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Summary. There is quite wide-spread agreement about the 
relevance of pattern Prggnanz (Koffka, 1935) with respect 
to the human interpretation of visual patterns. There is less 
agreement about whether pattern Pr~gnanz is based solely 
on pattern information (static) or also on the history of the 
perceiver (dynamic). In Van Leeuwen and Van den Hof 
(1991), experimental data concerning serial patterns are 
presented within the framework of the dynamic-network 
approach initiated by Buffart (1986, 1987). These experi- 
mental data are claimed to give evidence against the static- 
coding approach initiated by Leeuwenberg (1969, 1971). In 
the present paper, however, I show first that Buffart's the- 
oretical basis is incorrect, and that in fact Leeuwenberg's 
static-coding approach is the basis for the dynamic-network 
approach. Second, I show that those experimental data 
rather give evidence in favor of the static-coding approach, 
by using those same data for a test of the most recent static- 
coding model (Van der Helm & Leeuwenberg, 1991; Van 
der Helm, Van Lier, & Leeuwenberg, 1992). Finally, I 
propose a reconciliation between the two approaches, in the 
sense that the dynamic-network model could be shaped in 
such a way that it yields a simulation, and maybe even an 
enrichment, of the static-coding model. 

Introduction 

In this paper, I shall try to shed some light on the question 
as to whether the human interpretation of visual patterns is 
based either on just an account of pattern information (the 
static approach) or also on an account of the history of the 
perceiver (the dynamic approach). The primary impetus for 
writing this paper came from Van Leeuwen and Van den 
Hof (1991) which concerns the concept of Prfignanz 
(Koffka, 1935). Prfignanz is a notion that applies to the 
goodness of patterns or, rather, of pattern interpretations. A 
measure of Prggnanz is considered to be valuable in ex- 
plaining or predicting the human interpretation of patterns. 

For instance, to explain why, in Figure 1A, generally in- 
terpretation I1 is preferred and, in Figure 1 B, generally 
segmentation S 1. For a long time, however, a continuing 
discussion has concerned the choice of an appropriate 
measure of Pr~gnanz (cf. Simon, 1972; Hatfield & Epstein, 
1985). Van Leeuwen and Van den Hof (1991) is also con- 
cerned with this problem. 

Van Leeuwen and Van den Hof (1991) is one of the 
latest in a series of publications concerning a specific dy- 
namic-network approach to Prfignanz, initiated by Buffart 
(1986, 1987). That approach started as a branch of Struc- 
tural Information Theory (SIT), a static-coding approach to 
Pr~gnanz, initiated by Leeuwenberg (1969, 1971). The 
present paper focusses on the competition between these 
two approaches. 

In SIT's static-coding approach, a restricted set of cod- 
ing rules is employed to encode a given pattern, yielding 
codes that are each assumed to represent a perceptually 
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Fig. 1. In visual-shape perception, a major problem is how to predict 
the preferred interpretation of a pattern. In principle, a pattern can be 
interpreted in many ways. In Figure 1 A, two interpretations, I1 and I2, 
of linedrawing P1 are visualized: generally, interpretation I1 is 
preferred. In Figure 1B, two segmentations, SI and $2, of the 
patterned sequence P2 of black-and-white dots are given: generally, 
segmentation SI is preferred 
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possible interpretation of that pattern. Then, in line with the 
minimum principle (Hochberg & McAlister, 1953), the 
simplest code (using some complexity metric) is assumed 
to represent the preferred interpretation of that pattern and 
therefore determines the Pr~ignanz of that pattern. Here 
simplicity is closely related to regularity. For instance, in 
Figure 1 A, interpretation I1 is simpler than interpretation 
I2, since a square is more regular than an L shape. Em- 
pirical research within this approach concerns, e. g., judged 
complexity (Leeuwenberg, 1969, 1971), pattern completion 
(Buffart, Leeuwenberg, & Restle, 1981; Van Lier, Van der 
Helm, & Leeuwenberg, 1993), foreground-background 
(Leeuwenberg & Buff'art, 1984), and beauty (Boselie & 
Leeuwenberg, 1985). In that research, generally two-di- 
mensional line patterns or surface patterns are considered. 
In the present paper, only patterned sequences of dots (as in 
Figure 1 B) will be considered, for two reasons. First, such 
patterns can be translated straightforwardly into the lan- 
guage used in both approaches presently under discussion 
and therefore enable a more direct investigation into fun- 
damental differences between the approaches. Second, such 
patterns are the only ones used so far in empirical research 
within the dynamic-network approach. 

