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ABSTRACT. Very general weak forms may be developed for dynamic systems, the most general being analogous to a 
Hu-Washizu three-field formulation, thus paralleling well-established weak methods of solid mechanics. In this work 
two different formulations are developed: a pure displacement formulation and a two-field mixed formulation. With 
the objective of developing a thorough understanding of the peculiar features of finite elements in time, the relevant 
methodologies associated with this approach for dynamics are extensively discussed. After having laid the theoretical 
bases, the finite element approximation and the linearization of the resulting forms are developed, together with a 
method for the treatment of holonomic and nonholonomic constraints, thus widening the horizons of applicability 
over the vast world of multibody system dynamics. With the purpose of enlightening on the peculiar numerical 
behavior of the different approaches, simple but meaningful examples are illustrated. To this aim, significant parallels 
with elastostatics are emphasized. 

SOMMARIO. Due differenti formulazioni agli elementi finiti nel tempo sono presentate in quest0 lavoro quali casi 
particolari di una formulazione generale a tre campi: la prima e una formulazione agli spostamenti, mentre la seconda 
e una formulazione mista dove i campi indipendenti sono costituiti da spostamenti e momenti cinetici. Dopo aver 
sviluppato la linearizzazione e I’approssimazione agli elementi finiti delle forme, viene discussa una tecnica per il 
trattamento di vincoli di olonomia ed anolonomia. Le principali caratteristiche numeriche dei due metodi vengono 
infine evidenziate facendo anche ricorso ad esempli semplici ma significativi. 
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INTRODUCTION 

At the beginning of the 1970s a renewed interest in finite 
elements in time as numerical applications of Hamilton’s 
principle gave origin to several interesting works, pio- 
neered by Fried [l] and independently by Argyris and 
Scharpf [2], and continued by Bailey [3]. The resort to 
Hamilton’s Principle as the starting point for the develop- 
ment of methods for numerical solution of dynamic 
problems is well motivated, since it seems natural to think 
that everything that works from a theoretical point of view 
should also work numerically. However, the different 
implications associated with this approach have led to 
vigorous discussions, lasting several years [4-l 11. 

One of the most crucial problems arises as a con- 
sequence of the different treatments reserved to the bound- 
ary terms. There has been much discussion in the literature 
concerning this fundamental topic. Nevertheless, it has 
been shown in [12] that the boundary terms must neither 
be dropped nor approximated, since they must be retained 
to allow a correct and fully consistent numerical solution. 
More recently, Peters and Izadpanah [13] offered a lucid 
analysis of the different treatments of the boundary terms, 
giving a proof of convergence, independently developed by 
Quarteroni [14], and showing how this proof cannot be 
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established when the boundary momenta are approxi- 
mated in terms of the time derivatives of their associated 
generalized coordinates, a common procedure often adop- 
ted in the literature [l-6, 9-10, 15-191. 

Nowadays, the work of a number of authors has proved 
the time finite element method a mature and well- 
understood approach for dynamics, so that up to date a 
really broad class of dynamic problems has been success- 
fully solved; they include rigid body dynamics [3], [20- 
241, wave propagation [6,25] and optimal control [26], 
the treatment of complex phenomena such as nonlinear 
instabilities of airfoils [12], stability and trim analysis of 
helicopter rotors, together with the study of the behavior 
of periodic systems and the perturbation analysis about 
periodic solutions [27-321. 

Finite elements in time for dynamics offer some sound 
advantages which make them competitive with the class- 
ical differential approach: 

From a theoretical point of view, thanks to the signifi- 
cant analogies which may be drawn with finite elements 
in space, the general understanding of the numerical 
behavior and implications associated with the different 
formulations and with the choice of the shape functions 
is deeper. 
Most of the numerical methods and methodologies 
developed for finite elements in space can be easily 
shared and are readily applicable to this method for 
dynamics, thus achieving a substantial unification. 
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The invariant represented by the energy of the system is discussed. If it is examined through its equivalent differen- 
preserved by particular finite element formulations. tial formulation, this method may be understood as a 
Even if this does not guarantee that other significant modification of the Lagrangian multipliers technique, 
invariants possibly present in the system are actually while it appears as a consistent weak formulation in its 
preserved, it is a remarkable property worth of integral version which is intimately connected with the 
attention. weak forms for dynamics addressed here. 
The class of problems which may be solved with a single 
general-purpose program is broader. This possibly 
represents the most crucial practical advantage. The 
additional effort required by the development of the 
tangent matrix of the dynamic system, upon which the 
time finite element method relies for the solution 
process, is greatly rewarded. Besides the classical initial 
value problems, linearized stability analyses are 
straightforwardly accomplished, since the transition 
matrix is readily available. This is definitely interesting, 
as linearized stability analyses are important in assess- 
ing the characteristics of a dynamic system. Moreover, 
unlike conventional differential approaches, periodic 
problems can be tackled in a natural way. The solution 
is attained assembling a suitable number of elements 
and imposing the appropriate periodic constraint re- 
lations, thus implying virtually no practical difference 
with the solution process required by the initial value 
problems. These unique characteristics justify the inter- 
est which this method has raised in the field of rotor 
dynamics. 

