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ABSTRACT. A number of  new nonlinear evolution equations for the interaction of waves on the 

x, y plane are found. It is shown that these equations may be investigated by the inverse scattering 

method. 

Recently it has been shown [1] that a number of  practically important nonlinear evolution 

equations can be represented in the form 

- - +  [,~r s = , ~ - s  (1) 
8t 

if one uses the operator s of  the following matrix structure: 

L w x o y  v~ ' "  vu~ , 

1 Ox 0 
2 = [  /~1 ~ l  , 

I 

where 

the operator L has the form 

(2) 

i n  o 

L = a2o + Z "'o > 0, (3) 
m = 0  

the functions Uo . . . . .  lCmo, v1 . . . .  , v , ,  , w l  . . . .  , wul  depend on the spatial variables x, y and the 

time variable t, X is a properly chosen constant, and d ,  ~ are differential operators with respect 

to x, y .  A n  explicit form of ~4 and N will be specified below. 
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The relation (1) may be written as follows 

Z'r= .e 

where 

r=a,+d, /'--a,+), ) =  a,:57. 

This means that the operator T transforms any solution ~ of the equation s = 0 into a solution 

of the same equation. This fact is of principal importance for the application of the inverse 

scattering method to the investigation of nonlinear evolution equations, as has been demon- 

strated first in [2]. An important role for understanding the essence of this phenomenon has been 

played by papers [3, 4]. Later an essential progress in the development of the inverse scattering 

method and its applications to the investigation of various nonlinear systems was made by different 

authors. In particular, by means of the inverse scattering method, many important results con- 

cerning nonlinear systems depending on two or more spatial variables have been obtained 

[5, 61. 
In the present paper, we incorporate the relation (1) to ebtain four new nonlinear evolution 

systems describing interactions of waves on the x, y plane. Interacting waves of such a type 

usually appear in hydrodynamics and plasma physics. In fact, the number of nonlinear evolution 

equations integrable by the inverse scattering method with the operator s of the kind (2) can be 

considerably enlarged by taking into consideration other possibilities for the operators sd and 

entering relation (1). The method used in the present paper is based on some earlier results of the 

author [7-9] .  Further applications of the method will be given in a separate paper to be 

published elsewhere. 

Let us specify now the operators d and ~ entering relation (1) and derive the explicit form 

of the corresponding nonlinear evolution equations for various operators L of type (3), i.e., 

for different values of the number rn0. We shall investigate the cases rn o = 0 and mo= 1. 

1. Let us consider first the simplest case, when the operators sd and ~ can be represented in the 

following matrix form: 

sd = c i l  0 

I qla I 
' 0 I 

where c is a constant. Putting N ~  d - ~  and substituting this into relation (1), we obtain the 

following system of equations: 
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bL aP u~ 
- - + c [ P , L ]  + c X - - - + c  Z ( P , ' w ~ - v , q u ) = 0 '  

i;, + c(P. v, + pu~x) = 0, (4) 

iv,  = c(cv,P + ax " q,) ,  ii = 1, ..., #1, 

where the differentiation with respect to t is denoted by the dot. Further, let P be an arbitrary 

differential (with respect to x) operator of  the form 

tl  0 

P = a~,~, +2 + ~ p ,a~ .  , ,o /> 0. (5) 
n = 0  

Define now the operators Pl ..... Pul and ql .... ' qul from the condition that the operators 

t~u=P'vu+puax ,  Clu=wuP+ax.qu, #=1 , . . . ,~1 ,  

are of zero order, i.e., that they are reduced to the multiplication by functions. Clearly this is 

always possible and their choice is unique. Now, it is easy to realize that the operators p~ ..... Put 

and ql', .... qu~ defined in this way can be written as foltows: 

= a n  o + I  = tz o + 1  P~ -V~Ox + a u, q~ -WuOx + ~ 

where the order of  the operators ~u and ~u is not larger than no, # = 1, ..., g!.. Consequently, the 

order of  the operator 

#1 
v = Z % ' w , - ~ . q , )  

# = t  

does not exceed no. Thus, if mo ~> no and the operator P defined by equality (5) is chosen in such 

a way that the order of  the operator 6 = [P. L] does not exceed too, then for the above definition 

of  the operators P, p~, ..., Pu, and ql ..... qua, the equalities (4) correctly determine some nonlinear 

evolution equations. 