The dynamic-network approach can be seen as a net- 
work implementation of the static-coding approach, with 
some differences. The main conceptual difference is that 
the preferred interpretation of a given pattern is not as- 
sumed to be represented by the simplest code, but by the 
most active code. The activity of the codes in the network is 
influenced not only by the given input pattern, but also by 
history, i.e., by earlier input patterns. 

In the present paper, it is not this general concept of the 
dynamic-network approach that will be opposed, but its 
specific implementation, as given in, among others, Van 
Leeuwen and Van den Hof (1991). That implementation is 
claimed to be based on Buffart's (1987) concept of hier- 
archical completeness, but it will be shown below that this 
claim is incorrect. Furthermore, it will be argued that Van 
Leeuwen and Van den Hof's (1991) measurement of 
Prfignanz has to be rejected if one takes into account the 
most recent static-coding model, which is based on the 
concept of accessibility (Van der Helm & Leeuwenberg, 
1991; Van der Helm et al., 1992). Finally, I shall sketch 
how this concept of accessibility may provide a good basis 
for a dynamic-network model as well. But first, both ap- 
proaches will be introduced in more detail. 

The static-coding approach 

The static-coding approach of SIT (Leeuwenberg, 1969, 
1971) is a coding theory according to which a pattern can 
be encoded by means of certain coding rules. These coding 
rules are applied to a symbol series representing the pattern. 
For instance, (the contour of) a square-like subpattern as in 
interpretation I1 in Figure 1 A can be represented by the 
symbol series kakakaka in which a represents an angle of 
90 ° and k the length of each of the four line segments. 
Similarly, pattern P2 in Figure 1B can be represented 
straightforwardly by the series aaabab in which a re- 

presents an empty circle and b a full circle. Now, the en- 
coding of such a symbol series yields all possible codes of 
that series, each code reflecting an interpretation of the 
represented pattern. Then, in line with the minimum prin- 
ciple, the simplest code is taken to reflect the preferred 
interpretation of the pattern, and therefore determines the 
Prfignanz of the pattern. In this section, the coding rules 
will be discussed first, and then the measurement of code 
complexity. 

Coding rules 

In general, each coding rule describes a specific kind of 
regularity, on the basis of identity relationships (identities) 
between symbols in a symbol series. First, two coding rules 
will be discussed for which rather general agreement exists 
about the perceptual relevance. 

First, the Iteration rule, or I rule, which can be applied 
to express that a (sub)series contains successive identical 
symbols. 

Iteration rule: kkk ... kk -+ N*(k) 

The expression at the right-hand side is called an I form,  in 
which N equals the number of symbols k in the series at the 
left-hand side. For instance, the series aaaaa can be en- 
coded into the I form 5*(a). 

Second, the Symmetry rule, or S rule, which can be 
applied to express that a (sub)series contains pairs of 
identical symbols, nested around a so-called pivot. 

Symmetry rule: klk2...kn p k,...k2kl ~ S[(kj)(k2)...(kn),(p)] 

The expression at the right-hand side is called an S form, in 
which (p) is the pivot. For instance, the series kapmpak can 
be encoded into the S form S[(k)(a)(p),(m)]. 

The following examples illustrate that identities be- 
tween subseries can also be expressed, inducing a so-called 
chunking in the series (1 a, 1 b), that the pivot in an S form 
may be empty (2), that I forms and S forms may be nested 
hierarchically (3 a, 3 b, 3 c), and that generally several codes 
are possible for a given symbol series (4a, 4b): 

1 a. ababab ~3*(ab) ~ chunking: (ab)(ab)(ab) 
I b. badpqvwpqbad ~S[(bad)(pq),(vw)] ~ chunking: 

(bad)(pq)(vw)(pq)(bad) 
2. abppab -'S[(ab)(p)] 
3a. bapabapa ~2*(bapa) ~ 2*(b S[(a),(p)]) 
3b. aabppaab ~S[(aab)(p)] ~ S[(2*(a)b)(p)] 
3c. ababbaba -~S[(a)(b)(a)(b)] ~ S[2*((a)(b))] 
4a. aaabab ~3*(a) S[(b),(a)] 
4b. aaabab -~2*(a) 2*(ab) 

