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Abstract. We present second-order subdifferentials of Clarke’s type of C*! functions, defined in
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0. Introduction

One of the motivations of this paper is the article of J. B. H.-Urruty, J. J. Strodiot
and V. H. Nguyen [8]. They defined the so-called generalized Hessian matrix of
C1! functions in R™ and investigated many of its properties, including necessary
second-order optimality conditions for minimization problems with C1! data.

Our goal is to define similar notions in infinite-dimensional Banach spaces
and to investigate their properties.

The Rademacher theorem plays a crucial role for defining in R™ the general-
ized Hessian matrix to C'"»! functions. In infinite-dimensional Banach spaces, we
use a weaker generalization of it, due to J. P. R. Christensen [3], Theorem 7.5,
but for CM! functions defined on Banach spaces with separable duals, and we
define an extension of the generalized Hessian matrix, called here a second-order
subdifferential. Many of the properties of the generalized Hessian matrix are also
valid in our case.

Let us note that the above-mentioned result of Christensen was used by L.
Thiboult in [16], where he extended the notion of Clarke’s subdifferential to
mappings acting from separable Banach spaces to reflexive spaces.

* This work was partially supported by the National Foundation for Scientific Investigations in
Bulgaria under contract No. MM-406/1994.
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We obtain necessary and sufficient conditions for constrained minimization
problems with C'!+! data. The necessary condition cannot be proved by the method
in [8], which does not work in infinite-dimensional Banach spaces.

Our approach is based on the method, described by V. M. Alekseev, V. M. Ti-
khomirov and S. V. Fomin [1] for obtaining necessary and sufficient conditions
for constrained minimization problems, defined by twice Fréchet differentiable
functions.

We refer to the following (incomplete) list of publications and references
therein concerning the recent development of the second-order derivatives and
optimality conditions in nonsmooth analysis: [2, 10-12, 14, 15, 17].

Some of the results in this paper are announced in [6].

1. Basic Definitions and Properties

Let (E,| - ||) be a real Banach space with separable dual (E*,]| - ||) (so E is
separable too) and G be an open subset of E.

Consider the class C1'!(G) of all functions f: G — R, whose first Gateaux
derivatives are locally Lipschitz (then, by the mean value theorem, f is strictly
Fréchet differentiable on (). Having in mind that every separable dual space
E* has a Radon-Nikodym property (see [13]), it follows from a theorem of
J. P. R. Christensen [3], Theorem 7.5, that for every f € CH1(G), f' is Gateaux
differentiable on a dense subset G(f) of G. In fact, G(f) is Haar-null set (see
[3]). We shall say that f is twice Gateaux differentiable on G(f) and denote by
f"(z) the Gateaux derivative of f’ at z € G(f).

We shall denote by z*[h] the value of the linear functional z* € E* on the
element h € E and by L[k}, hy] the value of the bilinear functional L defined
on E x E on the pairs of elements h;, hy € E.

Let L(E x E) be the Banach space of all bilinear continuous functionals
L: E x E — R with the norm

Ll = sup |L{hy, ko],
Hhpll=1
llhali=1
and L(E, E*) be the Banach space of all linear continuous mappings L: E — E*
with the norm || L|| = supy— [|L(R)[*-

It is well known that L(E x E) and L(E, E*) are isometrically isomorphic
(see [1], Section 2.2.5). So, in the sequel, we shall identify £L(E x E) and
L(E,E™).

