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0. Introduction 

One of the motivations of this paper is the article of J. B. H.-Urruty, J. J. Strodiot 
and V. H. Nguyen [8]. They defined the so-called generalized Hessian matrix of 
C’s’ functions in IWn and investigated many of its properties, including necessary 
second-order optimality conditions for minimization problems with Cl,’ data. 

Our goal is to define similar notions in infinite-dimensional Banach spaces 
and to investigate their properties. 

The Rademacher theorem plays a crucial role for defining in IIF the general- 
ized Hessian matrix to C’t’ functions. In infinite-dimensional Banach spaces, we 
use a weaker generalization of it, due to J. P. R. Christensen [3], Theorem 7.5, 
but for C’I’ functions defined on Banach spaces with separable duals, and we 
define an extension of the generalized Hessian matrix, called here a second-order 
subdifferential. Many of the properties of the generalized Hessian matrix are also 
valid in our case. 

Let us note that the above-mentioned result of Christensen was used by L. 
Thiboult in [16], where he extended the notion of Clarke’s subdifferential to 
mappings acting from separable Banach spaces to reflexive spaces. 

* This work was partially supported by the National Foundation for Scientific Investigations in 
Bulgaria under contract No. MM-4060994. 
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We obtain necessary and sufficient conditions for constrained minimization 
problems with C It1 data. The necessary condition cannot be proved by the method 
in [8], which does not work in infinite-dimensional Banach spaces. 

Our approach is based on the method, described by V. M. Alekseev, V. M. Ti- 
khomirov and S. V. Fomin [l] for obtaining necessary and sufficient conditions 
for constrained minimization problems, defined by twice Frechet differentiable 
functions. 

We refer to the following (incomplete) list of publications and references 
therein concerning the recent development of the second-order derivatives and 
optimality conditions in nonsmooth analysis: [2, 10-12, 14, 15, 171. 

Some of the results in this paper are announced in [6]. 

1. Basic Definitions and Properties 

Let (E7 II * II> b e a real Banach space with separable dual (E*, ]I . I]) (so E is 
separable too) and G be an open subset of E. 

Consider the class C’!‘(G) of all functions f: G + W, whose first Gateaux 
derivatives are locally Lipschitz (then, by the mean value theorem, f is strictly 
Frechet differentiable on G). Having in mind that every separable dual space 
E* has a Radon-Nikodym property (see [13]), it follows from a theorem of 
J. P. R. Christensen [3], Theorem 7.5, that for every f E C’y’(G), f’ is Gateaux 
differentiable on a dense subset G(f) of G. In fact, G(f) is Huar-null set (see 
[3]). We shall say that f is twice Gateaux differentiable on G(f) and denote by 
f”(x) the Gateaux derivative of f’ at x E G(f). 

We shall denote by x*[h] the value of the linear functional x* E E* on the 
element h E E and by L[hl, hz] the value of the bilinear functional L defined 
on E x E on the pairs of elements hl, h:! E E. 

Let L(E x E) be the Banach space of all bilinear continuous functionals 
L: E x E + W with the norm 

IlLI = sup IL[hhll, Ilhlll=l llhzII=I 
and &(E, E*) be the Banach space of all linear continuous mappings L: E + E* 
with the norm [ILlI = supllhll,l llL(h)ll*. 

It is well known that L(E x E) and L(E, E*) are isometrically isomorphic 
(see [l], Section 2.2.5). So, in the sequel, we shall identify C(E x E) and 
L(E, E*). 

In the sequel we shall also suppose that the function f belongs to the class 
C’,‘(G). 

DEFINITION 1.1. For every x E G, hl , h2 E E we define 

fcc’(x; hl, h2) := limsup f’(y + thW21 - f’Wh1 
t 7 Y--rS 
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d2f(2;hi,hz) := limsup f”(z)[hl,h2]. 
G(f)3%-m 

PROPOSITION 1.2. For every x E G, hl , h2 E E we have 

fm(x; hl, h2) = d2f(x; hl, hz). 