GENERAL WEAK FORMS FOR DYNAMICS 

For the sake of simplicity, let us consider a material system 
formed by n particles. With minor alterations it is possible 
to treat continuous systems or the special case of rigid 
bodies [23,24]. Very well known fundamental dynamic 
equations for the system under consideration are here 
reported, with the purpose of casting them in a weak form. 
To this aim, let x be the vector of all the positions of the 
particles in the system and let a tilde (“) denote a quantity 
referred to coordinates defined by x. Then, the following 
relations are known to hold: 

1. Momentum balance condition: 

where rlz is the generalized mass, f the velocity and ? the 
force acting upon the particle system. 
2. Velocity definition: 

From this preliminary discussion, the soundness of the 
time finite element approach is definitively assessed. In this 
work we face the problem of attempting a thorough 
analysis of this method when applied to general dynamic 
problems and of all the relevant associated methodologies. 
The discussion is presented in the context of a very general 
weak formulation which significantly parallels the weak 
formulations which are familiar to elastostatics; in fact the 
same numerical weaknesses, namely the locking problem, 
are often found to negatively affect even the forms for 
dynamics in certain instances, so that a bridge between the 
space and the time finite elements is made. 

Specifically, two major forms are treated: a primal pure 
displacement form and a mixed one, closely analogous to a 
two-field Hellinger-Reissner form. Both the primal and 
the mixed forms are shown to arise naturally as special 
cases of a three-field formulation of the problem of motion: 
the development of the former is accomplished by enforc- 
ing the compatibility conditions and displacement bound- 
ary conditions a priori, while the latter may be obtained 
when the constitutive relations are satisfied a priori. A 
similar presentation has been carried out in [23], but is 
reported here again since it seems particularly attractive 
from a theoretical point of view. 

Since the ability to treat constraints both of the 
holonomic and of the nonholonomic type is a prerequisite 
for the solution of a broad class of problems, a weak 
formulation of the constraint equations is extensively 

d f=-.X 
dt 

(2) 

3. Constitutive relation: 

jj = fiv 

where fi denotes the momentum. 
4. Displacement boundary conditions: 

(3) 

x(ti) = xp 
X(ti+ 1) = xP+ 1 

(4) 

5. Momentum boundary conditions: 

I = aP 
Rti+ 1)  = DP+ 1 

(5)  

where ( )” denotes boundary values and (ti, ti+J are 
boundary times. 

We wish here to recall a first analogy which may be 
drawn with elastostatics, noting that the velocity definition 
parallels the strain-displacement relation and the 
constitutive relation parallels the constitutive stress-strain 
relation in elasticity. 

Each of these equations may be expressed in weak form 
introducing a weight or test function and integrating over 
the time interval of interest. If one uses test functions that 
introduce consistent units of work or energy - which is, 
however, by no means mandatory - the following is 
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obtained: 

+@-M)*Si dt 
I 

= ((ii-~b)-6x-(X-xb)~iqi}~:~+~ (6) 

which is the most general weak form, since none of the 
relations (l)-(5) is required to be satisfied a priori. 

The independent fields are the position x, the velocity I 
and the momentum b. Integrating by parts the term d@)/dt 
to accomplish a simplification of the right-hand side term 
fdx1::+1, a three-field formulation equivalent to the Hu- 
Washizu [33] formulation for elastostatics is obtained, so 
that in the following we will refer to this form as a ‘Hu- 
Washizu Form’. 

Primal Form 

A displacement formulation may be devised by resorting 
to the principle of virtual work, thus requiring a displace- 
ment field compatible with the deformations. This implies 
that the equation 

d i--x=0 
dt 

is identically satisfied, and that the displacement boundary 
conditions are identically satisfied as well, so that the 
second boundary term in (6) is dropped, leading to the 
following displacement form 

(8) 

where (7) is understood, x being the only independent 
field. If the position vector x is stated as a function of a 
suitable number of generalized coordinates q and of time t, 
Equation (8) becomes 

s 
“+I {89(tj, q, t) + Q(tj, q, t)dq} dt = pbdq&+l 

1, 
(9) 

where the Lagrangian function is denoted by JZ’ and 
Q = f. ax/dq are in general nonconservative generalized 
forces. 

Equation (8) is well known as ‘Hamilton’s law of varying 
action’, which becomes Hamilton’s principle if the test 
functions are chosen so as to vanish at the boundaries 
[34]. In the following we will refer to this form with the 
name of ‘primal form’, since it deals only with one 
independent and thus primal field. 