In the sequel we shall also suppose that the function f belongs to the class

chi(@).
DEFINITION 1.1. For every =z € G, hy, hy € E we define
/ _
fOO(m; hi, h2) — limsup f (y + thl)[hZ] f (y)[hz],

' yoz t
tlo
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d*f(z;hi,hy) == limsup f"(2)[hy, ha).
G(f)3z—>z

PROPOSITION 1.2. For every x € G, hy,h; € E we have
FOz; b,y ho) = d f(z; hi, ha).
Proof. From [16], Proposition 2.2, we have
FO( b1 h2) = (F(-),h) (s bn) = limsup (/(-); ha) (23 ki)
G(f)az—z

= limsup f"(2)[h1,ha]. 0
G(f)3z—-z

PROPOSITION 1.3. The function f®(-; hy, hy) is upper semicontinuous for every
h],hz € F and

1FOz; hiyh2)| < Lellb]l - [|h2]),

where 1, is a Lipschitz constant of f' on a neighbourhood of .
Proof. Since f®(z;hy, ho) = (f'(-), h2)%(x; hy), the assertion follows from
the properties of the Clarke derivative (see [4, Proposition 2.1.1]). 0

Having in mind Proposition 1.2, we claim that d? f(z; hy, hy) has the same prop-
erties.

L(E, E*) is a conjugate space (see Holmes [7], Chapter 23B); the w*-topology
of L(E, E*) is called weak*-operator topology. The predual of L(E, E*) is the
linear hull V of all functionals I, », € (L(E, E*))*, hi,h, € E of the form
Ih p,(L) := L[hy, hy] with the norm in (L(E, E*))*. Then V is a separable
normed space, therefore we can note the following.

Remark 1.4. Every w*-compact subset in L(E x E) is metrizable (see Holmes
[7], Chapter 12F).

We have that a sequence {L,} C L(E x E) converges in the w*-topology to
some Lo € L(E x E) iff Ly[hy, ho] — Lo[hi, hy] for every hy, hy € E.

There are two natural ways to define second-order subdifferentials of f € C!:!
(by analogy with the first-order Clarke’s subdifferential (see [4], p. 27 and [4],
Theorem 2.5.1).

DEFINITION 1.5.
R f(z) = {L € L(E x E): Llh, ha) < f®(z3 b1, ha), Y(ky, ho) € E x B},
DEFINITION 1.6.

Pf(z): =2 {Le LExE): L= G%.Blirgx f”(z)}.
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An analogue of Definition 1.6 was introduced by L. Thibault in [16] in order
to extend the notion of Clarke’s subdifferential to locally Lipschitz mappings,
acting from a separable Banach space to a reflexive space.
It is easy to see that 3% f(z) C 02 f(z), for every € G. Indeed, let
L= w*lim f"(z,).
GZ}))BZL—)zf (Zn)

Since f"(2n)[h1, k2] < F®(2n; b1, h2) for every hy, hy € E, by Proposition 1.3
we have

L[hl) h2] = nll)ngo f”(zn)[hlvh‘Z]
< limsup f%(zq; bty ha) < fOx; by, Bo).

n—oo
Hence, L € 82f(z), and since 02 f(z) is obviously convex and w*-closed, we
obtain 0% f(z) C 82 f(z).
Also, it is easy to see that

& f(w; b1, ha) = sup {L[h1, ho; L € & f(z)}. (1.1)

In the case when E = R", Definition 1.6 was considered and used by
J. B. H-Urruty, J. J. Strodiot and V. H. Nguyen [8] (8°f(z) was called there
a generalized Hessian matrix). They used Rademacher’s theorem (instead of
Christensen’s); then f is twice Fréchet differentiable almost everywhere. There-
fore f”(z) (when it exists) is a symmetric matrix (see [1], Section 2.2.5) and,
hence, 8% f(z) consists of symmetric matrices. In our infinite-dimensional case,
we cannot say that 6% f(z) consists of symmetric bilinear functionals.

Note that in R™, 82 f(z) is in fact the plenary hull of 8* f(z) in the terminology
of [9]. So 82 f(x) can be essentially bigger than 5% f(z), but they coincide when
9% f(z) is a singleton (see Corollary 1.11).

PROPOSITION 1.7. For every z € E, the sets 8* f(z) and 0% f (z) are nonempty
convex and w*-compact. The multivalued mappings 6°f and 8*f are locally
norm bounded in L(E x E).