To illustrate this let us consider several examples. 

(1) For m o =  0 we take 

! t 
P=L, p u = - O  x.  v u - v u ,  q u = - W u a x + W u ,  # = 1 , . . . , ~ 1  , 

where the differentiation with respect to x is denoted by the prime. In this case system (4) 

is reduced to 

13t 



Ou o u, 0 

0t 0y u = 1 

tr 
i~, + C(Uo., + ~.) = O. 

wu = c ( u o w  u + w~),  p =  l . . . . .  P l .  

When c = X = - i  the system (6) has 2 ~ invariant manifolds defined by  the conditions 

U o = ~ o = U ,  wu=ieu~ ~, e p = + l , p =  l,...,p~i, 

where the complex conjugation is denoted by  the bar. On these manifolds, system (6) can be 

written in the form 

3u 3u u, 0 
-2  ~ e. ~x Ivui2' 

Ot Oy p= 1 

+ + Uv#  = O, 
~t ~x z 

(2) Further,  for mo = 1 we take 

2 
P =  ~2 x + ~ u l ,  

t 
Pp =--~x "v~--v~,  

We have now 

where 

[P, L] =f~O x +fo 

p= 1, . . . ,p l .  

! 

qu = - w u o x  + wu, p= 1, ...,I~1. 

(6) 

(7) 

' ' 2 t '  1 2 
f ,  = 2 U o - U t ,  fo = U o - 3 U l - ~ u l .  

As a consequence, the first equation of  system (4) is equivalent to the following pair of  equations 

h, +cf; =0, 

2 - ~ul _ u~ 3 

# = 1  

Let us put now 
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_ 3  3 t ul - ~ u ,  Uo = ~ u  + ip. 

As a result, we obtain the system 

4i 
5 + - - c p '  = O, 

3 

*.1 
/5 +/4 c(3u2 +/'/' ')' icX ~ ;  + 2ic Z 8--x(v**W** ) = O. 

**=1 

Eliminating p from these equations, we get 

02U C 2 0 2  (3U2 + 

+ ~- ax 2 Ox 2 ! 

4c2 x 82u + 8  2 *.1 9 2 

- T  3  ,a7 

(8) 

(9) 

By virtue of (8) two other equations of system (4) have the following form: 

rt 
~** + c(uv** + v**) = 0, (10) 

tr 
;v** = c(uw** + w**), ~ = 1 . . . . .  t q .  

I systems (9), (10) have 2**' invariant manifolds defined by the equalities For c = - i a n d  X = -  

u=h-. w**=e**b-**, e**=-+l, l J= l , . . . , /&.  

Thus, for mo= 1 the following system arises 

O2u O (Ou Ou O3u~ 
3 0t 2 Ox ~ + 6u - -  + Ox Ox 3 ] 

( l l )  
--**1 92 

=8 Z % - - I v * *  12 
/1 = 1 ~X2 ' 

02V,u 

/" ~ q- - -  ----0, # l - " ,  #1 8t 8x2 + uv** , . 

Substituting now in these equations t by 3, and y by t, we get the following important system: 

02u O (Ou 8u 83u] 
3 + 6 u - - +  

Oy 2 Ox Ot Ox Ox a / 
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.~ 32 
--=8 Z CN OX 2 [VP[2' 

~=1 

i 3vl~ 32v' 
+ ~ + u v ,  =0,  p =1,  p~. 

3y 3x 2 .... 

(3) Let us return to the case mo = 1. We now put  

! t! 
P = L ,  p . = - 3 Z x  �9 v . - 3  x . v  u - v u - u l v u ,  

q.  - w . 3  2 + ~Vla3 X - -  W .  - -  U 1 W t ~  , 11 = 1 ,  . . . ,  [ .1i.  

In this case system (4) can be writ ten as 

.1 3 
3u1+ cX 3u~ = 3e ~ ~ x ( V , W , ) ,  
3t 01' . = 1  

3Uo +cxOU~ ", 3 ( 2  
3t Z  ,3x w.), . = 1  J 

! rr 
z?. + C(Uo% + u l v .  + v . )  = O, 

tit 
( [d .  a c C ( - - b l o W I . z  "t- (b /1W.)  t'[" IV. ) -=0, 

where p = 1, ..., P l .  

