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ABSTRACT. We give an algebraic condition in order that a completely positive dynamical semi- 

group of an N-level system has a unique (invariant) equilibrium state and that every initial state 

approaches this equilibrium state as t ~ oo. We apply our result to a semigroup arising in the weak 

coupling limit. 

1. INTRODUCTION 

The time evolution of a small quantum system of finitely many degrees of freedom coupled to 

infinite quantum systems, called reservoirs, can be described, under certain limiting conditions, 

by a one-parameter semigroup of transformations [1, 2, 3, 4]. Let ~f be the Hilbert space of the 

small system with dim (Jr = N and let A t : B(~)  ~ B(~), t C R § be the dynamical semigroup, 

where B(~)  is the C*-algebra of all bounded operators on ~f. It is assumed that (1) A t is linear, 

(2) A t is trace preserving, (3) the dual map A* is completely positive, (4) AtA s = At+ s, s, t >~ O, 

and (5) lim A t = 1. Then by the Hille-Yosida theorem A t = e L t and it can be shown that 
t -+ 0 

IIA r II = 1. According to [5, 6] the generator L:BQs -+ B(Js of such a completely positive dynam- 

ical semigroup on B(Jf) has the form 

L: o+>L(p)=_i[H,p ] +1 ~ ([V/,pV/*] + [V/p, V f ] )  (1) 
2 i~z 

with H = H* E BOC), V i E B(~),  • V 7 V i E B(JC). 

A question of obvious physical interest is to give a condition for the Vfs such that the semi- 

group {eL tit E R + } has a unique invariant state (= equilibrium state) and such that every initial 

state tends to this equilibrium state as t -+ oo. A semigroup with this property will be called 

relaxing. In this paper we derive a simple algebraic condition for a dynamical semigroup to be 

relaxing. In the microscopic picture the Vj's arise from the interaction with the reservoirs. If there 

is a good coupling between the small system and the reservoirs, then the reservoirs should drive 

the small system into equilibrium (i.e. either thermodynamic equilibrium, if the reservoirs have 

the same temperature, or steady state, if the reservoir temperatures are different). Therefore our 

algebraic condition should imply a condition for the interaction term to give rise to an effective 
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coupling. In Section 3 we will derive such a condition for a semigroup arising in the weak coupling 

limit [1]. 

2. T H E  A L G E B R A I C  C O N D I T I O N  

DEFINITION 1. The dynamical semigroup (A t = e L t It E R + } on B Qf ) with L given by (1) is 

called relaxing, i f  there exists a state 19o C B(~() such that for every state p E B(~() 

l im At (p)  = P0. (2) 
t--~ eo 

Davies [7] has shown that, if no proper subspace of ~f is invariant under all Vi, j E I, then the 

semigroup (A t = eZtl t  E R  § } is relaxing. If lsp {V/I /E  I }  is self-adjoint, then we arrive at the 

following algebraic condition (' denotes the commutant in B(~()): 

T H E 0 R E M 2. Let  L:B(~() ~ B(~f) be given by (1). I f  lsp { V~ I / ~ I } is self-ad/oint and i f  

{ V i I / E  1}"  = B(~C), then the semigroup { A t = e L t It E R + } is relaxing. 

Proof. We want to present here a proof, completely different from the one in [7], which is 

based on the spectral properties of L. 

Let B(~)  be equipped with the scalar product tr(A *B). Since ~,Y'= lsp {V/, 1 I /E  I }  is self- 

{ 1 1} in-el  Expanding adjoint, we can choose a self-adjoint basis F1 ..... Fp, , fN  

V i = ~ V/m Fm + v/1 (3) 
m = l  

we obtain 

L(p) - i [H+ff I ,  p]+ 1 P = Z bmn ([Fm,PFn] + [FmP, Fn]). (4) 
m , n = l  

By construction, the matrix b m n = ~ Vim v1~n is strictly positive. Let a > 0 be smaller than its 

smallest eigenvalue and let L = L~ + L2 be such that 

P 

L a 2 ( p ) = ~  - Z ([Fm, pFm] + [Fmp, Fm]) 
m = l  

(5) 

It follows from [6, Theorem 2.2] that L 1 is the generator of a completely positive dynamical 

semigroup and that, consequently, L ~ is dissipative. We easily compute 

P ot 
- Z t r ( ([Fm,P])*  ) ( [ F m , P ] ) ) ~ O .  (6) tr(p~L2(P)) 2 m=l 

By presupposition {Vi l / ~  I} '  = {CI }, which implies (Frn Im = 1 .... , p }' = {C1 }. Now 

34 



t r (p*L2(p) )  = 0 implies [Fro, p] = 0 for rn = 1 .... , p and therefore p = cl. Let/~,/~1,/~2 denote 

the projection o f  L, L1,  L2 on B(JO 0 (C1 }. 