Proof. From [16], Proposition 2.2, we have 

fac’(z; hi, hz) = (f’(o), hz)‘(z; hi) = limsup (f’(a); hz)‘(z; hl) 
G(f)sz+z 

= limsup f”(z)[hl, h2]. 
G(f)%+z 

0 

PROPOSITION 1.3. Thefunction fW(.; hl , h2) is upper semicontinuousfor every 
h,,h2 E E and 

lfoO(x; h, WI < Mlhlll . Ilh211, 

where 1, is a Lipschitz constant off’ on a neighbourhood of x. 
Proof. Since fuc’(x; hl, h2) = (f’(e), hz)‘(x; hl), the assertion follows from 

the properties of the Clarke derivative (see [4, Proposition 2.1.11). 0 

Having in mind Proposition 1.2, we claim that d2f(x; hl , h2) has the same prop- 
erties. 

LC(E, E*) is a conjugate space (see Holmes [7], Chapter 23B); the w*-topology 
of L(E, E*) is called weak*-operator topology. The predual of ,C(E, E*) is the 
linear hull V of all fimctionals Zh,,hl E (L(E, E*))*, hl, h2 E E of the form 
Zh,,h*(L) := L[hl, h2] with the norm in (L(E, E*))*. Then V is a separable 
normed space, therefore we can note the following. 

Remark 1.4. Every w*-compact subset in fZ(E x E) is met&able (see Holmes 
[7], Chapter 12F). 

We have that a sequence {L,} c fI(E x E) converges in the w*-topology to 
some LO E L(E x E) iff L,[hl, h2] -+ Lo[hl, h2] for every hl, h2 E E. 

There are two natural ways to define second-order subdifferentials off E 15”~’ 
(by analogy with the first-order Clarke’s subdifferential (see [4], p. 27 and 141, 
Theorem 2.5.1). 

DEFINITION 1.5. 

&f(x) := {L f ,C(E x E): L[hl, h2] < fO”(x;hl, hz), v(hl, h2) E E x E}. 

DEFINITION 1.6. 

a2f(x) := B*{L E L(E x E): L = GuAIAl~z f”(z)}. 
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An analogue of Definition 1.6 was introduced by L. Thibault in [16] in order 
to extend the notion of Clarke’s subdifferential to locally Lipschitz mappings, 
acting from a separable Banach space to a reflexive space. 

It is easy to see that a2f (x) C @f(~), for every z E G. Indeed, let 

L = Gg;;n& f”(4. 

Since f”(.k)[hl, h2] < P(.k; hl, h2) f or every hi, h2 E E, by Proposition 1.3 
we have 

L[h , h2] = Jim f”(4 [h , h21 

< lim sup foo( 2,; hi, b) < fm(z; h, h). 
n-Km 

we Hence, L E @f(z), and since a,??(~) is obviously convex and w*-closed, 
obtain a2f(x) c azf(~). 

Also, it is easy to see that 

d2f(c hl, b) = sup {L[h, h]; L E a2.f(x)}. ( 1.1) 

In the case when E = IF?, Definition 1.6 was considered and used by 
J. B. H.-Urruty, J. J. Strodiot and V. H. Nguyen [8] (a2f(z) was called there 
a generalized Hessian matrix). They used Rademacher’s theorem (instead of 
Christensen’s); then f is twice Frechet differentiable almost everywhere. There- 
fore f”(z) (when it exists) is a symmetric matrix (see [l], Section 2.2.5) and, 
hence, a2f(x) consists of symmetric matrices. In our infinite-dimensional case, 
we cannot say that a2f(x) consists of symmetric bilinear functionals. 

Note that in Rn, a,“f( ) z is in fact the plenary hull of a2f(x) in the terminology 
of [9]. so fY,‘f( z ) can be essentially bigger than a*f(~c), but they coincide when 
a*f(~) is a singleton (see Corollary 1.11). 

