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ABSTRACT. It is shown that the complete exceptionality condition for discontinuity waves associated with a second- 
order non-linear hyperbolic equation of the form 

u,,+j(x,,t.u,u,,u,,,u,,)=O, i=l.2,3; jC.4 

leads to a Monge-Ampire-type equation in 3 + 1 dimensions. Application of a novel reciprocal transformation shows 
that an important subclass may be reduced to linear canonical form. Speclahzation to 1 + 1 dimensions yields 
linearization of a Boillat-type equation satisfying the complete exceptlonality criterion. In this last case the 
transformation allowing the linearization coincide with the one introduced by Hoskins and Bretherton in the theory of 
atmospheric frontogenesis and so-called geostrophic transformation. Finally. always in 1 + 1 dimensions, we show that 
the MongeeAmptre equation is also strictly exceptional, i.e. the only possible shocks are characteristic. 

SOMMARIO. Si chmostra the la condizione di completa eccezionalita’ per le onde di discontinuita’ associate con una 
equazione non-lineare lperbolica della forma: 

u,, + f(x,. t, u, u,, u,,. u,J = 0, i = I, 2, 3; j < k 

e’ soddisfatta se l’equazione e’ di tlpo Monge-Amp&e m 3 + 1 dimensioni. Inoltra, esiste una transformazione 
reciproca the riduce una sottoclasse di tali equaziom a forma canonica lineare. La partlcolarizzazione di tale 
transformazione al case di 1 + 1 dimensioni linearizza I’equazione non-lineare de1 second0 ordme, the gode della 
propneta’ di essere completamente eccezlonale, ottenuta da Boillat. Tale trasformazione coincide con quella detta 
geostrofca e mtrodotta da Hoskins e Bretherton nella teoria della frontogenesi atmosferica. Infine, sempre nel case a 
1 + I dimensloni, sl dimostra the I’equazione di MongeeAmptre presenta anche il carattere di stretta eccezionalita’ 
cioe’ 1 soli urtl possibili si propagano con velocita’ caratteristiche. 
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1. THE COMPLETE EXCEPTIONALITY 
CONDITIONS: A MONGE-AMPRRE EQUATION 
IN 3 + 1 DIMENSIONS 

Herein, we consider discontinuity waves X given by 
$(xi, t) = 0 associated with second-order non-linear hyper- 
bolic equations of the form 

u,, + f(xil t, U, t.ti, Uit, Ujk) = 0, i = 1, 2, 3; j < k (1.1) 

As is well known, the Cauchy problem associated with 
(1.1) is defined in terms of the third-order quasi-linear 
equation obtained by taking the derivative with respect to 
one independent variable, say t. 
Application of the standard transposition 

where 

2 = -4,/lvd4~ 4 = 4i/lv41 (1.3) 

produce the characteristic root A = 0, which we discard 
because it is artificially introduced by the time derivative, 
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and the characteristic poiynomial condition: 

P(A) : = A2 - J-f,,,ni + &knink = 0 on C (1.4) 

(Uoi:’ a%/at axi) 

in analogy with the (2+ 1)-dimensional case [l]. The 
relation (1.4) determines the possible speeds of propa- 
gation 1 of the discontinuities in the third-order de- 
rivatives of u, through C, in terms of ni and the derivatives 
of f with respect to the second-order derivatives of u. 

The complete exceptionality condition in the case under 
consideration is 

-IA,,,ni + Au,*njnk = 0 on Z (1.5) 

to be taken together with (1.4). The derivative of P(A) with 
respect to uoj multiplied by nj and the derivatives of P(A) 
with respect to u,, multiplied by n,n, now give, in turn, 

p’&,, nj -  if,,,,ninj + f ” , , ,+ njnink = 0, (1.6) 

pl&.,nrns - fuolursnw% + f,,,+, ninknrns = O. 