Such codes are assumed to reflect allowed (i.e., percep- 
tually possible) interpretations. For instance, the code in 
example 4 a expresses the identity of the first three symbols 
in aaabab, plus the identity of the fourth and sixth symbols. 
This corresponds to precisely all identity of symbols in, 
e.g., the symbol series xxxyzy. Therefore, xxxyzy is called 
an abstract code, representing the interpretation reflected 
by the code 3*(a) S[(b),(a)] (Collard & Buffart, 1983). So a 
pattern interpretation is represented by a symbol series (an 
abstract code) that indicates the pattern information 
(identities) responsible for that interpretation. To illustrate 
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the use of all this, remember that pattern P2 in Figure 1 B 
could be represented by the symbol series given in example 
4a. Now, segmentation S1 in Figure 1 B is taken to be 
based on the interpretation reflected by the code in exam- 
ple 4 a. This may be clear by the fact that the I form and the 
S form in example 4 a correspond to respectively the first 
segment aaa and the second segment bab in that segmen- 
tation S 1. A similar argument holds for example 4b and 
segmentation $2 in Figure 1 B. 

Beside the I and S rules, several other coding rules have 
been proposed in coding theories like SIT. For the present 
paper, three sets of coding rules are relevant. First, the so- 
called ISA rules which are the only ones presently used in 
SIT (see below). The ISA rules comprise, beside the I and 
S rules, only the so-called Alternation rule, or A rule. The 
A rule can be applied to express the fact that a series 
contains successive subseries that either all begin or all end 
identically. Both cases are defined as follows: 

Alternation rule: 
kxl  kx2 . . .  kXn --+ < (k) > / < (Xl)(X2)... (Xn) > 

x l k  x2k . . .  xnk -+ < (Xl)(X2). . . (Xn) > / <  (k) > 

For instance, the series arasat can be encoded into the 
A form < (a) > / <  (r)(s)(t) >,  while its reversal tasara can 
be encoded into the A form < ( t ) ( s ) ( r )>/< (a)>.  

Second, the so-called DIS rules, which were used in SIT 
until several years ago, and which, in Van Leeuwen and 
Van den Hof (1991), are given as the coding rules used in 
SIT. The DIS rules comprise, beside the I and S rules, 
several other coding rules. The most prominent one is the 
so-called Distribution rule, or D rule: 

Distribution rule: 
klxlk2x2...kNXN ~ D[(kl)(k2)...(kn), (xl)(x2)...(Xm)] 
for: N/n and N/m integers, ki = ki+n (i = 1 . . . .  N-n),  
and xj = Xj+m (j = 1 . . . .  N-m) .  

For instance, the series arbsatbrasbt consists of the two 
intertwining series ababab and rstrst, and can be encoded 
into the D form D[(a)(b),(r)(s)(t)]. 

Third, the so-called DIT rules, which, according to 
Buffart (1987), are derived from the concept of hierarchical 
completeness (see below), and yield precisely all inter- 
pretations represented in his network model. The DIT rules 
comprise, beside the D and I rules, only the so-called Trule: 

T rule: 
klXlk2XZ...kN-lXx-lkN ~ T[(kl)(k2)... (krO,(Xl)(X2)... (Xm)] 
for: N/n and (N-1)/m integers, ki = ki+n (i = 1 . . . .  N-n) ,  
and xj = Xj+m (j = 1 . . . .  N - l - m )  

The T rule may look like the D rule, but has some overlap 
only with the S rule. In fact, in Buffart (1987), the S rule is 
claimed to result, but in a personal communication Buffart 
confirmed that it is actually the T rule that should have 
been claimed to result. For instance, neither the D nor the 
S rule can describe all identity of symbols in the series 
abaca, but the T rule can: with the T form T[(a),(b)(c)]. 
Furthermore, for, e.g., the series abacaba, the identity of 
symbols described by the S form S[(a)(b)(a),(c)] can also 
be described by the nested T forms T[(a),(T[(b),(T[(a), 
(c)])])]. However, the nested T forms do not allow any 

further encoding of arguments, whereas the argument 
(a)(b)(a) of the S form can be encoded further, namely into 
S[((a)),((b))]. 

The old complexity measure 

Once the coding rules have been applied to get all possible 
codes of a symbol series, the so-called I load (structural- 
information load) is used to quantify the complexity of each 
code. Then, in line with the minimum principle, the sim- 
plest code (the one with minimal I load) is taken to reflect 
the preferred interpretation of the pattern represented by the 
symbol series. Thus, the Prfignanz of the pattern is deter- 
mined by that simplest code, and quantified by its I load 
(the lower the I load, the higher the Prfignanz). 