It will be shown in the last section that the analogies 
between these weak forms and the well-known weak forms 
of elastostatics, are not restricted to a slight resemblance. 
Particularly, the locking phenomenon which may be 
observed in solid mechanics in pure displacement formula- 

tions, has a corresponding analog even in pure displace- 
ment formulations for dynamics, namely the primal form. 

This remark sets forth the need to develop an alternative 
weak form where the independent fields are represented by 
generalized coordinates and momenta, thus establishing 
what will be referred to as a ‘mixed form’. This second 
approach seems to be much more alluring even from the 
point of view of Hamiltonian mechanics: the phase space 
of a system is represented giving the same dignity and the 
same order of approximation to its two components, the 
generalized coordinates q and momenta p. A single field 
formulation has not this kind of parallelism in the treat- 
ment of q and p since the momenta are introduced by 
means of the time derivatives of the generalized coor- 
dinates, thus negatively affecting its numerical behavior. 

Mixed Form 

A Legendre transformation can be applied to the Lagran- 
gian function 3, transforming the velocities into momenta 
and the Lagrangian function into the Hamiltonian func- 
tion, thus leading to the sought-for mixed form. 

Let us turn back to the previous three-field Hu-Washizu 
formulation; then, it is possible to enforce a priori the 
constitutive relation, thus implying that the term @-rltV is 
null. Now V can be understood as a function of fi, i.e. 
t = 5$). Again we like to parallel this approach to the 
Hellinger-Reissner formulation in solid mechanics. Let us 
introduce the Hamiltonian function, defined as 

We note explicitly that the Lagrangian function 2 is now 
to be understood as a function of fi and x, and not of 8, x as 
for the single field formulation. Integrating by parts the 
terms dxfdt and dbfdt and transforming to generalized 
coordinates, the following mixed form, symmetric in the 
test functions (6p, 6q), is obtained 

p~-$c?q--q~;~p -cW(p, q)+Q.bq dt 

= (pb4q-qb.6p)$+L (10) 

The independent fields are in this case p and q. This is the 
weakest possible form, as all boundary conditions are of 
the natural type and the trial functions (p, q) have the same 
continuity requirements. Even the test functions have the 
same continuity requirements, but an order greater than 
the trial functions, since p and q should be piecewise 
continuous and 6p and 6q should be piecewise 
differentiable. 

LINEARIZATION 

The linearization of the forms previously presented is 
necessary in order to resort to a Newton-Raphson like 
numerical solution. 
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A general linearized primal form is written as 

where T, and R, are, respectively, the tangent matrix and 
the residual vector. At the given state (4, q&, denoted by 
the subscript ( ),, the tangent matrix for the primal form is 
given by 

T, = (12) 

B 

and the residual vector by 

(13) 

Analogously, a general linearized mixed form may be 
expressed as 

= @p-q* - 6q.p*)Q+l + 

+ (6~2 aq).R, dt (14) 

where, at the given state (p, q)s, the tangent matrix is 

and the residual vector is 

R,= -!?,-E+Q 

ap ap 
(16) 

FINITE ELEMENT APPROXIMATION 

In order to develop a finite element approximation, let us By making use of the equations previously developed, 
subdivide the time interval (tinitial, tfina,) in a certain periodic boundary value problems may be solved with no 
number of time nodal points. The time interval additional effort. The solution is obtained enforcing the 
(tinitia,, tfinal) is so covered with an appropriate number of periodicity constraints qinitial = qfinal and Pinitial= Pfina,, as- 
consecutive nonoverlapping time elements, each one made suming a period T = tfina,- tinitia, and assembling a 
of two or more time nodes. The generic time element is suitable number of elements. The number of elements 
defined by the time instants (ti, ti+l). which are necessary to obtain an accurate solution of the 

This procedure gives rise to two different possibilities: or 
an implicit step-by-step self-starting integration formula is 
obtained, or an assembly process may be developed to 
obtain a solution over a time of interest, giving rise to a 
triangular system which resembles the step-by-step 
procedure. 

Primal Form 

Let us consider an n node time element. Let 

ii = (SIP q2,. . . > Q”) 

be vectors of trial and test function nodal values re- 
spectively. The parametric approximations are 

Trial functions 

Test functions 

where N are piecewise Lagrangian shape functions, with 
the property that 

N,(h) = 6s 

where 6,, is the Kronecker symbol. 
Performing the integrations in Equation (1 l), resorting 

to Newton’s method, and considering Sij as free variations, 
which is definitely the case for an initial value problem, a 
time-marching procedure is obtained at the jth step 

Kp, f A$ = Bp * (PP, PP+ 1) - F,, (17) 

where Aijj are increments to the generalized coordinates at 
the time nodal points, and t %, = J t,‘+l {(A, N)T.T,*(h, N)} dt 

is the integrated tangent matrix, while 

J “+’ FpJ = ((fi, WT. RP) dt 1, 
(18) 

(19) 

is the integrated residual vector. The matrix B, is given by 

B, 

-1 0 . . . 0 T 

= 0 0 ... I 1 * (20) 

Since B, has the form given by (20), it is always possible to 
eliminate the variables pertinent to the interior nodes in 
elements with more than two nodes. 
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problem of motion may be however different from the 
number of elements suitable for obtaining an accurate 
stability analysis. 