(P':= a,q 
(1.7) 

Subtraction of 2 x (1.6) and (1.7) yields, on use of (1.4) and 



258 ANDREA DONATO ET AL. 

the exceptionality condition, 

U4O,fuOkUO, - 2f,~,uJninknj = O3 

U4,k% - f,zkf,*rx&jnknrns = 0. 

If we now set 

(l-8) 

(1.9) 

ugi = si; uii = ri; l423 = pl; I.413 = p2; U12 = p3 (1.10) 

taking into account the constraint j < k in (l.l), then ‘in 
extenso’, (1.8), (1.9) (requiring to be satisfied Vn,,n,, n3) 

provide a system of simultaneous non-linear equations 
which determine f(xi, t, u, ui, sir ri, pi), namely: 

f,,“L,s, - 2.L = 0, 

"cm - .LL,s, = 07 

LL, - 2L,,, = 0, 

L, - LL, = 0, 

L,.L + u,L,s, - .L,r, - Lp3) = 0, S 123 

.L,.L + u*f,,s, - L, - &p,) = 07 

XfP3V - L,L,s,l - fp,L,s, = 0, 

XL - fi,f,,s,l - fp,.L,s, = 07 

.hw3 + 2(f,,r* - f,,.Ls,) - f,,f,,s, - .!A,,, = 09 
together with 

xh2,, + LPI - .f&* - f,,.L,s, - .LL,l 

- fp,.L,s, = 0 Q 123 

augmented by their cyclic interchanges S,,,, S,,,, &z31, 
&312 and the single constraint 

,;, c.LL, - “L*pll = 0. (1.11) 
I 1 

It is observed that xi, t, u, ui are so-called inessential 

variables in the above since they do not occur explicitly. 
In the (2 + 1)-dimensional case, it has been shown in [l] 

that solution of the system S,,, yields 

f = q ,/A, (1.12) 

where 

A1 I= a1(r1r2 --pi) + ct2rl + ~3~2 + c~4P3 + ~15, 

q ~:=-(~2+~1r2)S~-(~3+~1r1)s~+(2C11p3--C14)S1S2 

+(cc6r2+cr7p3+a8)sl +(-a7rl-u6p3+crds2 
(1.13) 

+~lo(rlr2-f2)+~llrl+~12~2+~13~3+~14 

with the cz,, i = 1,. . . , 14, dependent on the variables 
xi, t, U, Ui (i = 1,2). Insertion of (1.12) into (1.1) delivers the 
general (2 + 1)-dimensional Monge-Amp&e equation [ 11: 

~1~~,,~~,1~22--u:2~--~,~22--~2~,1+~~,1~,2~,2l 

+2~a2(uOlu02-u,,u,2)+C13(U12U02-UIJ1U22) 

+~4(~12~01-~02~11)1 

+ a5(uOOul 1 -d,, + E6(“OOu22 - 42) + ~7hl lu22 - 42, 

+cl,u*~+cl,u,,+cr,,u,,+cc,,u,,+cl,,u,, 

+cl13u12+cc14 = 0 (1.14) 

where the E,, i = 1,. . . , 14, have arbitrary dependence on 
X1, t, U, Ui, i = 1,2. 

If we set 

AC2 + ‘) := det uij, i, j = 0, 1, 2 with ~ij = Uji (1.15) 

then it is observed that the Monge-Amp&e equation 
(1.14) admits the more compact representation 

c1,A(2+1)+c(2Atf:1)+tL3Al~,+1)+~4A1~:1) 

E5 A:;;1)+“6 A;;,+“+cC, A;;,“’ 

+ %Uoo + u9uo1+ %0~02 + 21 lull + 42u22 

+c13u13 +oL14 = 0. (1.16) 

In the (3 + l)-dimensional case under consideration, the 
system S123 again delivers the relation (1.12) with A1, q 1 
given by (1.13) but where the Cli now depend on t, xi, u, uir 
i= 1,2,3 together with uo3 =s3, u33=r3, u23=p1, u,,=p,. 