When c = >, = i the system (13) has 2 ul invariant manifolds defined by conditions 

ul = 2u, Uo = u', w ,  = euv , ,  la = 1, ..., 1,11 . 

On these manifolds system (13) is reduced to the following form: 

~u 3u ~ 3v .  
- - + - - = 3  Z c.V. ~xx , 
at 3y . = 1 

3u Or. 3 3 v .  = 
+ - - v .  + 2 u - - + - -  =0,  p 1 , . . . , ~  

Ot OX OY OX 3 

(12) 

(13) 

(14) 

2. Let us consider now a more complicated case arising for m0 < no, i.e., when the order of  the 

operator L in (3) is less than the order of the operator P defined by (5). In this case it is necessary 

to slightly modify the above definition of  the operators P, Pl ,  .,., PuI and qa . . . . .  qul " 

Omitting the details we give here one example corresponding to the case m o =  O. Let 
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+ 3u, 3 U=Uo, P = a 3 +  uax 4 - 3  ~ 1 6 3  

, " 3 ( 1 5 )  pii = - a 2 " %  - a x .  v'ii - v u - ~ u % ,  

~- ! tr 3 
qii wiiO2x + w u 3  x - w u -- ~uwi i ,  # = 1 . . . . .  ~1, 

where f is so far an unknown function, and o = Eu= l viiwii. 

Putting/9 = Eiilii=a~:Vii~ii,.,' - vuwu);  we obtain that in the case under consideration system (4) 

transforms to the following form: 

- - +  3u 2 + + X + c X - - = 0 ,  
3t 4 3 x ~  3x 2 ]  2 3x 2 3y 3y 

rpr r 3 r 3 ~ii + c(vii + 3_ uv~ + ~ u v~ - 2 ~ O V i i  +fvi i )  = O, (16) 

r~  3 r 3 ~ 3 w i i + c ( w i i  + T u w i i + ~ u w i i + g o w i i  f w i i )  =0 ,  tl =1 . . . . .  ~ ,  

if the function f i n  (15) obeys the condition 

Of _ 3X au 

3x 4 3y 

For c = 4, X = i and f =  (3i /4)p,  system (16), (17) has 2 m invariant manifolds defined by the 

relations 

u = u, P = P, wii = ieiivii, 

On these manifolds, system (16), (17) is 

where 

eli = •  = 1 , . . . , # 1 .  

3U 3U 33U OR 3S 3p 
- - + 6 u - -  - - + 6 - - + 6  - - - 3 - - = 0 ,  
at  3x + 3x 3 3x 3y 3y 

OU OVId 03 VlI 3VII + 3 _ _  + 6U + 4  
3t  3X VII ~X 3X 3 

= 6iSvii - 3ipvii, 

3p _ 3u 

3x 3y '  

= 1,..., ~1, 

I l l  

S= ~ eii tvi i l  2, 
g = l  

R = i  Z % vii - ~ii  . 

(17) 
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Eliminating p from these equations, we get 

32u 3 (3U +6uOU 33u) 
3y 2 3x ~ t ~x + --3x 3 

32R ~2 S 
= - - + 6 - -  6 ax 2 axay' 

0u a5 ~ a3~ 
a~J~ + 3 - -  vu + 6u +4 
~t ~x 3x c~x 3 

(18) 

fx x Ou = 6iSv u - 3iv,  OY dx', t~ = 1 ... . .  Ix1. 
0 

In conclusion, we note that in the case when vt . . . . .  vu~ - O, systems (12) and (18) give us 
the well-known Kadomtsev-Petviashvili equation [10]. The Lax pair for this equation was 

fi~st obtained in paper [11 ]. Further, when/J1 = 1 the solutions of system (7) independent o fy  

satisfy the system obtained earlier in paper [12]. Similar solutions of system (14) for/11 = 1 obey 

the system derived independently in papers [8, 13]. Finally, the solutions of system (11) independent 
o fy  obey for ;q = 1 the system given in [8]. 
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