The I load, as presented in Van Leeuwen and Van den 
Hof (1991), was used in SIT until several years ago and will 
therefore be called the Iols load. The Iold load was meant to 
reflect the amount of memory space needed to store a code. 
Independently of the specific set of coding rules, the 
Iold load equals the number of pattern symbols in a code 
plus the number of I and S forms in that code (a pattern 
symbol is an element of the symbol series that represents 
the pattern). For instance, the code 3*(a) S[(b),(a)] gets an 
Iold-load value of Iold = 5, since it contains three pattern 
symbols, one I form, and one S form. Although empirically 
the Iold load performs reasonably well, it gives rise to 
skepticism, since, if I forms and S forms are counted, it 
depends on syntactical artifacts of the model (Hatfield & 
Epstein, 1985). 

Accessibility and the new complexity measure 

The reason why, presently, only the ISA rules are used in 
SIT is that the ISA rules are the only so-called transparent 
holographic coding rules. The notion of holography applies 
to the intrinsic character of the kinds of regularity that are 
assumed to be perceptually relevant. There are only 80 
coding rules describing a holographic kind of regularity. 
The notion of transparency applies to the hierarchical 
character of codes, and concerns the hierarchical compati- 
bility of kinds of regularity. Among the 80 holographic 
coding rules, only the ISA rules allow for a hierarchically 
transparent description of regularity. Together, the notions 
of holography and transparency constitute the concept of 
accessibility, which has been elaborated extensively in Van 
der Helm and Leeuwenberg (1991). Here, the notion of 
transparency is also necessary to understand the new 
complexity measure. 

Transparency. Transparency implies that the hierarchical 
character of codes is not just a syntactical artifact of the 
coding model, but a psychologically meaningful aspect of 
the description of regularity. This may be illustrated as 
follows. The symbol series ababbaba can be encoded into 
the S form S[(a)(b)(a)(b)]. The argument (a)(b)(a)(b) of 
this S form is said to represent a higher hierarchical level, 
and can be encoded into the I form 2*((a)(b)) which, nested 
in the S form, yields S[2*((a)(b))]. Now, observe that any 
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LEVEL 1: a b a b b a b a 

S[(aXb)(a)(b)] + 
LEVEL 2: (a) (b) (a) (b) (b) (a) (b) (a) 

S[ 2* ((a)(b))l .I .  
LEVEL 3: (,(a) (/7)) ((a) (b}) (b) (a) (b) (a) 

Fig. 2. The transparen~ Symmetry rule. The S form S[(a)(b)(a)(b)] 
induces a chunking in the level-1 symbol series, represented by the 
level-2 series. The I form 2*((a)(b)) in the S argument corresponds 
unambiguously to the I form 2*(ab) in the level-1 series, inducing the 
chunking (ab)(ab) which can be superimposed on the level-2 series, 
leading to the hierarchical chunking represented at level 3 

LEVEL 1: k x k y k x 

<(k)>/<(x)(y)(x)> + 
LFvr~2: (k) (x) (k) (y) (k) (x) 

<(t)>/< S[((x)),((y))l > .L 
LEVEL3: (~k)(~)) ((*)(S)) ((k)(~)) 

Fig. 3. The transparent Alternation rule. The A form <(k)>/ 
<(x)(y)(x)> induces a chunking in the level-1 series, represented 
by the level-2 series. The S form S[((x)),((y))] in the second argument 
of the A form corresponds unambiguously to the S form S [(kx),(ky)] in 
the level-I series, inducing the chunking (kx)(ky)(kx), which can be 
superimposed on the level-2 series, leading to the hierarchical chunk- 
ing represented at level 3 

kind of regularity in the argument (a)(b)(a)(b) of the S form 
corresponds unambiguously to the same kind of regularity 
in the first half abab of the symbol series ababbaba. For 
instance, the I form 2*((a)(b)) in (a)(b)(a)(b) clearly cor- 
responds to the I form 2*(ab) in abab. So in an almost 
visual sense, the S form is transparent, i.e., through the 
S form, regularity in the symbol series can be seen. Since 
this holds for any S form, the S rule is called a transparent 
coding rule. 

In order to understand transparency further, remember 
that an ISA form induces a chunking in the symbol series 
(see above). Such a chunking can be found by decoding an 
ISA form without removal of the parentheses in the 
ISA form. Now, according to the concept of transparency, 
the code S[2*((a)(b))] in fact combines an S form 
S[(a)(b)(a)(b)] and an I form 2*(ab). Both the S and the 
I forms induce a chunking in the symbol series. Only for 
transparent coding rules, two such chunkings are always 
compatible and the combination is called a hierarchical 
chunking (see Figure 2). 