On cyclic interchange, it is seen that the systems S231 and 
S 3 1 2 admit solutions 

f = 02182 (1.17) 

and 

f = 03183 

where 

(1.18) 

02 := -(~2+~Ir3)s~-(~3+~1r2)s~+(2~lPl-~4)s2s3 

+(P6r3 +lj7pl +&b2 +(-P7r2-b6p1 +p9b3 

+Plo(r2r3-P3+Pllr2+P12~3+B13P1+P14~ (1.19) 

and 

in turn. In the above, the pi depend on t, Xi, U, Ui, i = 1,2,3 
together with uol = sl, ull = rI, u13 =p2, u12 =p3 while 
the yi depend on t, xi, u, ui, i = 1,2,3 together with uo2 = s2, 
u 22 = r2, u12 = P3, u23 = Pl* Thus, we have the com- 
patibility conditions 

q ,lAl = q 2lA2 = q 3iA3. (1.21) 

In particular, if it is required that 

q l=n2=i,3 

and 

A1 =A2=A3 

(1.22) 

(1.23) 
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then the relations (1.21) hold and an extensive calculation 
shows that 

f = q ilAi 
where 

(1.24) 

Ai=G,[rlr,r,-r,pt-r,p:-r,p:+2p,p,~,l 

+~2C~~~2-~S1+~3C~Z~3-~tl+~4Cr3rl-~~l 

+ bCr3p3 -p1p21 + h&p1 --P~PJ + bCr,p, -p3p11 

+~8rt+~9r2+~lor3+~tlpl+~12p2+~13p3+~14, 

(1.25) 

q Ii = -ST Az,r, -s; Ai.rz-$ Ai,rs 

-~1~2Aip3- s2s3 Aipl -s3st Aip2 

+ tits1 + I//zsz + $3s3 + 03 (1.26) 

with 

$1 = h(r2r3-pi)+~2(r2p2-p3p1)+~3(r3p3-~I~2) 

+ &qr2 + &Sr3 + &6Pl + &7P2 + %P3 + &9? 

$2 = -E3(r3r1 -d)+E2(rlp1 -p2p3)-El(r3p3-~1~2) (1.27) 
-E8rl+%0r3+~ll~l+E12~2-~4~3+E13~ 

$3 = -~2(r2r1-p~)-EI(r2p2-p3p1)+~3(r1p1-~2~3) 

~~7rl~Ellr2~E10~l~E5~2~~E6+E12~~3+E14~ 

and 

w = ilCrlr2r3 --VIP? - r2pi - r3p: + 2~,~,p31 

+i~Cr,r~-~il +131r2r3-~3 +i4Cr3r1-pil 

+ c5Cr3p3 -PIP21 + i6hp1 -P2P31+ i7cr2p2 -P3Pll 

+isr,+59r2+110r3+illp1+i12~2+113p3+114- 

(1.28) 

In the above, LSj, Ed, cj, j = 1,. . . , 14, have arbitrary de- 
pendence on xi, t, u, uir i = 1,2,3. 

If, in analogy with (1.15), we set 

AC3 + ‘) := det uij, i, j = 0, 1, 2, 3 with uij = uji (1.29) 

where the variables t, x1, 1= 1,2,3, are represented by 
0, 1,2,3 then insertion of (1.24) into (1.1) produces a 
generalized Monge-Ampire-type equation in 3 + 1 dimen- 
sions, namely 

+ C (ij",j + q = 0 

where 

i,j=O,l,..., 3, i<j 

k, 1, m, n = 0, 1, . . . , 3; k < 1, k < m c n. 

It is noted that, in view of the relationship 

A:“,,‘;:, + A$;;:!, + A:‘,,:;;, = 0 

(1.30) 

(1.31) 

there are a total of 42 independent coefficients 2, pij, V+,n, 
tij, v] each with arbitrary dependence on the variables 
t, Xi, U, Ui. 

2. REDUCTION VIA A RECIPROCAL 
TRANSFORMATION 

The application of reciprocal-type transformations to the 
linearization of certain non-linear boundary value prob- 
lems in 1 + 1 dimensions, notably in heat conduction and 
soil mechanics, is well established 13-91. 

