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ABSTRACT. A number of new nonlinear evolution equations for the interaction of waves on the
x, ¥ plane are found. It is shown that these equations may be investigated by the inverse scattering
method.

Recently it has been shown [1] that a number of practically important nonlinear evolution
cquations can be represented in the form

3L
P e (1)

if one uses the operator £ of the following matrix structure:

L Ra}, 9y Y,
Wy ax 0
T ' izl @)
| w, O By
where
3
8y =7, 0,=—,
o bx Yy

the operator L has the form

o, T2 oo m -
L=+ % w0, me=0, (3)
m =0
the functions uy, ..., Uiy s V1s ey Oy > Wi ooy Wy depend on the spatial variables v, » and the

time variable #, A is a properly chosen constant, and of, # are differential operators with respect
1o x, y. An explicit form of .« and # will be specified below.
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The relation (1) may be written as follows
Lr=7 &
where

r=3,+d, T=0,+xd o= F,  8,=—.

This means that the operator T transforms any solution ¢ of the equation Lo = 0 into a solution

of the same equation. This fact is of principal importance for the application of the inverse
scattering method to the investigation of nonlinear evolution equations, as has been demon-

strated first in [2]. An important role for understanding the essence of this phenomenon has been
played by papers [3, 4] . Later an essential progress in the development of the inverse scattering
method and its applications to the investigation of various nonlinear systems was made by different
authors. 1 particular, by means of the inverse scattering method, many important results con-
cerning nonlinear systems depending on two or more spatial variables have been obtained

15, 6].

In (he present paper, we incorporate the relation (1) to ebtain four new nonlinear evolution
systems describing interactions of waves on the X, ¥ plane. Interacting waves of such a type
usually appear in hydrodynamics and plasma physics. In fact, the number of nonlinear evolution
equations integrable by the inverse scattering method with the operator £ of the kind (2) can he
considerably enlarged by taking into consideration other possibilities for the operators &/ and 2
entering relation (1). The method used in the present puaper is based on some carlier results of the
author [7—9]. Further applications of the method will be given in a separate paper to be
published elsewhere.

Let us specify now the operators & and # entering relation (1) and derive the explicit form
of the corresponding nonlinear evolution equations for various operators £ of type (3), ie.,
for different values of the number #1,. We shall investigate the cases g = 0 and my = 1.

1. Letus consider first the simplest case, when the operators o and & can be represented in the
following matrix form:

P I
o = :1 0’, Jg:c plomp“‘
|9, I

where ¢ is a constant. Putting & = &/ —.o/ and substituling this into relation (1), we obtain the
following system of equations:
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oL . ar “
—tell L] feh -t i (- wy —1,4,) =0,
at ay =1

by TP o, t0,8,)=0, )]
]-VI.L = ﬂ'(LJHP+ ax : (’ZFJ)J n= l: ey My

where the differentiation with respect to ¢ is denoted by the dot. Further, let P be an arhitrary
differential (with respect to x) operator of the form

fg
P=3"7+ 5 PaL ne 20 (5)
=0

n

Define now the operators py, ... Py, and g,. ..., gy, from the condition that the operators
Py=Pou, +p,de, Gy =wPrde-qu. u=1, . p,

are of zero order, i.e., that they are reduced to the multiplication by functions. Clearly this is
always possible and their choice is unique. Now, it is easy to realize that the operators py, ..., py
and g1, ..., q,, defined in this way can be written as follows:

Pu=—0, 00 ray,  qu=—w 8T g,
where the order of the oporators a,, and g, is not larger than ng, g =1, ..., uy . Consequently, the
order of the operator
Ly
Y=Y P wy = tudy)
=1

does not exceed ny. Thus, if 714 = iy and the operator # defined by equality (5) is chosen in such
a way that the order of the operator § = {P. L] does not exceed g, then for the above definition
of the operators P, py, ..., p, and qi, ..., g, , the equalities (4) correctly determine some nonlinear
evolution equations.

To illustrate this let us consider several examples.

(1) For my = 0 we take
P=1, P = =0y ﬂ#ﬂv:u, qu=-—wuax+w;“ n=1,00 U,

where the differsntiation with respect to x is denoled by the prime. In this case system (4)
is reduced to
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aug au(j s i‘)
— 4 .k = 2 —{n
o TNy T 2 ax e

by + clttgvy +vp) =0, (6)
wy = cligw, twy), w=1, .

When ¢ = A = — the system (6) has 2+ invariant manifolds defined by the conditions
Ug = Ug = U, Wy, Ty, ey=i1,u=1,,,.,m,

where the complex conjugation is denoted by the bar, On these manifolds, system (6) can be

written in the form

U ou el
oo s e, — o, 12,
at oy ui:j “ ax -
(7)
0oy oy
zfa'[v+ W tuv, =0, u=1,.., 0.

(2) Further, for my = | we take
pP= ai + % U,
pu=—ax-vufv;“ qu=—wuax+w;“ U=1, e gy
We have now
(£ L] =fida, + 1
where
fi=2ug —uy.  fo=uy **%u?féu%.
As a consequence, the first equation of system (4) is equivalent to the following pair of cquations
ity + ffxp =0,

. N . UL B
o +cfy +50A a‘y =2¢c MZI a—x(vuwﬂ).

