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ABSTRACT. Let G = KL andg = k + l be Lie group and Lie algebra decompositions. This identifies 

k ~ with l*. Any G-invariant function, f, on g* induces by restriction a function f tko  = l ~'. We prove 

a formula which says that the integral curve through c~ E k ~ is obtained as b(t)~, where a(t) = 

exp t~ with ~ = Lf(cQ, 

(*) a( O : b( t)c( t) 

where (*)  is the KL decomposition and where L f :  g* -~ g is the Legendre transform. This generalizes 

a formula of  Symes for the generalized Toda lattice. 

Let g be a Lie algebra and k and 1 subalgebras of  g with 

g = k + l .  (1) 

This gives a corresponding decomposition of  the dual spaces. 

0" = 1 ~ + k ~ (2) 

and, in particular, an identification o f k  ~ with l*. Let O be a coadjoint orbit o f L  (a Lie group 

whose Lie algebra is 1) regarded as a submanifold of  k ~ A function f on g* restricts to O and hence 

defines a Hamiltonian system relative to the natural symplectic structure on O. The purpose of  this 

note is to explain the method of Symes for integrating this sytem when f i s  an invariant function 

on g* and we have a global group theoretical decomposition 

G = L K  

corresponding to (1). 
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In the case 

g = gl(n) k = O(n) 1 = {lower triangular matrices) (4) 

we can identify k ~ with symm (n) = { symmetric matrices}. 

It was first observed by Kostant [5] that one can identify the set of  Jacobi matrices as a co- 

adjoint orbit O of L and that the (finite nonperiodic) Toda lattice equations as formulated by 

Flaschka [2] and studied by Moser [7] are just the restrictions to O of the function f (A )  = tr A 2 

on gl(n). This led him to a general principal for proving the complete integrability of such equations 

and to a systematic generalization of the Toda equations involving arbitrary semisimple Lie groups 

and to the detailed solutions of  these equations, cf. [5]. Some of these results were also obtained 

by Symes [9] and others [1, 8] .  

More recently, Symes [ 10] has given a rather explicit method for solving the Hamiltonian system 

corresponding to an arbitrary invariant f a n d  arbitrary orbit O. His proof  in [10] makes use of an 

explicit global coordinate chart and, hence, might seem to be restricted to the special choice (4). 

We shall show that the method works whenever there is a global decomposition (3). We shall use 

the notion of collective motion as introduced in [3]. We briefly recall some of the basic facts in the 

theory of collective motion referring the reader to [3] for details and definition: 

Suppose we are given a Hamiltonian action of a Lie group G on a symplectic manifold M with 

moment  map do: M -+ g*. A function F on M is called collective if it is of  the form F = f o do, where 

f :  g* ~ IR is a smooth function. 

The integration of the Hamiltonian system given by such a collective F proceeds in three steps: 

(1) For point m E M calculate the G orbit points 0 through the point do(m). 

(2) Solve the Hamiltonian system on O given by the function f [ o .  Let 13(0 be the solution 

curve with/3(0) = do(m). 

(3) The function fde termines  a map Lf  (the Legendre transformation) of  g* ~ g. The image 

Lf(~(t) = 7(0 defines a curve in g. The curve 7 can be regarded as a time-dependent vector 

field on G and, hence, determines a curve a(t) in G with a(0) = e. Then a(t)m is the trajectory 

through m of the Hamilt:onian system given by F. 

In case f i s  a G-invariant function, steps (2) and (3) simplify: In step ( 2 ) f l o  is a constant so ~(t) is 

the constant so ~(0 - do(m). In step (3) 7(0  is a constant so a(t) is a one-parameter group. Thus, 

for invariant f the solution curve through m is 

(exp t~)rn where ~ = ~(m) = Lf(do(m)). (5) 

The cotangent bundle T*G may be identified with G • g* using the left invariant identification. 

Left multiplication by G on itself induces a Hamiltonian action on T*G given by al (a, c~) = (al a, ~) 

and the moment  map for this action, d~r: T*G -+ g* is given by dor(a, ~) = a" ~, where, denotes the 

coadjoint action. Right inverse multiplication of G on itself defines a Hamiltonian action on T*G 

given by a2(a, ~) = (aag 1, a2 " ~) and its moment  map is given by do1 (a, ~) = - ~ .  In particular, a 

function F on T*G is left invariant if and only if F(a, ~) does not depend on a, so that we can 

write it as F(a, c~) = f ( - c 0  and so is collective for the right action. The function F is both  right and 

left invariant if and only if f is invariant under the coadjoint representation. In that case, the 
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trajectory through the point (a, ~) is 

(a exp t~, ~) where ~ = Lf(-~) .  (6) 

Now let K be a subgroup of  G. The right (inverse) action of K on G induces a Hamiltonian 

action of K on T*G whose moment  map is given by r a) = --7rk, a, where nk* : g* -+ k* is the 

projection dual to the injection k -+ g. In particular, 

( , f ) -  1 (o) = ((a, ~) l ~ c k ~ (7) 

This is a coisotropic submanifold, cf. [4] or [6] and its corresponding symplectic quotient is 

(q~rX)-I (0)/K and can be identified with T*(G/K). Any bi-invariant function on T*G gives rise to 

a function on T*(G/K) via restriction and passage to the quotient. 

Now suppose that (3) holds. This means that every a ~ G can be written as a = cb. c ~ L, b E K, 

and we can identify G/K with L. Thus, in the identification of ( ~ f f ) -  I (0) /K with T*L we represent 

the equivalence class of the element (a, ~) by (c, ba), where a = cb. Here ~, and hence bc~, lies in 

k ~ and we identify k ~ with 1" using (2). A right invariant function F on T*G induces a function 

F L on T*L by 'restriction' FL(c, ~) = F(c, ~), c ~ L, ~ ~ k ~ . If  F is left G invariant then F L will be 

left L invariant: we can then write F L (c,/3) = f ( - /3)  but notice that the function fL on 1" defined 

by fL = f lk  ~ ; k~ ~ 1" is not necessarily Ad* L-invariant. But we can now turn step (2) in the 

method of collective motion around for T*L. We would like to solve the Hamiltonian system 

associated with the function fL restricted to an orbit, O in l*. Such an orbit will be the image 

under the moment  map q~: T*L -+ l* of  a solution curve q(t) o f f  L on T*L. Under the identification 

of T*L with. ( ~ K ) - I ( 0 ) / K  the curve q(t) is the image of a solution curve, p(t) of For t  T'G, given 

by (6). So we obtain the following procedure of  Symes for solving the Hamittonian system given 

by f tk o : for a E k ~ let ~ = Lf(c~). Taking (e, ~) as the initial point in (6), write ~ = Lf(~)  and 

exp - t ~  = c(t)b(t). Then b(t)~ is the desired solution curve. 
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