An involutory, so-called geostrophic transformation has 
been employed to linearize a two-dimensional Monge- 
Amp&e equation which arises in the theory of atmos- 
pheric frontogenesis [lo]. An important boundary value 
problem was solved by this method. In the present context 
of discontinuity waves, a cognate transformation may be 
used to linearize a (1-t I)-dimensional Monge-Amp&e 
equation of the Boillat type [l 11. 

Thus, in 1 + 1 dimensions, the complete exceptionality 
condition leads to the Monge-Amp&e equation obtained 
by Boillat, namely 

u,,+ O/A=0 (2.1) 

where, in the notation of (1.13), 

A:= a2rl +L,, 
q := -a2st+u8sl +allrl +a14 I 

(2.2) 

with the cli, in general, dependent on the variables 
x, t, u, u,. In the sequel, attention is restricted to the case 
when the ai are constant. 

The transformation 

x*=x-k u 1 x2 t*=f-kou, 

u* = -u++k,u: +kIu,2) R (2.3) 

0 < /qx*, t*; x, t)l < CCJ i 

is now introduced. 
Under R, 

&+ = C(l - kou,,P, + kouA,llJ 
(2.4) 

4, = CktU,t& + (I- k,~,,FWJ 
where 

J = J(x*, t*; x, t) =(l -k,u,,)(l -kou,,)-kok& (2.5) 

Use of (2.3) and (2.4) produces the relations 

u;* = -u,, (2.6) 

us= -I.4 f (2.7) 

whence 

(2.8) 
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so that R2 = I, that is, R is reciprocal. 
Application of the reciprocal relations 

x = x* - k,t&, t = t* - k,u:} 

shows that 

u,, = (J* -Jp*:)/k,J*, 

uxt = J,*:,,.Pk,k, J* 

where 

u,, = (J* - J;;)/koJ* 

(2.9) 

(2.10) 

whence 

x**=x 9 Y **=y, z**=,q t**=t 
u**=u 

J*-J*(x, t; x*t*)=p,p,-k,,k,u$ 

with 

p; = 1 -k,&!&, pT = 1 - klu,*,,,,. 

(2.11) 

(2.12) 

and, accordingly, R2 = I. 
The reciprocal nature of the transformation (2.17) is now 

exploited in an inverse approach. Thus, the reciprocal 
associate under R is sought of the linear (3+ l)-dimen- 
sional equation 

c YijU$ + 6 = 0, Yij E [w. (2.20) 
i,j=O,1,2,3 

i<j 

Here, the u: denote second partial derivatives with respect 
to the appropriate starred variables with, in this context, 
0,1,2,3 corresponding, in turn, to t*, x*,y*, z*. 

Under R, in the notation of Section 1, 

u:*,* = (J - J,,Y@, Jb&,* = (J - J,,)Mk,J), 

Gz* = (J - J,,Mk, J), ut**x* = J,, /Wyk, J), 
u,*,, = J,,/(2k,k,J), z& = J,,/(2k,k,J), 

t$+ = J,,/(2k,k,J), u&* = J,,/(Zk,k, J), 

z&Y*= J,,/(2k,k,J) (2.21) 

where, on expansion 

J = J(x*, y*, z*, t*; x, y, z, t) 

= k,,k, k,k,[sfpf + s:p: + s:p: 

-&%k%P, +s,s,P,P, +s1s2Pd’2)1 

-W,k,kow,p,p, +Wok,w,~,p, 

+kok,k,s,w,p, +k,W,p,pzp,d 

- CVos:w, + k,koshp, + k&o&m 

+ %P:P1P4 + ~,b:p,p, + bk2p:wJ 

+ PlP2P4P4r (2.22) 

and we have adopted the notation 

pl=l-k,u,,, pz=l-k2uyy, p3=1-k3uzz, p4=1-koutt. 

