing and 
semi-continuous in the sense of lim inf, we deduce that 
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PROPOSITION 4.3. Let F: X - X be a Marchaud map. The operator 
EXITF(., t): K I+ EXITF(K, t) is U.S.C. on F(X). 

4.3. ACCESSIBILITY TUBE 

PROPOSITION 4.4. Let F be a Marchaud set-valued map in X. The set-valued 
map Acc~(t, .): K ti Acc~(t, K) = UyEK Acc& y) is a dilation on 3(X). 

Proof. It is obvious from Proposition 4.1. 

THEOREM 4.5. Let F be a Marchaud set-valued map in X. Let us consider the 
two operators on F(X): EXITF(., t): K H EXITF(K, t) and AccF(+, t): K C) 
Acc&K, t). Then (EXITF(-, t), ACCF(-, t)) constitutes an adjunction, i.e. 

EXIT&t)” = AC& t). 

Proof. We observe that EXIT&t, K) = {z 1 lJ 6(t, x) c K}, then we can 
deduce that 

A c EXIT&B) e Vx E A, x E EXIT&B) 

-a VXEA, u fiF(h,X) c B 
h<t 

@ u U19F(hX) CB 
ZEA h<t 

e Acc&A) c B. 

From Proposition 2.6, we can deduce the following corollary. 

COROLLARY 4.6. The map K I-+ AccF(EXITF(K, t), t) is an algebraic open- 
ing and the operator K + EXITF(ACCF(K, t), t) is an algebraic closing on 

m9 

4.4. PROPERTIES OF THE VIABILITY KERNEL 

Let us consider a Marchaud map F: X - X. Let ViabF be the following 
operator on F(X) defined by ViabF: K t+ ViabF(K). In this section, we will 
study some properties of this operator. 

4.4.1. Algebraic Properties 

PROPOSITION 4.7. The operator ViabF: K w  ViabF(K) is an algebraic open- 
ing on F(X). 
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Proof 

- ViabF(K) c K + ViabF(ViabF(K)) c ViabF(K). Let 20 E ViabF(K) 
then there exists z(.) E SF(Q) such that V’t, z(t) E K. If there exists to 
such that z(to) 4 ViabF(K), then 3ti < to such that z(to + ti) $ K, and 
that is impossible. Thus, ViabF is idempotent. 

- It is obvious that ViabF is anti-extensive because YK E 3(X), 
ViabF(K) c K. 

- ViabF is increasing: Suppose K C L, tlzo E ViabF (K), 3s(.) such that 
v't E [O,T], x(t) = dF(@O) and z(t) E K c L. This implies zo E 
ViabF(L) then we can deduce that ViabF(K) C ViabF(L). 

Corollary 4.8 follows from the remark of Section 2.7. 

COROLLARY 4.8. The operator AbsF(.) dejined by 

Abs@) = X\ViabF (X\fl) 

is an algebraic closing on the space 3*(X) of all open subsets of X. 

4.4.2. Continuity Property 

PROPOSITION 4.9 [2]. Let us consider a set-valued map F: X w  X satisfying 
uniform linear growth and an arbitrary sequence of closed sets (Kn). Then 
Lim supn+oo ViabF(K,) C ViabF(Limsup,,,K,). 

From this proposition, it is obvious that ViabF is U.S.C. 
From Proposition 4.7, we deduce that 

ViabF(K) = U{L E F(X) 1 L E Fix(ViabF), L C K} 

where Fix(ViabF) is the set of all viability domains for F. This set is a complete 
lattice. The domain of the solution map 1()F is the largest closed viability domain 
contained in the domain of F, and 

f\ Fix(ViabF) = 8, V Fix(ViabF) = Dom(SF). 

4.5. PROPERTIES OF THE INVARIANCE KERNEL AND INVARIANCE ENVELOPE 

Let us consider a Marchaud map F: X w  X. Let InvF be the following operator 
on F(X) defined by K t+ hVF(K). In this section, we will study some algebraic 
properties of this operator, 

PROPOSITION 4.10. The operator InVF: K t-+ InVF(K) is an increasing alge- 
braic erosion and an algebraic opening on 3(X). 
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It is clear that InvF (Kt n Kz) = InvF(Kl ) n InvF(K2) and, more generally, 
that the invariance kernel of any intersection of closed subsets Ki (i E I) is the 
intersection of invariance kernels of the Ki. 

It follows that: 

PROPOSITION 4.11. The operator InvF: K I+ InvF(K) is U.S.C. on F(X). 

We have also [2] a proposition* on the lower semi-continuity of K I+ InvF(K). 
It follows that if the solution map SF is lower semi-continuous, then the 

operator InvF: K ti InvF(K) is semi-continuous in the sense of lim inf. Since 
it is an algebraic erosion, it is semi-continuous in the sense of limsup. We 
deduce that, under the previous assumptions, the operator InvF: K * InvF(K) 
is continuous. 