Proof. Let z,, € G(f) and =, = z, as n — oo. Since the set

D = {f"(zy): n > v}

is norm-bounded in £L(E x E) for some v by the Lipschitz constant of f’ at z, we
can apply the Alaoglou-Bourbaki theorem. Thus, the limit of a w*-convergent
subsequence of D belongs to 8% f(x). Since 8 f(z) C 82f(z), then 8% f(x) # 0
too. The convexity and w*-closedness of 62f and &2 f follows directly from
the definitions. The locally boundedness follows from the fact that f’ is locally
Lipschitz.

Again by the Alaouglou-Bourbaki theorem, we obtain that 82 f (z) and 62 f(z)
are w*-compact. m]
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DEFINITION 1.8. The function f: G — R is said to be twice strictly Gateaux
differentiable at = € G if there exists D2f(z) € L(E x E), such that

lim f,(y + thl)[hzl - fl(y)[h2] — D_Zf(-’l:)[hl, h2]

b
y—x
t40 t

Vhi,hy € E.

The following three propositions are analogous of the corresponding ones con-
cerning the first-order case (see Clarke [4]).

PROPOSITION 1.9. If f € CV! is twice strictly Gateaux differentiable at x € G,
then 07 f (z) = {D3f(z)}-
Proof. By definition, f®(z;h, h;) = D?f(z)[hi, ko] and then Llhy, hy] <
D2f(x)[hy, hy] for all hy,h, € E and L € 8 f(z). Hence,
L{hy, ho] = D f(z)(h1, o]

and therefore L = D?f(z). m

PROPOSITION 1.10. Let f € CYYG). Then 8*f(z) is a singleton if and only
if f is twice strictly Gateaux differentiable at z € G.

The idea of the proof is from [4].

Proof. Let & f(z) = {L}. Then L = w*-limgf)5,, f"(z) and from Propo-
sition 1.2 and (1.1),

F®(@;hi, ) = limsup f"(2)[h1, ha] = L{hy, ho).
G{(f)3z—z

We may write

(f'(z’ + thr) = f'(a)) o]

lim inf
g t

£10

iy @) = £+ th)) ]
oz t

t10

— _ limsup (fl(ml + thy — thl) — f’(a:' + thl))[h2]

/= t

40

= —f%(x; —h1, hy) = —L[~h1, hp] = L[hy, ha] = f®(z; by, hy),

whence f is twice strictly differentiable.
The other direction follows from the inclusion 8% f(z) D 8*f(z) and from
Proposition 1.9. (]

By Propositions 1.9 and 1.10, we obtain immediately the following.
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COROLLARY 1.11. For a CY! function f: G — R, 82f(x) is a singleton
(z € Q) if and only if 8% f(z) is a singleton.

The arguments for proving the following proposition are now classical (similar
to the first order case) and the proof is omitted.

PROPOSITION 1.12. The multivalued mappings 82f and 8*f: (G,|| - ||) —
(L(E x E),w*) are upper semicontinuous.

Let 10: R — G be an affine function, ¢: G — R be a C!! function. It is clear
that ¢ o € CHL(R).
It is easy to derive in the same way like in [8], Theorem 2.2, the following.

PROPOSITION 1.13. For all zp,u,v €R
(@ 0 9) % (wo;u,v) = 6% ($(0); ¥ (z0)u, ¥'(z0)v).
From Propositions 1.2 and 1.13, we have that

d*(¢ 0 ) (z0; 4, v) = d*$(W(z0); ¥ (zo)u, ¥ (zo)v).

Since d?f(zo; h1,-) is by (1.1) the support function of 6 f(xo)[h1], we derive
that

F*(p o) (zo) = {LW(%), P (z0)]: L€ 32¢(¢($0))}- (1.2)

The following proposition is stated in {8] without proof. Here we include the
proof for completeness.