On insertion of the expressions (2.21) into (2.20) we 
obtain the reciprocal associate of (2.20) under R, namely 

u,, + q ,t/& = 0, (2.23) 

where AR, q R are given by 

AR = kAW3~Cr~r2r3 -rid -r2d -r3d + @dml 

+koklk2(y33koklk2 -4Cr1r2 -piI 

+ kok2k3(yl lk,& -4Cr2r3 -P:I 

+kok3kl(y22kok3kl -4Cr3r1 -piI 

-Yddlk2kiCr3p3 -IWJ -w’wbk&XrI~I -P~PJ 

-y13kok3k,k,2Cr2p2-~3~,l 

+kl(~-~22kOklk3-~33koklk2)rl 

-k2(~-~~3kOk2kl-~11kOk2k3)r2 

Now, ‘in extenso’ the Monge-Ampere equation (2.1) with 
A,, Or given by (2.2) becomes 

OL2kxu,, - d, + @+,, + &3%t + El ,u,, + a14 = 0. (2.13) 

On application of R to (2.13) one obtains 

(k,cc,, +k,cr, +~~~+k~k~a~~)(u~*,*u~,,-~~~,) 

-(a,+k ,a,,)U,**,*-Cr,U~*,*-(Cr,, +kIC11&4~,,t+C(14=0. 

(2.14) 

It is noted that the conditions 

4(cc,ff 14 - cc1 l&g) + ai > 0 hyperbolicity 

< 0 ellipticity 

are preserved under R. Moreover, if k,, k, are chosen such 
that 

k,cc,,+k,a,+a,+k,k,al4=0, (2.15) 

then the Monge-Ampere equation (2.13) is reduced by R 
to the linear canonical form 

(2.16) 

If u(x, t) is the solution of (2.16) then the solution of the 
non-linear equation (2.13) is given parametrically via the 
relations (2.3). 

In the case of the (3 + l)-dimensional Monge-Ampere 
equations (1.30) introduced in the previous section, lineari- 
zation is sought by an extension of (2.3), namely by 
transformations of the type 

x*=x-k u 1 X) Y* =y-by, 
1 

z*=z-k u 3 ZT t* = t - kout, 

u* = -u +%k,u: + k,u,2 + k,u; + k,uf), I 
R (2.17) 

0 < IJ(x*, Y*, z*, t*; x, y, z, t)l < Go. 
I 

It is readily shown that 

*- ux*- -ux, y* p-u 
Y’ u,*,= -u,, u,*,= -ut, (2.18) 

(2.19) 
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-k,(&-yy,,k,k,k,-yzzk,k,k,)r, 
+hk1W3Cy,3~,+~13~,+~1,~31 

+Yllk,k,k,+y,,k,k,k,+Y33k,k2kO-E, 

Cc:= y~~k,W3+y&,'& +&ok~k2 

+ yook~kzk, + k,k,b'4)~ 

OR = -s: &.r, -s; &,rz - s: La 

-S1s2 A,+ - s2s3 &.p, - s3St 4t.m 

+ 41% + 42s2 + 43s3 +x2 

41 =k,k,k,k,C-y,,k,k,(r,r,-p~) 
+yo3k,k,(r,~,-~3~1)+~02klk3(r3~3-~1~2) 

+yol(k2r2+k3r3)-yo3k1~2-yo2k1P3-yd 

42 = kok,k2k3C-Y02klk3(r3rl -P?) 

+yo3kk2(rIP1 -p2p3)+~Olk2k3(r3p3-~I~z) 

+yo2hrl +k3r3)-Yo3b1 -y01bP3-yd 

~3=k0klk2k3C-y03klk2(r2r1 -P:) 

+ yolk2k3(r2P2 -p3p1) + ~02klk3(rlpl -P2P3) 

+yo3klrl +yo3k2r,-y,,k3p,-y,,k3p2-y,31, 

x = k~k~k~yooCrlr2r3 - rIPi - r2Ps - r3P3 + 2,1P2P3] 

(2.24) 

(2.25) 

+k,k2k3yooC-klk2(rlr2-p:)-k2k3(r2r3-P?) 