As explicitly noted in [35], the power of this time finite 
element formulation stems from the fact that the shape 
functions have to ensure continuity of the generalized 
displacements q only, and not of their derivatives, even if 
higher order approximations can be profitably used. The 
key to this property is given by the boundary terms: if no 
forcing function is present, the velocity is continuous over 
a node instant, while if a forcing function is present it is 
weighted by the shape functions in (19) exactly as in 
elastostatics, and it is transformed in weighted impulses at 
the nodes, thus providing a correct variation of 
momentum. 

Mixed Form 

For a mixed formulation, different orders of approxima- 
tion are requested for the trial functions (p, q) and the test 
functions (6p, 6q), since only the derivatives of the test 
functions with respect to time appear. Moreover it should 
be pointed out that the values of (p,q) evaluated at the 
boundaries of a time element are not requested to be equal 
to (pb,qb). The only restriction we are making is that 
(p”, qb)i depend solely on the boundary node i, and not on 
the subintervals that share the node i as a vertex. In other 
words, we are assuming that 

(Pb, sbK = (P”, s”r (21) 

for all i. Let 

4=(41,42,...,a-1) 

P=(P1,Pz,.~*,Pn-l) 

be vectors of element internal variables, while 

4 = (41, a,, . . . , h,) 

6P = VP,, ap,, . . *, JP,) 

are vectors of nodal variables. The parametric approxima- 
tions for (p, q) and (Jp, 6q) are thus 

Trial functions 
q=M.q 
p=M.p 

Test functions 

where M and N are suitable shape functions. 
The following iterative procedure is obtained 

(22) 

where once again the integrated tangent matrix is given by 

K,j = 
s 

‘I+’ {kT$,,.M + NT.T;M}dt 
f, 

while the integrated residual vector is given by Fm, = s ‘I+’ (fiT4,,,.M.(P, q) +NT.R,} dt 
t. 

where 

I= O -I 
m [ 1 I 0 

and the matrix B, is given by 

B, = 
-1, 0 ... 0 7. 1 0 0 ... I, * 

(24) 

(25) 

Even for this form, since B, has the expression given by 
(26) it is always possible to eliminate the internal variables. 

STABILITY ANALYSIS 

One of the key features of the finite elements in time for 
dynamics is represented by the ability to perform lineari- 
zed stability analyses with no significant effort. This may 
be extremely useful in assessing the characteristics of a 
mechanical system. 

The stability analysis is performed by making use of the 
transition matrix A which maps the initial perturbed state 
vector (dp,, dq,) at time ti into the perturbed state vector 
(dPi+l,dqi+1) at time ti+l by means of the following 
equation 

(dPi+ 1, hi + I) = A * (dPi, W- (27) 

The stability limits are reached when the spectral radius of 
the transition matrix A attains unitary modulus. 

We recall here the expression of the time-marching 
procedure which states Newton’s method for a primal 
approach: 

Kp, . AQj = Bp * (P!, PF+ 11 -Fp,. 

Let us split the vector of unknowns Aij as 

As = 

where the subscript ( )j has been dropped for simplicity of 
notation, and the superscripts ( )b and ( )” refer to bound- 
ary and middle nodes, respectively. It we apply the same 
partitioning to the matrices K,, B, and to the vector F,, we 
thus get 

Kp. Aqb + Kim. Aq” = B; . (p;, p”+ 1) - F; 

Krb. Aijb + K;“’ . Aij”’ = B,” . (p;, p”+ 1) - F;. (28) 

Since B, has the expression given by Equation (20), then 
B; = 0; Equation (28) thus becomes 

ii,. Aqb = Bf,. (pf, pf+ J - &, (29) 
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where WEAK FORM OF THE CONSTRAINTS 

Q 
P 

= Kbb-Kbm.Kmm-l.pb 
P P P P (30) 

and 

Since constraints naturally arise in many fields of mech- 
anics, it is important to develop the ability to treat 
equations of constraint. 

@ 
P 

= Fb-Kbm.Kmm-1.p 
P P P P’ (31) 

Partitioning ii, as 

tp=[5#] 

If one employs a classical differential approach, it is 
straightforward to resort to the Lagrangian multipliers 
technique. So many examples are available in the liter- 
ature, that a review is not applicable here [36]. 