PROPOSITION 1.14. Let I be an open interval containing [0,1] and let ¢ €
CUY(I). Then

(1) — 6(0) - ¢'(0) € 5 8¢ (t)

for some t € (0,1).
Proof. Define

h(t) = ¢(1) — ¢(t) — ¢'(B)(1 —t) — (1 = 1)*X, te[0,1],

where A = ¢(1) — ¢(0) — ¢'(0). So we have h(1) = h(0) = 0. Obviously, h is
locally Lipschitz on [0,1]. There exists £ € (0,1) such that either

(1) £ is a minimum of A over [0,1], or
(2) £ is a maximum of A over [0,1].
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Let (1) be fulfilled. Then by the necessary condition for a local minimum (see
Clarke [4])

0 € Oh(€) = —04'(E)(1 — &) +2(1 — A,
Hence, A € %aqs’ (€). But by Clarke [4], Theorem 2.5.1, and by definition of 9%,

we have 8¢’ (£) = 8%¢(¢).
Let (2) be fulfilled. Then £ is a minimum point of the function —hA over [0,1]

and since 3(—h)(&) = —h(£) (Clarke [4]), we have O € 9(—h)(&) = —Bh(E),
50 0 € Oh(£) and as in case (1) we obtain A € 18%¢(€). O

Using (1.2) and Proposition 1.14 for ¢(z) = f(z) and ¢¥(t) = a + t(b — a),
we immediately obtain the second-order expansion (the same as in [8], Theo-
rem 2.3).

PROPOSITION 1.15. Let f € CYY(G). Then for every a,b € G, with [a,b] C G
there exists ¢ € (a,b) and L. € 8% f(c) such that

f(®) = f(a) + f'(a)[b—a] + § L[b — a,b — a).

We shall use essentially this proposition in the sequel.

2. Necessary and Sufficient Optimality Conditions

We now consider the following constrained minimization problem:

fo(.’B) — min,

re E,

filz) <0, 1<i<m,
F(z) =0,

P(E)

where F(z) = (gl( )+, gk(x))T and the functions fo, fi, 1 < i < m, gj,
1 < j <k are CVY(E) functions. The Lagrangian function for P(E) is

L(z; A p) Z/\zfz +Zuj9j(iﬂ)
=1

where
(A,}J,) = (Ao,.A.,Am,p,l,...,}J,}c) € Rm+l X Rk

are the Lagrange multipliers.
Denote by locmin P(E) the set of all points of local minimum of P(E) and
define

m k
Az) = {(/\, i) € R™H x RF: Z/\,'f{(a;) + Zﬂjgé(ib) =0,
i=1

i=0

m
Aifi(z) =0, 1<i<m, A 20, 0<i<m, Z,\i=1};
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K(z)={h € E: fi(z)[h] <0, 0<i<m, gj(z)[h] =0, 1<j<k}.
Further, we need the following facts.
PROPOSITION 2.1 (Necessary condition, [1], Section 3.4.2). Let
zo € locmin P(E) and ImF'(z) =R*
Then A(xzo) is a nonempty. convex compact set.

LEMMA 2.2 (Minimax, [1], Section 3.3.4). Let A: E — R* be a linear contin-
uous surjective operator, AE = RF, ¥ € E*, 0<i<m, y € R¥, a € R™F],

max z;[z] >0 Vz € KerA. (2.1
ogigsm
Denote
Sla.v) = ol o o8, (o + ol @2
Then
(a) S(a,y) = sup (Z Aia; + Zu;y;) (2.3)
(Aw)eA
where

m m
{(A p) ER™XRE: X >0, Y N =1, ZmHA*u:o}.
=0 1=0

(b) inf in (2.2) and sup in (2.3) are attained.
Let 2o € locmin P(E). Without loss of generality, we may assume in the sequel

that f;(zo) = 0,0 < i < m (see the reduction in [1], Section 3.2.3).
Consider the problem

(P f(z):=max {fo(z),..., fm(z)} = min; F(z) = 0.
It is easy to see the validity of the following.
LEMMA 2.3 ([1], Section 3.4.2). zo € locmin(P’).
Now we can state the necessary optimality condition for P(E). The proof uses

ideas of the proof of [5], Theorem 9.1.2 (see also [1], Theorem 3.4.2), where the
functions are assumed to be of class C2.
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THEOREM 2.4. Let in P(E) Im F'(z) = R¥. If o € locmin P(E), then for
every h € K(z¢) there exist Ly € 0*fi(wo), 0 < i < m, M; € &g;(z0),
1 € j < k such that

max (ZAL[hwauj hh])