PROPOSITION 1.7. Fur every 5 E E, the sets EJ*f(x) and azf(z) are nonempty 
convex and w*-compact. The multivalued mappings a2 f and 8: f are locally 
norm bounded in .C(E x E). 

Proof. Let z, E G(f) and zn + 2, as n + 00. Since the set 

D := (f”(2,): n > v} 

is norm-bounded in fZ(E x E) for some v by the Lipschitz constant off’ at Z, we 
can apply the Alaoglou-Bourbaki theorem. Thus, the limit of a w*-convergent 
subsequence of D belongs to a2f(x). S ince a2f(x) c $j(~), then @f(x) # 0 
too. The convexity and w*-closedness of a2f and a:? follows directly from 
the definitions. The locally boundedness follows from the fact that f’ is locally 
Lipschitz. 

Again by the Alaouglou-Bourbaki theorem, we obtain that a2f(x) and a:f(s) 
are w*-compact. cl 
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DEFINITION 1.8. The function f: G + R is said to be twice strictly Gateaux 
differentiable at z E G if there exists Dif(z) E C(E x E), such that 

lim f’(y + “I > [h21 - f’(y) [h21 
Y-z 

= @.f(x)[h,h2], vhl,h E E. 
tJ.0 

t 

The following three propositions are analogous of the corresponding ones con- 
cerning the first-order case (see Clarke [4]). 

PROPOSITION 1.9. Iff E Cl!’ is twice strictly Gateazu diflerentiable at z E G, 
then Elzf(x) = {D~f(z)}. 

Proof. By definition, fO”(z; hl, h2) = @f(x)[hl, hz] and then L[hl, h2] < 
Dzf(z)[hl, h2] for all hl, h2 E E and L E $j(z). Hence, 

L[h , h21 = @.f(x)[h, h21 

and therefore L = D~f(z). 0 

PROPOSITION 1.10. Let f E C’?‘(G). Then @f(x) is a singleton ifand only 
if f is twice strictly Gateaux differentiable at x E G. 

The idea of the proof is from [4]. 

Proof. Let #f(x) = {L}. Then L = W*-limG(f)3r+z f”(z) and from Propo- 
sition 1.2 and (l.l), 

fm(x; h,, h2) = 1’ lmsup f”(z)[h,hz] = L[hl,h]. 
G(f)x+m 

We may write 

lim inf (f'(x' + thl> - f’(x’N M 
d-b5 t  

t&o 

= _ lim sup (f’(X’) - f/(X’ + thl))[hz] 

Z’--fl t  

tlo 

= _ lim sup (f’(x’ + thl - thl) - f’(X’ + thl))[h2] 
d-b5 t 
tJ.1, 

= -fm(x; -h,, h2) = -L[-hl, h2] = L[hl, h2] = fO”(x; h,, h2), 

whence f is twice strictly differentiable. 
The other direction follows from the inclusion ef(z) > @f(z) and from 

Proposition 1.9. cl 

By Propositions 1.9 and 1 .lO, we obtain immediately the following. 
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COROLLARY 1.11. For a Cl)’ function f : G + IR, Lff (z) is a singleton 
(z E G) if and only if a2f(z) is a singleton. 

The arguments for proving the following proposition are now classical (similar 
to the first order case) and the proof is omitted. 

PROPOSITION 1.12. The multivalued mappings 3,‘f and a2f: (G, 11 . 11) + 
(C(E x E), w*) are upper semicontinuous. 

Let $I: IW + G be an affine function, 4: G + R be a C’~’ function. It is clear 
that 4 o $ E C’~‘(R). 

It is easy to derive in the same way like in [8], Theorem 2.2, the following. 

PROPOSITION 1.13. For all ~0, U, u E R 

From Propositions 1.2 and 1.13, we have that 

d2(qb 0 $)(zo; u, 4 = d’$+fqzo); 1c1’(~0)% ~‘(~0)~). 