(32) 
On the contrary, although many works have been 

published on finite elements in time, no consistent way of 
introducing constraint relations was known until 1981, 
when a weak form of the constraints has been presented in 
[28]. This topic has been discussed more extensively in 
E371. 

the transition matrix A, which maps the perturbation 
(dpi, hi) into (dPi+ 1, dqi+ 1) is easily obtained as 

(33) 

Let us now turn to a mixed approach, recalling the 
expression of the iterative procedure obtained by resorting 
to Newton’s method 

and assuming a partition of K, given by 

Ki 

K, = K; I=! (34) 
Kf m 

where the superscripts ( )‘, ( )” and ( )/ refer respectively to 
initial, middle and final nodes of the test functions. 
Recalling the expression of B, given by Equation (26), the 
following relations are found: 

K;. (Ap, Aq) = -I,,, . (pf, 2) -FL 

K;. (A@, Aij) = - F: 

K:. (4, A@ = I,,,. (pi’, 1, qf+ 1) - Fit. 

(35) 

The transition matrix may be found eliminating (A&A@ 
from Equations (35). For example, solving the first two 
groups of equations in (35) for (Ap, A@ and substituting 
into the last, gives 

I,,, . (P!, q!) + Fin 

FZ 

= WPP+D sP+d-Ffm. (36) 

For a two-node element, which thus has no middle nodes, 
Equation (36) is significantly simplified to 

-K/,.K;‘&.(pf, q;)+F;) 

=Irn.(~P+o d+,,-Ff,. (37) 

Noticing that I; 1 = - I,,,, the transition matrix is then 
given by 

A,,, = I;K;.K$I,. (38) 

Let us consider the class of constraints expressed by 

J/&i, q, t) = Ah, 0.4 + ah, t) = 0. (39) 

Equations (39) are generic functions of the generalized 
coordinates and of time, but are only linear functions of 
the generalized velocities. This class groups the vast 
majority of the constraints which may be practically met in 
mechanics. Equations \Ir(& q, t) = 0 represent holonomic 
constraints if a function 4 exists such that +(q, t) = 0 and 
t&q, t) = Jr(g, q, t), so that the differential equations 
Jl(Q, q, t) are integrable. Otherwise they represent non- 
holonomic constraints, which thus are given as nonin- 
tegrable relations between the differentials of the variables, 
and not as relations between the variables themselves. 

Equations (39) entail the following equations in the 
virtual displacements 

A. 6q = 0. (40) 

In the context of weak formulations, Equations (39) and 
(40) should be enforced with a suitable choice of test 
functions, which may be chosen as 6~ for the functions JI, 
and as Jo for the functions A * 6q. This approach represents 
a strategy in accordance with that previously employed, 
since it allows an integration by parts which reduces the 
continuity requirements. The weak form of the constraints 
is thus given by 

which, integrated by parts, leads to 

(41) 

which is consistent with the weak forms developed for 
dynamics. Here the only assumption made is that the 
differential operator d and the variational operator 6 can 
commute even for nonholonomic constraints, so that the 
transposition relation d(6q) = 6(dq) holds for each 
coordinate. 



FINITE ELEMENTS IN TIME 125 

Constrained Primal and Mixed Forms 

The three terms of Equation (42) may be directly combined 
with the three terms of the primal form expressed by (9) to 
obtain a constrained primal form, which may be written as 

1 “+I (&P*+Q**#q)dt = p*“+Iql$+1 (43) 

where the following definitions hold 

w 
P* -P+P.dQ 

If Y* is understood as a modified Lagrangian function, p* 
as modified momenta and Q* as modified forces, one can 
interpret the modifying force term originated by the 
constraints as a weighted form of integrability conditions 
of the constraint equations. As a matter of fact, in the case 
of holonomic constraints, it is easy to show that the 
modifying term of the generalized forces is identically zero. 
In fact, if the constraints are holonomic the integrability of 
Equations (39) implies the existence of a function 4 such 
that $(q, t) = $(Q, q, t), so that 

d a* a*-, 
dt afi aq 

which proves that the modifying terms are zero. 
As the true momenta p are related to the Lagrangian 

function 9 by the relation 

a.9 
P=7& 

the same relation is easily recognized between the modified 
momenta p* and the modified Lagrangian function P’* 

a2* 
P* =T 

which is due to the boundary terms in (42). 
Analogously, it is straightforward to develop a con- 

strained mixed form, by introducing the concept of a 
modified Hamiltonian function defined by 

x* = p*.(j-z*. 

If the modified momenta p*, the generalized coordinates q 
and the multipliers II are understood to be independent 
fields, the constrained mixed form is written I,+ 1 s { d p*.zSq-q$p* -63E”* +Q*.6q dt 

t, 1 
= (p*b.dq-qb.6p*)I::+L (44) 

Equation (44) is again completely similar to the uncon- 
strained formulation, since the effect of the constraints has 

been assimilated in the definitions of p*, P* and Q*. 
Moreover, while the generalized momenta p must satisfy 
the conditions expressed by Equations (39), the modified 
momenta p* must not. This is definitely interesting from a 
numerical point of view and it has been observed that the 
corresponding differential equivalent of these weak forms, 
which is expressed by 

(45) 
A.q+a=O 

has a better numerical behavior in certain instances 
compared to a classical Lagrangian multipliers approach. 
It can be recognized that the Lagrangian multipliers II here 
employed are nothing but the opposite in sign of the time 
derivatives of those used in the classical literature on the 
subject ([36], [38], [39]). This difference is of great con- 
ceptual significance: as a matter of fact, Equations (45) may 
be understood as a constraint stabilization technique 
which does not suffer from the problems of other well- 
known stabilization techniques, e.g. Baumgarte’s method 
1401, where problem dependent values for some stabiliza- 
tion parameters have to be chosen, and moreover it seems 
physically and mathematically more motivated. 