(L/~1, /~2 are operators on B(~C) 0 {C1 }.) From the foregoing we conclude that the spectrum 

of/~2 lies in the open left hand real axis. The characteristic equation ofL~ shows that/~m has one 

eigenvatue zero less than L1 (counted by their algebraic multiplicity). Therefore lie L~ t [I 1 ~ 1 

where H �9 II 1 denotes the norm restricted to B(Js 0 (C1 }. Since (e ~ t It E R + } is a strictly con- 

tracting semigroup, it follows from the Trotter product formula that II exp (/~1 + s )t II 2 ~< e -  xt 

for all t ~ R + with X > 0. Therefore all eigenvalues of/~ lie in the open left hand complex plane. 

The characteristic equation of  L shows that the spectrum of L is the spectrum of/~ with exactly 

one eigenvalue zero added. This proves the theorem. [] 

Remark .  For semigroups given in the form of [6] we proved in [8] a sufficient condition for 

relaxing unrelated to the present one. 

3. AN APPLICATION 

Davies [ 1 ] considers an N-level system weakly coupled to an infinite free heat reservoir with 

inverse temperature/3. The coupling has the form Q ~ ~,  where Q = Q * E  B(Js and the self- 

adjoint operator q5 is a suitable combination of field operators of  the reservoir. In the weak 

coupling limit he obtains a dynamical semigroup (eX~lt ER+},  where K is o f  the form (1). Let 

H = H *  E B(J  0 be the Hamiltonian of  the uncoupled N-level system with eigenvalues Xk and 

spectral pro jec t ionsPk ,  k = 1 . . . . .  M. Then the V f s  occuring in (1) are in this case the 

h(f~w) Ar 's, where co varies over the spectrum o ([H, �9 ] ) of  the Liouville-von Neumann operator 

[H, "]. We have/~ ( -co)  = e-t~w/~ (co) ,> 0 and A w  = Z P~QPi, where the sum is taken such that 

Xk -- X i = co E ~ ([H, �9 ] ). Applying Theorem 2 to the present situation we obtain 

T U E 0 R E M 3. L e t  K be as in troduced above. I f  h (co) > 0 f o r  all co ~ o ([H, �9 ]) and i f  (H, Q }"  = 

B(~f),  then  the dynamical  semigroup {e l( t lt e R + } is relaxing. The unique  equil ibrium state is the 

canonical ensemble  e -  t~H/tr(e- t~H). 

Proof. Let  U(t)  = e iH t. First, we show that (H, Q }" = B(Js implies {U(t )QU( t)* It E R }"  = 

B(Js (Choosing Q = 1 shows that, in general, one has only a proper inclusion.) 

(i) Let A i E B(~C), ] = 1, ..., m, X i ~ R,  X] 4= X k and let 

m 

eikj  t A j  = 0 
j=l 

for all t E R. Since the l sp ((e i7"~ t . . . .  , eiXm t)It E R } is the whole m-dimensional linear space, we 

conclude that A i = 0 for ] = 1, ..., m. 

(ii) Let the eigenvalues (X] [] = 1 .. . . .  M } of  H be ordered increasingly with increasing] and let 

P / b e  the corresponding spectral projections. Let P E (U( t )QU( t )*  It E R }'. Since Q= Q*, we can 

assume, without loss of  generality, that P = P*. Then [U(t )QU(t)* ,  P] = 0 implies 
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M 
m ~ e i(x' - h])tP1QP/PP1 - ~ e i ( h k  - xa)tP1PPtcQP 1 = 0 (7) 

jr k = l  

for all t E R .  Since Xl - X i ~< 0 and Xk -- Xl ~> 0 with equality only i f ]  = 1 = k, we can conclude 

from (i) 

P1QPiPPI = 0 for f 4= 1, 

(8) 

P1 QP1PP1 = P1PP1 QP1. 

Furthermore,  [U(t)QU(s)QU(s + t)*, P] = 0 implies 

M 
y~ el(X, - ~t])t e-iXiSpiQU(s)Qp]pp I 

]=1 

M (9) 
_ ~ ei(Xk - x~ )t e-iX1 sp ippkQu(s )Qp  I = 0 

k = l  

for all s, t E R.  As above we conclude P1QU(s)QPiPP1 = 0 for ] ~ 1 and P1QU(s)QP1PP1 = 

P1PP1QU(s)QPa for all s E R. Continuing this procedure we obtain 

P~QU(h)Q...QU(tn)QPiPP1 = 0 for ] v ~ 1 (10) 

P1 aU( t l  )Q...QU(tn)QP1PP~ = PIPP,  a u ( &  )a. . .aU(tn)QPx (11) 

for all t l  . . . . .  tn E R ,  n = 1 ,2 ,  ... 