Since d2f(zo;hr, .) is by (1.1) the support function of a2f(zo)[ht], we derive 
that 

a2($ 0 ~,>(~o> = u {qvq~o),~‘(~o)l: L E a24(+bo))}. (l-2) 

The following proposition is stated in [8] without proof. Here we include the 
proof for completeness. 

PROPOSITION 1.14. Let I be un open interval containing [0, l] and let 4 E 
C’,‘(I). Then 

40) - 4(O) - 5w) E ; a2dN 

fir some t E (0,l). 
Proof. Define 

/b(t) = qql) - 4(t) - 4’(t)(1 - t) - (1 - q2X, t E [O, 11, 

where X = $(l) - 4(O) - 4’(O). S o we have h( 1) = h(0) = 0. Obviously, h is 
locally Lipschitz on [O,l]. There exists E E (0,l) such that either 

(1) E is a minimum of h over [O,l], or 
(2) [ is a maximum of h over [O,l]. 
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Let (1) be fulfilled. Then by the necessary condition for a local minimum (see 
Clarke [4]) 

0 E ah([) = -a&([)(1 - [) + 2(1 - [)A. 
Hence, X E k@‘(t). But by Clarke [4], Theorem 25.1, and by definition of a24, 
we have 84°C) = a2$(<). 

Let (2) be fulfilled. Then t is a minimum point of the function -h over [O,l] 
and since d(-h)(t) = -G%(c) (Clarke [4]), we have 0 E 8(-h)(<) = -ah(<), 
so 0 E ah([) and as in case (1) we obtain X E ia’$(c). 0 

Using (1.2) and Proposition 1.14 for 4(z) = f(z) and q(t) = a + t(b - a), 
we immediately obtain the second-order expansion (the same as in [8], Theo- 
rem 2.3). 

PROPOSlTION 1.15. Let f E C”‘(G). Thenfor every a, b E G, with [a, b] c G 
there exists c E (a, b) and L, E a*f (c) such that 

f(b) = f(a) + f’(a)[b - a] + $ L,[b - a, b - a]. 

We shall use essentially this proposition in the sequel. 

2. Necessary and Sufficient Optimality Conditions 

We now consider the following constrained minimization problem: 

P(E) 

i 

f0(4 + min, 
2 E E, 

where F(z) = (91 (z>, . . . , s(x)>* and the functions fo, fi, 1 6 i 6 m, gj, 
1 < j < Ic are C’?‘(E) functions. The Lagrangian function for P(E) is 

Q:; A, CL) = 5 Wi(4 + 5 Pj9j (4, 
i=o j=l 

where 

(X,p):=(Xo )...) A,,/& ,,..., p/JElP+‘XlFP 

are the Lagrange multipliers. 
Denote by locmin P(E) the set of all points of local minimum of P(E) and 

define 

A(z) = 
i 
(A, p) E UP+’ x R”: c A&-c) + i: &f&X) = 0, 

i=o j=l 
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K(x) = {h E E: f,!(x)[h] f 0, 0 6 i 6 T-n, s(i(x)[h] = 0, 1 < j G k). 

Further, we need the following facts. 

PROPOSITION 2.1 (Necessary condition, [l], Section 3.4.2). Let 

x0 E locminP(E) and ImF’(z) = Wk. 

Then R(xo) is a nonempty convex compact set. 

LEMMA 2.2 (Minimax, [l], Section 3.3.4). Let A: E + W” be a linear contin- 
uous sur-ective operatol; AE = R”, zt E E*, 0 < i 6 m, y E I@, a E Wmfl, 

max xr[x] > 0 Vx E Ker A. 
0(&m 

Denote 

S(a,y) = inf max (ai + x5 [xl). 
Az+y=O O(i<m 

Then 

(2-l) 

(2.2) 

(2.3) 

where 

A = (X,/L) E IWm+’ x I& Xi 20, cXi = 1, ~Xixf+A*p=O . 
i=o i=O 

(b) inf in (2.2) and sup in (2.3) are attained. 