(A u)eA(zo)

Proof. By Proposition 2.1, the set A(zg) is nonempty.
Let us assume the contrary, ie. there exists b € K(zg) such that for every

L; € 8 fi(z0), 0 < i < m, and every M; € 8%g;(zo), 1 < j < k, we have
AiLilh, h] + Mlh,hl ] < 0. 2.4
()\,M)GA(zo) <Z 7, b Jz:l'u] il ]) @4

It is clear that ||| # 0. Let 0 < ¢, — 0 as n — oo. From Proposition 1.15 we
have

2
gi(zo + tnh) = g;(x0) + tag;(zo)[h] + -2£ i nlh, R

t2
= 5 M n[h, b,

where M; , € 8%g;(zo + Vjntnh) and v € (0, 1).

Since zo + vjntnh — To, as n — oo, and 8?g; are locally bounded and have

w*-closed graphs, we can choose w*-convergent subsequences from {M; , }n>1,
whose w*-limits M are in 8%g;(zo) for 1 < j < k.

Analoguously, having in mind that f;(z¢) = O (see the remark before Lem-
ma 2.3),

2
fiwo + tah) = fi(zo) + tnf(zo) Al + 2 Lia[h, 1]
2
= tuf{(eo)[A] + 2 Linlh, ),

where L; ,, € 3 fi(xo + Nintnh), Nin € (0,1) and choose w*-convergent subse-
quences from {L; »}n>1, whose w*-limits L; are in 8° fi(zo) for 0 < i < m.

For every € > 0, there exists an integer V| such that for every n > N) the
following inequalities are fulfilled:

| M |k, h] — Mj[h, h]} < 2¢, |Li n[h, h] — Li[h, h]| < 2e.

Hence, for n > N| we have

t2
gj (ZE() + tnh) = -%Mj [h, h] + ¢j,n(€), (25)
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where

|bin(e)l <the for 1<j<k, nzN 2.6)
and

42

fi®@o + tah) = tnfi(w0) (] + T Lih, h] + tin(e), Q2.7
where

i n(e)| < t2e for0<i<m, n> N (2.8)

Denote
z; = f{(zo), a = 3 Lilh,B), 0<i<m,

yj = 2 M;[h,Rh], 1<j<k, Y= (Y1, %), A = F'(zg).

From [1], Section 3.2.4, Lemma 1, the condition (2.1) of Lemma 2.2 is fulfilled.
Applying Lemma 2.2, we can find £ = {(h) € E, such that

Fl(zo) +y =0 (2.9)
and
[max (@i + fi(z0)[€])

= max (ZAa,-}-Zuij)—\I/ (2.10)

(A p)eA(zo)

where ¥(h) < 0 from (2.4).

Let [ be the maximum of the Lipschitz constants for g and f] in a neighbor-
hood U, of xy. There exists a neighbourhood U, C U, of z¢ and a constant s
such that ¢} and f; are norm-bounded by s there.

Using the mean-value theorem, (2.5) and (2.9), for large n, we have

95(zo + tnh + t56)
= (20 + tah + t3€) — gj(zo + tn h) + g5 (o + tnh)

= t2.0}(x0 + tnh + ki nt2€) (€] + ”M i{h, B] + ¢in(e)

= thg}(z0 + tah + kinta€)[E] — tngj (z0){€] + djn(e)
< tllltnh + kit EINEN + jinle)
S IR+ tallEMIEN + 165n(8)] =: 85n(e),

where x; , € (0,1).
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Using (2.6), we obtain
Binle) So(tR) +13e, Vi=1,...,k, @.11)

where o(t2)/t2 — 0.