- k,k,(r,r, -p$ + k,r, + k,r, + k,r, - 11 - kT1 AR. 

(2.26) 

It is noted that the linearizable class of non-linear 
equations given by (2.24) and (2.25) lie within the class of 
(3 + 1)-dimensional Monge-Ampere equations as intro- 
duced in Section 1. The reciprocal relations provide a 
parametric representation of their solution in terms of the 
solution of the canonical linear equation (2.20). 

3. STRICTLY EXCEPTIONAL SYSTEMS 

It has been seen that, in 1 + 1 dimensions, the complete 
exceptionality condition leads to the Monge-Ampere 
equation (2.13). The more stringent requirement of strict 
exceptionality wherein the only possible shocks are char- 
acteristic was introduced in [12] and subsequently 
examined in [13]. Here it is noted that the Monge- 
Ampere equation (2.13) with constant cli, which has shown 
to be linearizable via a reciprocal transformation, is also 
strictly exceptional. Thus, in this case, if cc2 # 0 then (2.13) 
can be rewritten as 

(u,,utt - u;,) + au,, + 2bu,, + cu,, + d = 0, a, b, c, d E Ft. 

(3.1) 

The spatial derivative of (3.1) yields 

(a + ~xxbttx + W - ~xthcxt + (c + zOccc, = 0 (3.2) 

with associated characteristic polynomial 

P(A) = (a + u,,)12 + 2(uxt - b)A + c + u,, = 0. (3.3) 

The roots p, v of (3.3) are real and distinct in the hyperbolic 
case, A = b2 - ac + d > 0, and are given by: 

k = b-a+& 
a+u,, ’ 

(3.4) 

v= 
b-u,,-,,& 

a+&., . 
(3.5) 

The complete exceptionality of (3.1) is readily confirmed, 
since 

6&g 
xx 

&J,, + ; du,* = 0. 
Xf 

Now, (3.2) may be written in one of the two equivalent 
forms 

a,p+va,p=o, (3.7) 

&v + p a,v = 0. (3.8) 

These, in turn, mean that ,u = constant along the character- 
istics dx/dt = v and v = constant along the characteristics 
dx/dt =p. Moreover, (3.2) can be written in conservation 
form as 

8,(/L+ v) + &(pv) = 0. (3.9) 

Consider the situation now wherein the second-order 
partial derivatives of u are discontinuous across a shock 
surface I&X, t) moving with shock velocity cr= - +Gt/lCIX. 
If we denote the jump across $(x, t) = 0 by 
[ ] =( )ti=O+ -( )ti=O- then (3.9) provides the Rankine- 
Hugoniot relation 

-a[p+v]+[p] =o, 

that is, in the original variables, 

(3.10) 

Since [o] = 0, we have 

(a + u,,)02 - 2o(b - u,J + c + utf 1 =o 

(3.11) 

(3.12) 

and taking into account the relations 

dKcxl + Cuxtl = 0, 

d&J + C~,,l = 0, 

it is readily shown that 

(3.13) 

(3.14) 

[(a + u,,)02 - 2cr(b - u,J + cu,,] = [P(a)] = 0. 

Hence, (3.11) yields 

(3.15) 

1 
P(a) ~ = [ 1 0 

a+uxx 
(3.16) 

and it follows from (3.13) (3.14) and (3.16) that if D # 0 and 
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[u,,] = 0 then we must have that [u,,] = 0 together with 
[u,,] = 0 and shocks are precluded. If D = 0 then [u,,] =0 
and [u,,] = 0 but, because of (3.12), it follows that [u,,] = 0 
and shocks are again precluded. Thus. for jumps in the 
second derivatives to occur, it is required that [u,,] # 0 
whence (3.16) implies that 

P(0) = 0. (3.17) 

Thus, the only possible shocks are characteristic and, 
consequently, the linearizable Monge-Amp&e equation 
(3.1) is strictly exceptional. 
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