The primal and mixed constrained forms have been 
successfully used in the context of rigid body dynamics to 
enforce the presence of the unitary quaternion relation 
[21], and in the context of multibody systems to enforce 
different kinds of mechanical joints [22], [23]. 

NUMERICAL STUDIES 

Let us consider as a very simple but really enlightening 
example, a single-degree-of-freedom (SDoF) oscillator. Let 
q be the position of the mass and p its momentum. 

In primal form, the SDoF problem becomes 

s “+I {m@&-(c4+kq)~6q)dt =pb.6ql::+l 
11 

(46) 

which produces the following transition matrix, if a two- 
node time element is adopted: 

A, = 
1 

p2+6p5+6. 

! 

-2p2-6p<+6 .5(~~-12)~~; 

,jt 
m 

-2p2+6p<+6 1 
(47) 

where q is linear in the time interval (ti, ti + J = At. In (47) 
5 = c/c,,, where c,, is the critical damping defined as 
c cr=2Jk m, and for the sake of conciseness the position 
p = oAt has been assumed, where w = Jklm. 

The careful reader will not miss the fact that the 
evolution of (pi+ i, qi+ J as At increases is governed by 



126 MARCO BORRI ET AL. 

terms arising from the potential energy, thus leading to a 
conditionally stable integration scheme. The same 
behavior may be observed even if time elements with more 
than two nodes are adopted: in Figure 1 all the integration 
schemes present a stability boundary, where the spectral 
radius emerges from the unitary limit. Moreover, the 
disturbing presence of instability ‘bubbles’ may be noticed. 
The growth of potential energy is indeed the locking 
phenomenon we were previously referring to. It may be 
observed in all those situations where different energy 
contributions, in this case the potential and kinetic 
energies, are described with polynomial approximations. 
The analogy with elastostatics is even deeper: it is easy to 
prove, at least experimentally [12], that a reduced element 
quadrature is able to eliminate the problem, and this is 
exactly the same method employed in elastostatics as an 
ad hoc procedure to remove this kind of problem. If we 
now turn to the mixed approach, thus adopting constant 
shape functions for the trial functions (p,q) and linear 
shape functions for the test functions (dp, dq), we are able 
to develop an integration scheme characterized by the 
following transition matrix: 

1 --P2-4&+4 -4p’; 
A,,, = 

p2+4pt+4. 

I 
4% -p2+4p5+4 m 

(48) 

Here it is easily recognizable that the same order of 
approximation employed for the generalized coordinates 
and the momenta inhibits the locking phenomenon, since 
the potential energy and the kinetic energy are completely 
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Fig. 1. Spectral radius for the SDoF problem in primal form. Tie 
finite elements with different number of modes are considered. 

unconstrained and thus able to exchange completely with 
each other in one period of oscillation. This means that the 
procedure is unconditionally stable, and this characteristic 
has been obtained without any ad hoc procedure necessary 
in pure displacement formulations. 

Moreover when there is no physical damping, it is 
remarkable that the total energy of the system is preserved 
since it is immediate to prove from (48) that 

(49) 

This is not the case for the primal approach, in which we 
have, by making use of matrix (47), that 

where 

r;4 = 144+48p2+ 16p4 
(12+2#)2 

~ = 144+48p2-8p4+p6 

(12+2#’ 

Only at the limit case As = 0, do a and B attain a unitary 
value, while %? become zero. The same basic behavior may 
be observed if elements with more than two nodes are 
employed. 

Although the energy is thus not preserved by the primal 
formulation, it is however possible to identify a quantity 
which is actually preserved. To this aim, let us note that 
from Equation (46), adopting a two-node time element, 
one gets 

9qi-gdqi+l = -Pi 

-bqi+9qi+l = -Pi+1 

where 

9=;-;At 

and 

,=;+;A,. 

From (51), the following expression is obtained: 

(51) 

lpf+:, &P--2 1 62-92 -- 
2m 

+ 2 P? 
2m 4i+l=jm+ zrn 42 

where 

(52) 

(53) 

From Equations (52) and (53) it may be argued that the 
motion of the system is confined over an ellipse in the 
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phase space when the algorithm is stable. On the contrary, 
when the stability limit is exceeded, the motion degen- 
erates and becomes a hyperbola. 