Now we apply a generalization of the implicit function theorem (see [1],
Theorem 2.3.1) and obtain that there exist a constant ¢ and a map ®: U — R¥,
where U C U, is a neighbourhood of the point xg, such that

Fo+8@) =0, [8@)] <alF@)l, YseU.
Substitute r(t,) = ®(xg + tnh + t2€). Then, for n sufficiently large,

To+tyh 26 €U, gi(mo+tah+ 36+ 1(t)) =0 for 1 <j<k,
and by (2.11), we have

Ir(ta)l < qllF(o + tah + £36))|

1/2
=q<29§(wo+tnh+tif)> < qVk(o(f2) + £2).  (2.12)

j=1
Again, using the mean-value theorem, (2.7) and the fact that h € K(=xy), for
large n we obtain

fi(mo + tnh + 26 + 7(t))

= fi(zo + tnh + o€ +1(tn)) — fi(zo + tah) + fi(zo + toh)

= fizo + tah + vin(t2€ + () [t2€ + (ta)] +
2
Hafl(o)H] + ZLilh,h] + in)

< Blltnh + vinB2€ + ) - €] +
2
tsllr(ta)ll + A a0) €] + 2 Lilh, B+ Yinle),

where v; ,, € (0,1). Hence, from (2.8), (2.10) and (2.12), we obtain

fxo + toh + t5€ + r(ty))
= max fi(xg + tph + t2€ +r(ty))

\7'\

< max [t21Itnh + vin (£2€ + r(ta))]] - |I€]| +

x b=

2
+sllr(ta)ll + thf] (o) (€] + ”Li{h, h] + Yin(e)]
<or(£2) + (LIEN + s)lr(ta)|| + 2T (R) + 26
o1(tn) + (AUIEN + s)gVE[o(t2) + t2e] + 2V (h) + t2¢
= 't(t n) LN + s)q \/E(@ +s) + ¥ (h) +5],

t2

n n
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where o, (t3)/t3 — 0.
Now, since ¥(h) < 0, it is clear that if we chose € to be sufficiently small,
then for sufficiently large n, we have

flzo+ tnh + t5€ + 1(tn)) <O,

which is in contradiction with Lemma 2.3. O

The second-order sufficient condition for the problem P(E) is the following.

THEOREM 2.5. Let in P(E) fi(zo) = 0,0 <i <m, ImF'(zo) = R¥, A(z0) #
& and there exists a constant o« > 0 such that for every L; € 0% f;(z0), 0 < i < m,
M; € 8%gi(x0), 1 < j < k we have

(A p)EA(z0)

max <Z/\ .Li[h, h) +ZM [ h]) > a||hl® Vh € K(xo).

Then x is a strict local minimum (i.e. unique minimum in a neighborhood of
xo) of the problem P(X) for every finite-dimensional subspace X > xo of E.
If, in addition, the functions f;, 1 < i < m, are convex and the functions g;,
0 < 7 < k, are affine, then the problem P(X) has unique solution xy. Also in
this case the problem P(E) has unique solution .

Proof. We use ideas of [5], Theorem 10.1.1, where the functions are assumed
to be C2.

We shall show that for every finite-dimentional subspace X > z there exists
d > 0 such that the conditions: A € §B N X with h # 0 and

filzo+ h) <0, 0<ig<m, F(zo+ h) =0, (2.13)

where B is the unit ball in F, are inconsistent. From this, we will obtain imme-
diately the desired conclusion.

Let us assume the contrary: there exists a finite-dimentional subspace X 3 xy,
such that for every § > O there exists a nonzero hs € B N X such that the
conditions (2.13) are fulfilled.

Denote H = (g hs.