Let xc E locmin P(E). Without loss of generality, we may assume in the sequel 
that fi(xc) = 0,O < i < m (see the reduction in [l], Section 3.2.3). 

Consider the problem 

(P’) f(x) := max{fc(x), . . . , fm(x)} + min; F(x) = 0. 

It is easy to see the validity of the following. 

LEMMA 2.3 ([l], Section 3.4.2). x0 E locmin(P’). 

Now we can state the necessary optimality condition for P(E). The proof uses 
ideas of the proof of [5], Theorem 9.1.2 (see also [l], Theorem 3.4.2), where the 
functions are assumed to be of class C2. 
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THEOREM 2.4. Let in P(E) ImF’(za) = i@. If 20 E locminP(E), then for 
every h E K(Q) there exist Li E a2fi(zo), 0 < i 6 m, Mj E a2gj (x0), 
1 < j < k such that 

Proof. By Proposition 2.1, the set R(Q) is nonempty. 
Let us assume the contrary, i.e. there exists h E K(Q) such that for every 

Li E 192fi(Zo)v 0 6 i < m, and every Mj E a”gi(zo), 1 < j < Ic, we have 

(2.4) 

It is clear that llhlj # 0. Let 0 < t, + 0 as n -+ 00. From Proposition 1.15 we 
have 

t2 
sj(xo + tnh) = sj(zo) + tng;(Zo)[hl + $Mj,n[h hl 

= $MJh, h], 

where j’$n E d2gj(zo + ry&,h) and ~j,~ E (0,l). 
Since zo + yj,,tnh + 20, as n -+ 00, and @gj are locally bounded and have 

w*-closed graphs, we can choose w*-convergent subsequences from {1Mj,n}n)i, 
whose w*-limits Mj are in d2gj(za) for 1 < j < k. 

Analoguously, having in mind that fi(zo) = 0 (see the remark before Lem- 
ma 2.3), 

t2 
.fi(zo + tnh) = fi(zo) + tn.$(xo)[h] + qLi,n[h, h] 

= tnf,!(xo)[h] + zb,n[h, h], 

where &, E a2fi(so + q&h), ni,n E (0,l) and choose w*-convergent subse- 
quences from {Li,n}n>l, whose w*-limits Li are in a2fi(zo) for 0 < i 6 m. 

For every E > 0, there exists an integer Ni such that for every n > Ni the 
following inequalities are fulfilled: 

IMj,n [h, h] - Mj [h h] I < 2&y 

Hence, for n > Ni we have 

ILi,n [h, h] - Li [h, h] 1 < 2~. 

Sj(Q + tnh) = $M,[h, h] + 4j,n(E), (2.5) 
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where 

I@j,n(E)I < tic for 1 < j < lc, n > Nt (2.6) 

IT)~,~(E)I < tic for 0 6 i < m, n > Nr. (2.8) 

Denote 

y.j = +qh,h], 1 <j <k, Y = (Yl,-.>Yk), A = F’(zo). 

From [l], Section 3.2.4, Lemma 1, the condition (2.1) of Lemma 2.2 is fulfilled. 
Applying Lemma 2.2, we can find [ = E(h) E E, such that 

F’(zo)[ + y = 0 (2.9) 

and 

(2.10) 

where @l(h) < 0 from (2.4). 
Let 1 be the maximum of the Lipschitz constants for g$ and fl in a neighbor- 

hood Ut of ~0. There exists a neighbourhood U2 c iYr of ~0 and a constant s 
such that g$ and fi are norm-bounded by s there. 