DEFINITION 4.12 [28]. Assume that F: X “vf X is a Lipschitz Marchaud 
set-valued map. The invariance envelope is defined by 

Env&K) = AccF(K, +cc) = U AccF(K, t). 

Let F: X - X be Lipschitz Marchaud set-valued map. Let K, H be two 
non-empty closed subsets of X, then 

- K c EnvF(K), 
- if H c K, then EnvF(H) c EnvF(K), 
- the subset K is invariant if and only if K = EnvF( K). 

It follows that 

PROPOSITION 4.13. The operator EnvF: K e EnvF(K) is an algebraic dila- 
tion and closing on F(X). 

Proof. 

EnvF(Kl U K2) 

= Acc~(Kl, +co) U Acc~(K2, +cc) 

g Acc~(Kt , +co) U Acc~(K2, +oc) = EnvF(Kt) U EnvF(Kz), 

EnvF(KI) c EnvF(Ki u K2) 
EnvF(K2) c EnvF(Ki u K2) 

* EnvF(Ki) U EnvF(K2) C EnvF(Kt u K2). 

* Let us assume that F is Lipschitz. Then the lower limit of closed subsets K,, c R invariant 
under F is also invariant under F. In particular, the lower limit of the invariance kernels of a 
sequences of closed subsets K,, c R contains the invariance kernels of the lower limit of the 
sequence K,, : 

Lim infn+oo (InvF(K,)) 3 InvF (Liminf,.+,(K,)) 
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Then we have EnvF(Kr U K2) = EnvF(Kt) U EnvF(K2). 
Furthermore, we can show [28] that EnvF(K) = X \ Inv-F(X \ K). Since 

InvF is an opening, by complementation duality, we deduce that EnvF is a 
closing. 

Since the intersection of two invariance domains is still an invariance domain, the 
invariance envelope EnvF (K) is defined as the intersection of all closed invariant 
subsets containing K. Then we obtain Env&K) = n{B E 23 1 K c B}, where 
23 is the family of all invariant domains under F. 

5. Application to Morphological Operators 

It appears that morphological operators are a particular case of operators induced 
by differential inclusions. 

Let B be a subset of a topological vector space X. We consider the multival- 
ued map T’ defined by T’ (CC) = B, = {Z + b where b E B} = B @ {CC}. We 
put ii = -B = {-b 1 b E B} the symetrical set of B. 

We recall [17] that if K and B are two subsets of X, 

- The morphological dilation of K by B is defined by 
K$ii={a:~B,nK#0}. 

- The morphological erosion of K by B is defined by 
K~~={J:~B,cK}. 

- The morphological opening of K by B is defined by KB = (K 8 ii) @I B = 
U,{& I & c 0 

- The morphological closing of K by B is defined by KB = (K $ A) 0 B. 

We say that B is a barrel set of the finite-dimensional vector space X if B is 
a convex, symmetric (i.e. & = B), compact set with a nonempty interior. We can 
equip the space X with a metric derived from a norm associated with a barrel 
set B defined by II . 11~: ~/~c~~~ = min{X, X > 0; ~0 E XB} and the induced 
distance dB is defined by [30]: 

dB(zo,d = II 20 - YjjB @ dB(xO,y) 

= min{X, X 2 0; y E (20) @ XB}, (3) 

i.e., dB(xc, y) is the size of the biggest homothetic set of B centered on ~0 and 
containing y. It is obvious that in the plane lR2, the Euclidean norm, the Li- 
norm, i.e. II~llr =I CYI I + I ~2 I, and the &,-norm, i.e. I]~ll~ = V(]cr~l, ]a2/) 
where ICO = (at, CQ), are II . 11~ for B, respectively, be a disk, a diamond and a 
square. 

LEMMA 5.1. Let B be a barrel and K be a compact subset of X such that 
Int(K) = K, then we have 

VK E X, &x0) = dB(zO, KC), 
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where dB(20,y) = )I x0 - YJIB, and dB(xO, Y) = jjyEY dB(zo, y) is the distance 
to KC function associated with B. 

From Lemma 5.1, we deduce the following proposition. 

PROPOSITION 5.2. Let B be a barrel and K be a closed subset of X, then we 
have 

ExitB(K, h) = K, 

6&K) = K C8 hB, 

Acc& K) = K @ hB, 

EXITB(K, h) = K 8 hB, 

AccF(EXIT~(K, t), t) = (K 8 hB) $ hB = KB, 

EXITF(Acc~(K, t),t) = (K 63 hB) 8 hB = KB. 
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