Let h € H. From Proposition 1.15 we have

fl(xO + h) (:L‘())[h] +3 L ($0 + )[h’» h]a (2-14)

where
€(0,1),  Li(zo+mh) € & fi(zo + mih), 0<i<m;
95(wo + h) = gi(xo)[h] + 3 M;(zo + v;h)[h, h], (2.15)
where

v €(0,1),  Mj(zo+;h) € 8g5(zo+vih), 1<j<k.
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Since A(zo) # 0, it follows from the proof of Theorem in [1], Section 3.4.2,
that it is a compact and, therefore, there exists a constant c;, such that for every

()‘5 /"’) € A(IE(}) we have Zi'c:l l 22 l< ¢y, where ©= (,LL}, s ’p'k)'
Substitute

"E: = f{(m0)7

a; = 3 Li(zo + mh)[h,h], O0<i<m,  A=F'(z)
(recall that F(z) = (g1(x),...,gx(z))),

y; = 3 Mj(zo +h)[A, R, 1<i<k y= ("),

f(x) = max fi(z).

ogigm
From (2.14) and (2.15), we obtain that (2.13) is equivalent to
zi[hl +a;i = fi(zo+ h) <0, 0<i<m, Ah+y=0. (2.16)

Since 62 f; and 8%g; are locally bounded, we have
Jep >0, 36, >0: z € B(:Eo,(sl), L; e Bzfi(a;), 0<i1<m,

, 2.17
M; € Pgi(a), 1<j<k=|Ll<a, M) <c @1
and if we define z}[h]; := max{z}[h],0}, then
* c
I8l < 01 = zihly < lail < 5 [1RIP,
JAR| = iyl < S IIAIP. (2.18)

For (A, ) € A(zp) we have

Z/\xl[az]—%ZngJ (zo)[z]) =0 Vz€eE.
i=0

Hence 7" Az} [:c] =0,V € Ker A, and therefore
max z;[z] >0, Vz € KerA4,

0ogi<m

which is the condition (2.1) of Lemma 2.2. From (2.16) and Lemma 2.2, we
obtain
Jmax fi(zo + h)

= max (zi[f] + )

LA

> min  max (z][z] + a;)
Ax+y=00<igm

1 (Z AiLi(zo + mih)[h, B] +

=  max
(Aw)€A(zo) 2

+Zm (20 + 7 )[h,hl). 2.19)
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We estimate the distance from h to the cone K (zo) by Hoffman’s lemma ([1],
Section 3.3.4) and after that by (2.18):

d(h, K(zo)) = inf {||h —yll, y € K(z0)}

c(fjx:[h1+ ¥ nAhn) < csllhlf?

1=0

for some constant ¢, which does not depend on h; c3 := ¢ - ¢;.
Hence, h can be represented in the type h = h’' + h”, where

B € K (), IA"|| < e3|h|f. (2.20)
If ||h|| < 1/2¢3, then
3 IRl < (1 =csllRIDIRI < IR < NIRY(T + callRll) < 2[R 2.21)

Since 8” f; and 8%g; are w*-upper semicontinuous and locally bounded, and
since the w*-compact sets in separable dual spaces are sequentially w*-compact
(from Remark 1.4), we can find (applying Alaoglou—Bourbaki theorem) a sequen-
ce {hn} C H, ||hall = O and elements L; € 8*fi(x0), M; € 8%g;(zo) such
that

Li(zo + nihy) LN L;, M;(zo + vjhn) AN M;.

Hence there exists v such that for every h € {hn}n>, We have

2
ILi(ﬂ?() + mh)[h, h] ~ L; [h, h]l < ﬁul-iél, (2.22)
h 2
|Mj(1130 + ’)’jh)[h, h] — Mj [h, h]l < gll% (2.23)

(here we use the fact that X is finite-dimensional, i.e. the restrictions of L;(zo +
nihn) and M;(zo+vjhy) to X x X converge in the norm topology, respectively,
to the restrictions of L; and M; to X x X, when n — 00).