Using the mean-value theorem, (2.5) and (2.9), for large n, we have 

gj (50 + tnh + $5) 

= gj(zo + t,h + tit) - g&o + tnh) + g+o + t,h) 

= t:g@o + tnh + Kj,nt;E)[t] + $fj[h, h] + &,n(~) 

= &+o + tnh + q,nt:t>[tl - tfg;(xo)[t] + &,r&) 

6 @lltnh + %&EIIIIEII + 4j,n(4 
6 eLwll + ~nllEIINIEll + I@&>I =: @,&>7 

where ~j,~ E (0,l). 
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Using (2.6), we obtain 

8jJ&) 6 o(tfJ + $&, vj = 1,. . . ) k, (2.11) 

where o(ti)/ti + 0. 
Now we apply a generalization of the implicit function theorem (see [I], 

Theorem 2.3.1) and obtain that there exist a constant q and a map a: U + I@, 
where U c U2 is a neighbourhood of the point 50, such that 

F(x + @j(x)) = 0, IIWII G awll~ v’z E u. 
Substitute r(tn) = @(TO + t,h + tit). Then, for n sufficiently large, 

xo + t,h + t”,< E U, gj(xo + t,h + tE< + r(tn)) = 0 for 1 < j 6 k, 

and by (2.1 l), we have 

Il%)ll 6 dIF(xo + tnh + &)I/ 

= q 
i 

k 
c &xo + t,h + tit) 
j=I ) 

112 

6 qA(o(t2,) + t;E) * (2.12) 

Again, using the mean-value theorem, (2.7) and the fact that h E K(xo), for 
large n we obtain 

fi (xc0 + tnh + tit + +n>) 

= f&o + tnh + tit + &)) - f&o + tnh) + fi(xo + tnh) 

= f,‘(xo + tnh + qn(t:< + +J)[t;< + r(tn)] + 

+tnf,!(xo>[h] + t$i[h, h] + $+(E) 

G @lltnh + qn(t;( + Qn))ll . lltll + 
t2 

+-+$n)ll + &fi1(xo)[tl + fb[h, h] + $~i,&), 

where ~i,~ E (0,l). Hence, from (2X), (2.10) and (2.12), we obtain 

f(xo + tnh + &t + &)) 

:= oz;; f&o + t,h + t;[ + +,)) 

G o~$$Wnh + Vi,n(t;t + +n))ll . lltll + \\ 
t2 

= t2 71 9 + (thtll + s)qh(y + E) + ‘Z’(h) + E], 
n n 
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where ot(tk)/ti -+ 0. 
Now, since 9(h) < 0, it is clear that if we chose E to be sufficiently small, 

then for sufficiently large n, we have 

f(xo + tnh + t”,t + I) < 0, 

which is in contradiction with Lemma 2.3. 0 

The second-order sufficient condition for the problem P(E) is the following. 

THEOREM 2.5. Let in P(E) fi(xo) = 0,O < i < m, ImF’(zo) = !I+?, A(Q) # 
s and there exists a constant a > 0 such thatfor every Li E a2 fi(xo), 0 < i 6 m, 
Mj E a2gj(xo), 1 < j < k we have 

Then x0 is a strict local minimum (i.e. unique minimum in a neighborhood of 
x0) of the problem P(X) f or every jnite-dimensional subspace X 3 x0 of E. 
If; in addition, the functions fi, 1 < i < m, are convex and the functions gj, 
0 < j 6 k, are afJine, then the problem P(X) has unique solution x0. Also in 
this case the problem P(E) has unique solution x0. 

Proof. We use ideas of [5], Theorem 10.1 .l, where the functions are assumed 
to be C2. 

We shall show that for every finite-dimentional subspace X 3 x0 there exists 
S > 0 such that the conditions: h E SB f! X with h # 0 and 

fi(xo+h) GO, O<i<m, F(xo + h) = 0, (2.13) 

where B is the unit ball in E, are inconsistent. From this, we will obtain imme- 
diately the desired conclusion. 