Let us put now
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Wy =3u U =ou tip. ()

As aresull, we obtain the system

4
ut Icp=0,
3

4L oG "y e o a( w,) =0
—c(3u —icho 2 —le ={.
' oy 2 o e

Fliminating p from these equations, we get

©)
4c* D*u 8 My

a?.
a2 — -
3 haxaerBc Zl axz(”“w“)*o'

=

By virtue of (8) two other equations of system (4) have the following form:
oy, T olue, +v,) =0, (10)
Wy =cluw, +wh), u=1,.., 4.
Fore=—iund A= — % systems (9), (10) have 2#' invariant manifolds defined by the equalities
p=tL =1,
Thus, for 1y = 1 the following systemn ariscs

3w 8/ ou au 0w
7——(:~+6u—+——3—)
ar ax \dy ox  ox

(11)

8%

zat” ax2”+uvu=0, p=1. ., y.

Substituting now in these equatians £ by » and y by ¢, we get the following important system:

pu B (E)u dut aau)
s
p® Bx ‘9f ax  axt
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My a2

- ] 2
=8 Eglcp Sl (12)

dv 9%y

lwﬁyﬁay -(-—"iax2 tuo, =0, p=1,.,1.

(3) Let us return to the case i, = 1. We now put
P=1, pu=—ai-vp—3x-v;lmvﬂwulv#,
Gy = —Wydi twydy —wy — Wy, w= 1.

In this case system (4} can be written as

du, duy 49
——teh—=3c —
ar Fe " MZZI P (wawy),

Ky v
%.,_ )\%—3 a(..ik‘_w“)’

e c —
dt oy ”Zl dx  dx
(13)
by +efrguy, Yy oy Tu,) =0,
Gy te(—ugwy + (uywy,) +w,)y=0,
where =1, ..., ;.
When ¢ = A =7 the system (13) has 2%+ invariant manifolds defined by conditions
uy =2u, U =M, owyTeuvy. LT 1.
On these manifolds system (13) is reduced to the following form:
du on e d
_i +—=3 z ulu _T)A'i ,
ar oy 2 ox
(14)
dn, | Ou do, 0%
e —p 2= —E=0, g1, L.
ot ax ¢ ax  ax? # #

2. Let us consider now a more complicated casc arising for 1y << np, i.e., when the order of the
operator L in (3) is less than the order of the operator P defined by (5). In this case it is necessary
to slightly modify the above definition of the operators £, py, ..., gy and qq, ..., 4, .

Omitting the details we give here one example corresponding to the case m, = 0. Let
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= =23 43 303
U=y, P=aytzud, tyuw —30%f

2 ; !

Py =—0% v, — ax-v:u—v;;— vy, (15)

13|t

’ i 3 —
Gu=—wWy0s ¥ wydy — wy — jiow,, #=1 .,

where fis so far an unknown function, and o = Eﬁl_lvau.
s -— r_ ,! H 1 e ~ a1 ati VR
Putting p = T, (e, wy, — o, w,), we obtain that in the case under consideration system (4)

transforms to the following form:

- "2 - , a
%+21( 22 ”)+§£9f1_3£ﬁ_0+d_f=0

ot 4 dx px? 2 0x 2 ay a7

. TR B 3 -

Uy + C(’uu + EWM +1M v, — EUUM +fvu) =0, (16)
) i 3 r 3 [ 3 _ _

wy telwy Touwy tauw, TS ow, Jw) =0, u=1, ... u,

if the function fin (13) obeys the condition

N

. 17
ax 4 dy an

Fore=4, A =iand f = (3i/4)p, system (16), {17) has 2*1 invariant manifolds defined by the
relations

U=, p=p, Wy Sieyvg, €, =T u=1, 0, .
On these manifolds, system (16), (17) is

du du 8°

R as 9
Mo T g6 3T =,
ar dx  ax ox oy ay
du, O dv 3w
43—y, tou—LH+d4—F

ar ot M ox T e

=6iSv, — Jipyy, M=, .,

B o
x oy’

where
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Eliminating p from these equations, we gel

ot ax

2u 3 fou . Bu du
(——— tou —+— )
ar 0x  Ox

O*R EERY
=6—2—+6
dx

dxdy
(18)
. . 3
@.J_E 4 B_u_ ) + 6u M + 4 _E‘a v
at ax M dx ax3

6iSo, 3iv, | Lax, w=1

= 0Ok UI'L I'Z}M - , M=1, .., Uy,
Xy a}"

In conclusion, we note that in the case when v, = =u, =0, systems (12) and (18) give us

the well-known Kadomtsev—Petviashvili equation [10]. The Lax pair for this equation was

{irst obtained in paper [11]. Further, when u, =1 the solutions of system (7) independent of y

satisfy the system obtained earlier in paper [12]. Similar soluticns of system (14) for u; = 1 obey

the system derived independently in papers [8, 13]. Finally, the solutions of system (11) independent

of y obey for u; =1 the system given in [§].
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