Then for every h € {hy}n>y, with ||h|| < min{1/2c3,d,}, having in mind
that h = h' + h”, where h' € K(z¢) and h” satisfy (2.20) and (2.21), and using
(2.19), (2.22), and (2.23) we obtain:

0> f(zo+h)

>
(A, H)EA(I()) 2 (Z )\ L IE() + Th h h] + z .u’J ZL'() + ’YJ h)[h‘v h])

_oflhl?
T -f—(/\ur)rleaA(m()2 Z/\L[h h]+ZpJ i1hs B

7=l
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oflh|®

> — +  max MLR R+ Y MR R +
16 (\weh(a) 2 (Z | Z“’ iRl

7=1

m
+ Y MLR R+ Z MLi[p" B + Z ML (A", R +

i=0 1= 0 1=0
k

+E}L]M [h, hll + Z#’J h-” hl +Zﬂ] h” h,”}>
g=l j=1 j=1

_afhl?

WV

a m 1 m
+ = IW|* ~ Z)\illLiHllh'lth"” +5 Z)\i”LiHHhHHZ +
16 2 ‘ 2

+Zlug | I IR IR + 5 Z | 5 | 1105 llllh"ll2>

7j=1
_aflh)?
~ 16

a 1
> |IhiP | 7¢ — 2eaes(1 + co)llhll = seadi(1+a)lAlP).

+ gllhll2 — WA (1 + er) - 562||h"llz(1 +a)

The last expression is positive, when h is sufficiently small. This is a contra-
diction.

Therefore z is a strict local minimum of P(X). When f;, 0 < 1 < m, are
convex and g;, 1 < j < k, are affine functions, then the Lagrange function is
convex and the admissible set is convex, therefore the local minimum is global.
Obviously zg is a strict global minimum of the problem P(E) too. !

The following sufficient condition is a modification of that one in [1], Sec-
tion 3.4.3.

THEOREM 2.6. Let in P(E) fi(zo) =0, 1 < i < m, ImF'(2) = R, there
exists a number o > 0 and Lagrange’s multipliers (\, ) € R™*! x R¥, such
that \g=1, \; >0, 1 <i<m,

L (zo; A\, ) = Fi(o +Z)\f o +Z,u]g] (zg) =0 (2.24)
1=1 j=I1
and for all L € 8*L(zo; A, pt)
Llh, ] > 2al|h|?, Vh € C(zo), (2.25)
where
C(zo) = {h € E: f/(zo)[h] =0, 1 <i<m, F'(zo)[h] = 0}.

Then x¢ is a local minimum of the problem P(X) for every finite-dimensional
subspace X 3 xp.
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Proof. We shall follow the proof of Theorem in [1], Section 3.4.3. Instead of
the usual Taylor expansion, we use Proposition 1.15.

Assume the contrary, i.e. there exists a finite-dimensional subspace X > o,
such that for every § > O there exists hs € X N B (B is the closed unit ball in
E) such that

filzo+hs) <0, 1<ig<m, F(zo+ hs) =0,

N

and

fo(:l:o + ha) < fo(:ro).

Denote H := Jssohs and let h € H, h #0.
Since Y_ir | Ai fi(zo+h) < 0, from Proposition 1.15 applied for the Lagrangian
function £, we have

fo(o + k) > L(zo; A, 1) + 3 L(wo + nuh)[h, b,

where L(zg+nph) € 82L(zo+mph; A, 1), 7 € (0, 1). The local boundedness of
O*L(-; A, p) allows us to find a sequence {h,} C H, ||hy| — O, such that L, :=
L(zo + np, by is w*-convergent to some L € 82L(zo; A, p) (by the w*-upper
semicontinuity of 8?L(-; A, u)). Since X is finite-dimensional, the restrictions of
L, to X x X converge to the restriction of L to X x X in the norm topology.

So we have

1 o
fo(@o + hn) > fo(w0) + 5 Llkn, ha] = S|IBIP,  ¥n > v (2.26)

for some v.

Further, the proof is the same as the proof of Theorem in [1], Section 3.4.3.
The only difference is that the inequality (7) from [I, p. 191] is replaced by
(2.26). In such a way, for n > v, we have fo(zo + hy) > fo(xo), which is a
contradiction. O

The authors are very grateful to the referees for their valuable remarks and
suggestions, and esspecially for observing the new proof of Proposition 1.2.
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