Let us assume the contrary: there exists a finite-dimentional subspace X 3 x0, 
such that for every 6 > 0 there exists a nonzero hh E bB II X such that the 
conditions (2.13) are fulfilled. 

Denote H = Ua>o hb. 
Let h E H. From Proposition 1.15 we have 

fi(xo + h) = f;(xo)[hl + ; Li(xo + rlih)[h, h], 

where 

vi E (O,l>, &(x0 + qih) E a2fi(xo + qih), 0 < i < m; 

sj(xo + h) = g:(xo)[h] + ; Mj(xo + yjh)[h, h], 

where 

(2.14) 

(2.15) 
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Since A(Q) # 0, it follows from the proof of Theorem in [l], Section 3.4.2, 
that it is a compact and, therefore, there exists a constant cl, such that for every 
(A, p) E A(xo) we have Ct=:=, ( pi I6 CI, where p = (PI,. - . , Polk). 

Substitute 

“; = f;(xo), 
ai=~Li(Xo+7)ih)[h,h], O<i<UZ, A = F’(zo) 

(recall that F(z) = (gt (x), . . . , gk(z))), 

Yj = ~~j(~o+~jwol, 1 cj 6k Y = (YIY.,Yk), 

From (2.14) and (2.15), we obtain that (2.13) is equivalent to 

xpL]+a~=f~(xo+h)<o, O<i<m, Ah+y=O. (2.16) 
Since a*fi and a*gj are locally bounded, we have 

3C* > 0, 361 > 0: X E B(XO,61), Li E a2fi(X), 0 < i < TTJ, 
Mj E a*&), 1 6 j 6 k* IlLill < C2, IlMjll < C2 

(2.17) 

and if we define zf [h] + := max{zt[h],O}, then 

IIAhll = IIY II G : llf412. 

For (X,p) E A(Q) we have 

~~iX~[X]+~~3’lj(XO)[X]=O VXEE. 
i=o j=l 

Hence Czo Xizz [x] = 0, Vx E Ker A, and therefore 

(2.18) 

oz;xm x,‘[x] 2 0, Vx E Ker A, 
,-\ 

which is the condition (2.1) of Lemma 2.2. From (2.16) and Lemma 2.2, we 
obtain 

(2.19) 
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We estimate the distance from h to the cone K(Q) by Hoffman’s lemma ([l], 
Section 3.3.4) and after that by (2.18): 

W, K(~o)) := inf{llh - ~11, Y E K(~o)) 

-&$[hl, + (IAhll 
i=o 

for some constant c, which does not depend on h; cg := c . ~2. 
Hence, h can be represented in the type h = h’ + h”, where 

h’ E Kbo), Ilh”ll < c311h112. (2.20) 

If llhll < 1/2cs, then 

; llhll < (1 - C3llwllhll G llh’ll 6 IIW + c3llhll> G 2llhll~ (2.21) 

Since a2fi and a2gj are w*-upper semicontinuous and locally bounded, and 
since the w*-compact sets in separable dual spaces are sequentially w*-compact 
(from Remark 1.4), we can find (applying Alaoglou-Bourbaki theorem) a sequen- 
ce {hd c Z llhJl + 0 and elements Li E a2fi(zu), Mj E a2gj(zu) such 
that 

L&o + qyhn) w’\ Li, Mj(zo +Tjh,) w’\ Mj. 

Hence there exists v such that for every h E {h,}nav we have 

ILi(zo + qih)[h, h] - Li[h, h]I < $$, 

IMj(zo + rjh)[h, h] - Mj[h, h]l < $$ 

(2.22) 

(here we use the fact that X is finite-dimensional, i.e. the restrictions of Li(zo + 
qi h,) and Mj (CEO + rj hn) to X x X converge in the norm topology, respectively, 
to the restrictions of Li and Mj to X x X, when n + 00). 