Adopting a reduced order integration, the coefficients 9 
and d which appear in (51) become 

.=;-;A, 

,=z+;At 

so that 

6*-9* k 
2m 2 

(54) 

and the algorithm is unconditionally stable and preserves 
the energy as the mixed form does. 

It is interesting to investigate the order of convergence 
of the primal and of the mixed form as the number of 
nodes per element is varied. To this aim, we introduce the 
theoretical solution of the SDoF problem subject to the 
initial conditions q(O) = qo, o(O) = Go, which is given by the 
following expressions of the evolution operator E which 
maps the initial state vector (&, q,,) into the state vector 
(d(t), q(t)) at the generic time instant t. 

Underdamped system (0 < 5 < 1) 
Let W = dm and a = 05. Then 

E,(t) = eear sin t.3 

[ 

tan1 fit--ati-’ -o-&-l . 
0-l CrO-‘+tan-‘Gt 1 . (55) 

Critically damped system (5 = 1) 

E,(t) = e-“’ 
l-cot -o*t 

t 1 l+wt * (56) 

Overdamped system (t > 1) 
Let & = w,/m and a = ~5. Then 

E,(t) = cent sinh tit 

. tanhP’ht-cr&-’ 

[ 

-&-&J-l 
h-1 crK’+tanh-‘&t 1 . (57) 

From the analytical expressions of the transition matrices, 
the order of convergence may be obtained expanding in 
Taylor series the same transition matrices and the evolu- 
tion operators. 

Tables 1,2 and 3 present the orders of approximation of 
4 and q, which are denoted by Q, and Q, for the primal 
form, and of p and q, denoted by ICY,,, and ic+,, for the mixed 
form. In the third column the order of convergence K is 
reported. The growth of the order of convergence is 
remarkably of two for each node added to the time 
element. Note how for the primal form, in absence of 
physical damping, at a given number of nodes, IQ, is not 
equal to ICY,. 

TABLE I 
Order of approximation and of convergence for 
the primal form. Undamped case. 

Primal form (5 = 0) 

Number of nodes K’ qP K4P K 

2 2 3 2 
3 5 4 4 
4 6 7 6 

TABLE II 
Order of approximation and of convergence for 
the primal form. Damped case. 

Primal form (5 # 0) 

Number of nodes K’ qr Icq* K 

2 2 2 2 
3 4 4 4 
4 6 6 6 

TABLE III 
Order of approximation and of convergence for 
the mixed form. Damped and undamped cases. 

Mixed form 

Number of nodes MP, ti 
4, 

K 

2 2 2 2 
3 4 4 4 
4 6 6 6 

It is worth pointing out another interesting property of 
the mixed form. Let us consider again the SDoF problem, 
which in first-order form may be written as 

Hti) = s f Y(ti) (58) 

where y(tJ = (fit& q(ti)) and 

(59) 

The algorithmic counterpart of (58) is expressed by means 
of the transition matrix as 

yi = A.Yi-1. (60) 

Let us find out an algorithmic analog of (58) by means of 
(60). One gets 

yi-l = A-‘.y, (61) 

pi = A’yi-1 (62) 

and thus the matrix we are looking for is given by 
S = A. A- ‘. The difference 5 -S may be understood as a 
global measure of accuracy, since it accounts for the 
differences existing between the original system represent- 
ing the SDoF problem and the equivalent discrete system 
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implied by a certain algorithm. Moreover, while the 
eigenvalues of the transition matrix are the algorithmic 
counterparts of the eigenvalues of the evolution matrix, the 
eigenvalues of s are the algorithmic counterparts of the 
eigenvalues of the real system. 

When no physical damping is present, the matrix S 
possesses the symplectic structure 

s= 
0 -k [ 1 l/m 0 . 

Generally speaking, an algorithm modifies the symplectic 
structure of the matrix S, introducing terms gl,, and s;,, 
different from zero. Considering the expression of S given 
by (59) in the presence of damping, it is possible to argue 
that the condition fl,, # 0 implies the introduction by 
means of the algorithm of a certain amount of damping 
that is not really present in the physical system, while the 
condition S,,, # 0 may be explained as a violation of the 
constitutive relation p = m4. 

The symplectic structure is preserved by the algorithms 
originated by the mixed form, while it is not preserved by 
those derived by the primal form. For example, for a two- 
node time element one gets 

sip = 1 
36+12p2+p4 

r -3p2. At -(36+3p2+p4).kl 

3p2. At 
1 

(63) 

and 

r 0 -4.kl 

(64) 

The symmetry of the multiplicative terms that enter into 
the extra-diagonal elements for the mixed form, is im- 
mediately noticed. The same elements are not symmetrical 
for the primal form. These remarks remain valid even in 
the presence of physical damping. This is a further con- 
sequence of the same order of approximation required by 
the mixed form for the generalized coordinates q and the 
generalized momenta p. The same kind of behavior 
addressed here has been noticed when the number of 
nodes of the time element is increased. 