Off) Since {H, Q }" = B(Js an arbitrary A E B ( ~ )  is a suitable linear combinat ion of  products  

o f t h e f o r m f x ( H ) g l ( a ) . . f m ( H ) g m ( Q ) , m  = 1,2 ,  ..., where we admit t h a t f l ( H )  = 1, gm(a )  = 1. 

Then P t A P  i is a suitable linear combinat ion of  products  of  the form Pig1 (Q)fz (11) . . .  

fm ([-1)gm (Q)P]. Suitable linear combinations in (10) produce 

P1 g 1 (Q)f2 (H) . . . fm (I-I)gm (Q)P/PPI = 0. (12) 

For  m = 1 and gl  (Q) = 1 (12)ho lds  trivially. Therefore PIAPiPP1 = 0, ] ~ 1, for all A @ B ( ~ )  

which implies 

P/PP~ = 0 = P~PP/ (13) 

f o r / 4 :  1. In the case ] = 1 suitable linear combinations in (11) produce 

P ~ g ,  ( Q ~ ( 1 4 3  . . . f~ (e)gm (Q)elPP, 
(14) 

= P~PP~gl (Q)A (/4) ... fm (/4)gin (Q)e l  �9 
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For m = 1 and gl  (Q) = 1 (14) holds trivially. Therefore PIAP1PP1 = P1PPxAP1 for all A E B(Js 

which implies 

PxPP1 = a tP1 ,  aj @ R.  (15) 

(iv) [U(t)QU(t)*, PI = 0 implies 

M M 
~, e i(x2 - xi)tp2QPiPP 2 - ~ e i(xk - x~)tP2pPgQP 2 = 0 (16) 

i=l k : l  

for all t E R. X2 - ?tj = )t k - 9% only if either ] = 2 = k or either j = 1 or k = 1. However, in the 

second case, by (13), PIPP2 = 0 = P2PP1. Therefore we conclude from (i) 

P2QPjPP2 = 0 for j 4 : 2  

P2 QP2 QP2 = P2PP2 QP2. 

(17) 

Going through the same steps as in (ii) and (iii) we obtain P2APiPP2 --- 0 , j  4= 2, and P2AP2PP2 = 

P2PP2AP2 for all A E B ( ~ )  which implies 

P/PP2 = 0 = P2PP/ for j v e 2 

P2PP2 = a2P2 , a2 E R .  

(18) 

By the same method we study successively P/PP3, ..., PjPPM, J = 1, ..., M and we obtain PjPPk = 0 

for j - - / : kandP/PPi=ajP j ,  a i E R ,  ], k = 1 ... . .  M. From [Q,P] = 0 a n d  { H , Q } " = B ( J f ) w e c o n -  

clude that  aj = a fo r ]  = 1, ..., M and that  therefore P = a l .  

(v) We have U(t)QU(t)* = Z eh~ Therefore {ALo Ico ~ o ([H, -]) }" = B0C) and, by 
to 

Theorem 2, {e K t tt E R § } is relaxing. According to [1, Theorem 4.5] the canonical ensemble 

e -~H/ t r (e  -~/4) is always an invariant state for {eKt l t  E R+}. (Going through the proof,  it is 

easy to see that  this assertion is independent of  the degeneracy of  H.) Since the semigruop 

{e K t It ~ R § } has only one invariant state, this invariant state has to be the canonical ensemble. �9 

In [1] one finds another sufficient condition for relaxation: ~(co) > 0, Hhas  a multiplicity free 

spectrum and (rlQIs) 4 = O, where the Ir)'s are the eigenvectors of  H. Obviously, this condition is 

stronger than the one given in Theorem 3. 

Theorem 3 gives a physically appealing criterion for an effective coupling between the N-level 

system and the reservoir: ~(co) > 0 for all co E a ([H, -] ) means that the reservoir has to be 

coupled at all to the relevant frequencies. {H, Q }" = B ( ~ )  tells us that, besides the unit operator, 

there is no other operator in B(Jr which commutes with both the Hamiltonian H and the 'inter- 

action operator '  Q, i.e. H and Q are so incompatible that they generate algebraically the whole 

algebra of  observables B(~f). 
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In the case that there are several reservoirs with the same type of coupling, the generator K 
q 

of the dynamical semigroup has the form K = ~ K], where the K f s  are built from the operators 
j= l  

Qi = Q7 E B(JC) in the same way as K was built from Q. The sufficient condition in Theorem 3 is 

then replaced by/~j (co) > 0 for all co ~ o ( [/t, �9 ] ), j = 1 ..... q, and {H, Qjlj= 1 ..... q }" = B(J O. 

The unique equilibrium state is the canonical ensemble only if all the reservoirs have the same 

temperature. 
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