Then for every h E {hn}nav, with llhll < min{1/2cs,6t}, having in mind 
that h = h’ + h”, where h’ E K(Q) and h” satisfy (2.20) and (2.21), and using 
(2.19), (2.22), and (2.23) we obtain: 

0 > f(so + h) 
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m m m 

+ C XiLi[h’, h”] + CXiLi[h”, h’] + C XiLi[h”y h”] + 
i=o i=O i=O 

+epjMj[h’,h”] + &X!jMj[h",h'] + ~~jMj[h",h"] 

j=l j=l j=l 1 

+e l Pj I Il~jIIIlh’IIII~“II + it I Pj I II”jIlIIh”l12 
j=l 3=1 i 

> -4fl12 16 + ;llh112 - C2ll~‘llll~“ll(l + Cl> - ~C2ll~~~ll2(1 + Cl) 

c2c3(1 + cl)llh\\ - &2&l + Cl))lh112]. 

The last expression is positive, when h is sufficiently small. This is a contra- 
diction. 

Therefore 20 is a strict local minimum of P(X). When fi, 0 < i 6 m, are 
convex and gj, 1 < j < k, are affine functions, then the Lagrange function is 
convex and the admissible set is convex, therefore the local minimum is global. 
Obviously 20 is a strict global minimum of the problem P(E) too. Cl 

The following sufficient condition is a modification of that one in [l], Sec- 
tion 3.4.3. 

THEOREM 2.6. Let in P(E) fi(xo) = 0, 1 < i 6 m, ImF’(ze) = R”, there 
exists a number a > 0 and Lagrange’s multipliers (A, p) E Rm+’ x R”, such 
that X0 = 1, Xi > 0, 1 < i < VZ, 

m k 

i=l j=l 

and for all L E a2C(xo; A, p) 

L[h, h] > 2allhl12, V’h E C(xo), 

(2.24) 

(2.25) 

where 

C(xo) = {h E E: f;(xo)[h] = 0, 1 < i < m, F’(xo)[h] = 0). 

Then x0 is a focal minimum of the problem P(X) for every$nite-dimensional 
subspace X 3 x0. 
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Proof. We shall follow the proof of Theorem in [l], Section 3.4.3. Instead of 
the usual Taylor expansion, we use Proposition 1.15. 

Assume the contrary, i.e. there exists a finite-dimensional subspace X 3 20, 
such that for every S > 0 there exists h6 E X fl6B (B is the closed unit ball in 
E) such that 

fi(zo + b) < 0, 1 < i 6 m, F(zo + hs) = 0, 

and 

fo(zo + ha) < fobo). 

Denote H := Ub,o hb and let h E H, h # 0. 
Since Cg t Xi fi (za+ h) Q 0, from Proposition 1.15 applied for the Lagrangian 

function ,C, we have 

fo(zo + h) 2 .c(zo; 4 p) + 4 L(zo + qhh)[h, h], 

where L(zo+qhh) E i?L(zo+qhh; X,p), r]h E (0,l). The local boundedness of 
@,C(.; X,/I) allows us to find a sequence {h,} c H, llhnll + 0, such that L, := 
L(ZO + qh,h,) is w*-convergent to some L E $,C(zo; X,/J) (by the w*-upper 
semicontinuity of a2fZ( a; X, p)). S ince X is finite-dimensional, the restrictions of 
L, to X x X converge to the restriction of L to X x X in the norm topology. 

So we have 

fob0 + hn) 2 fo(zo) + ; L[h,, hn] - ;llh112, Vn > u (2.26) 

for some u. 
Further, the proof is the same as the proof of Theorem in [ 11, Section 3.4.3. 

The only difference is that the inequality (7) from [I, p. 1911 is replaced by 
(2.26). In such a way, for n > V, we have fo(zc + hn) > fa(zu), which is a 
contradiction. cl 

The authors are very grateful to the referees for their valuable remarks and 
suggestions, and esspecially for observing the new proof of Proposition 1.2. 
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