Let us now address a different problem originated 
in the context of rigid body dynamics, namely that of a 
spinning top. The same example has been presented in 
[23], [24], but it is given again here since, in the authors’ 
opinion, it is very effective in proving the capability of the 
mixed form to correctly evaluate the stability limits of a 
physical system. 

We assume that the top is rotating at constant speed 
about a vertical axis and is acted upon by gravity. Let rZ 
denote the actual rotation speed of the top and Q be the 

critical speed, which may be expressed as 

Q=pJ;;igg (65) 
a 

where J, and J, are, respectively, the axial and transverse 
moments of inertia referred to the point of contact, m is the 
mass, d is the distance from the contact point to the center 
of gravity and g is the acceleration due to gravity. 

The tangent matrix for the spinning top problem in 
primal form may be written as 

T, = Jt - $iJ,rZ 
$iJ,R wd 1 (66) 

if we resort to the complex notation cp = ‘pl +icp, for the 
sake of simplicity, with i = 0, and by making use of the 
fact that the rotation about the vertical axis is decoupled 
from the others. 

The integrated tangent matrix thus becomes 

where the following positions are understood 

Jt mgd At 
F=g 3 

(67) 

The eigenvalues of the associated transition matrix A, are 
then 

Al,2 = - 2mgd At2 - 65, 
P 3iQJ, At-6J,+mgd At2 * 

- 3J,fn2 + m2g2d2 At2 + 12J,mgd 

3iRJ,At-6J,+mgdAt2 ’ (68) 

The stability limit, attained when the spectral radius is 
equal to 1, is reached when 

3J,2R2 - m2g2d2 At2 - 12J,mgd = 0. 

This means, in terms of R, that 

*2 4:(1 +V) 

and the boundary stability speed is a function of At, which 
is thus correctly evaluated only as the limiting case of 
At = 0. 

Let us turn to the mixed approach. In complex notation, 
the tangent matrix is 

T, = 

-J;l . J,Q 
l25, 

. J,$ 
-l25, wd 

(69) 



FINITE ELEMENTS IN TIME 129 

thus leading to the following form of the integrated 
tangent matrix: 

K, = 

At iJSZAt 

25, 
l+-&- 

f 
At iJ,Cl 

-‘- 4J, 
mgd At 

2 

At At iJ,Q -- 
25, -‘+ 45, 

iJ,Q At mgd At I-- - 
45, 2 

(70) 

The eigenvalues of the associated transition matrix A,,, 
attain unitary modulus for a value of Q which does not 
depend on At and is exactly Q,, so that the stability limit is 
not a function of the time step as it happens to be with the 
primal form. This behavior is strictly analogous to the 
unconditional stability found for the SDoF problem. 

At this point, for the sake of completeness, it would be 
interesting to give a comparison of the computational cost 
of the finite element in time approach with respect to other 
standard time-marching procedures. This, however, is 
beyond the scope of the present work, since rough a priori 
estimates are difficult to give and possibly unreliable for 
realistic problems. Note in fact that these methods are 
extremely accurate, especially when higher order elements 
are employed. But while in such cases the single elements 
retain a high sparsity level, the bandwidth of the tangent 
matrix is drastically increased. This indicates the need to 
resort to special techniques such as full sparse solvers (not 
skyline) in order to efficiently take advantage of the 
potential numerical superiority of these methods. It is thus 
clear that meaningful comparisons can be done only with 
highly optimized codes capable of dealing with realistic 
examples, such as flexible multibody systems with large 
numbers of degrees of freedom. 

CONCLUDING REMARKS 

A comprehensive review of the basic theory concerned 
with finite elements in time for dynamics has been given. 
The different formulations arising in this context have 
been presented in the frame of a very general weak 
formulation, since in the authors’ opinion this gives a 
consistent picture of the situation and permits a deeper 
understanding of the numerical implications. To this 
purpose, significant analogies with the well-known weak 
forms for elastostatics and their behavior have been 
emphasized. Moreover, it has been shown how to formally 
develop the finite element approximation, the linearization 
of the resulting forms and how initial value problems, 
periodic problems and linearized stability analyses may be 
carried out. 

Since no method for dynamics may be really useful 
without the ability to take into account the presence of 

constraint relations, a methodology which achieves this 
object has been addressed, improving further on the 
capabilities of this approach and extending its horizons 
over the world of multibody systems. It has been shown 
that in this way the constrained problem is consistently 
and elegantly expressed by means of modified forms which 
are not formally different from their unconstrained 
counterparts. 

Eventually, two simple examples have been discussed 
with the purpose of illustrating the basic numerical 
features of the primal and mixed forms. Both the examples 
lead to assess the superior performance of the mixed 
approach over the primal. The remarkable property of the 
mixed form to preserve the total energy of the system in the 
problem of the SDoF system has been emphasized. This 
behavior is a consequence of the same treatment and order 
of approximation adopted for the generalized coordinates 
and their associated momenta which is allowed by the 
resort to a mixed, two-field approach. 
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