Two further examples may be illustrative. First, consider 
the encoding of acbdad into the D form <(a)(b)(a)>/ 
<(c) (d) (d)> .  The left-hand argument (a)(b)(a) can be 
encoded into S[((a)),((b))], and the right-hand argument 
(c)(d)(d) into (c)2*((d)). However, the S form and the I form 
do not correspond to an S and an I form in acbdad. 
Therefore, the D rule is not transparent. A similar argument 
holds for the T rule. 

Second, the A rule is transparent, as may be clear from 
the encoding of lcv~kx2...kxn into the A form < ( k ) > /  
<(Xl). . .(x~)>. Any kind of regularity in the argument 
(Xl)(X2)...(x~) of that A form clearly corresponds 
unambiguously to the same kind of regularity in the chunk 

series (kxl)(Lv2)...(/cr,0 and therefore, also corresponds 
unambiguously to the same kind of regularity in the series 
kxlkx2...kxn. See Figure 3 for a specific example in which 
also the resulting hierarchical chunking is shown. 

The new complexity measure. The new complexity 
measure, the so-called I~ew load, has been discussed ex- 
tensively in Van der Helm et al. (1992), and may be in- 
troduced here as follows. First, consider the encoding of 
abcabcab into the S form S[(ab)(c),(ab)]. As follows from 
what we said above, this S form corresponds to an abstract 
code xztpqtxz, and induces a chunking into the chunk series 
(ab)(c)(ab)(c)(ab). The abstract code reflects the regularity 
expressed by the S form, and the chunking reflects the 
hierarchy induced by the S form. These two aspects can be 
combined by that chunking being imposed on the abstract 
code, yielding the abstract chunking (xz)(t)(pq)(t)(xz). 
Now, the Inew load equals the number of all different ele- 
ments (symbols, and chunks containing at least two ele- 
ments) over all hierarchical levels in such an abstract 
chunking. Thus, for the S form above, Inew = 7 since the 
abstract chunking contains seven different elements: x, z, 
(xz), t, p, q, and (pq). 

The reason to count all different elements in the abstract 
chunking that results from a code is twofold. First, the 
number of different symbols in the abstract chunking 
equals the number of pattern symbols in the code and can 
therefore be said to reflect the amount of irregularity (re- 
sidual nonidentity) in the code (cf. Collard & Buffart, 
1983). Second, the chunks in the abstract chunking reflect 
the hierarchy in the code, and therefore the number of 
different chunks can be said to quantify hierarchy in terms 
of irregularity at higher hierarchical levels. So, the In~w load 
measures code complexity in terms of irregularity at all 
hierarchical levels. 

Two further examples may be illustrative. In both Fig- 
ures 2 and 3, the hierarchical chunking is also the abstract 
chunking. So, the code S[2*((a)(b))] in Figure 2 gets 
Inew = 3, since the abstract chunking ((a)(b))((a)(b)) 
(b)(a)(b)(a) contains three different elements: a, b, and 
((a)(b)). Similarly, the code <(k)>/<S[((x)),((y))]> in 
Figure 3 gets Inew = 5, since the abstract chunking 
((k)(x))((k)(y))((k)(x)) contains five different elements: k, x, 
((k)(x)), y, and ((k)(y)). 

The Inew load is more plausible than the Iold load since, 
unlike the Iold load, the In~w load does not depend on syn- 
tactical artifacts of the coding model. Moreover, the theo- 
retical significance of the Inew load is enhanced by its strong 
relation with the ISA rules. For, the Inew load can be applied 
only to transparent coding rules, since it requires hier- 
archical chunking. So, it cannot be applied to, e. g., the D or 
the T rule, as these coding rules are not transparent (nor 
holographic, by the way). In that sense, the I~w load differs 
essentially from all other measures proposed so far, and 
provides a possible way out of an empirical deadlock. For it 
has been difficult to decide empirically which set of coding 
rules is most appropriate, since the complexity measure 
seems more decisive than the coding rules (cf. Simon, 
1972). Now, however, empirical support for the Inew load 
automatically implies support for (the transparent character 
of) the ISA rules. 
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Fig. 4. Small part of network, around interpretation abab. The two 
bold links are substitution links, the other links are inclusion links. For 
instance, yy is inclusion-linked to ab, since ab contains the same 
number of elements, but less identity of elements. Furthermore, abab is 
substitution-linked to yy and ab, since substituting ab for each y in yy 
yields abab 

The dynamic-network approach 

The dynamic-network approach initiated by Buffart (1986, 
1987) can, on the one hand, be seen as a network im- 
plementation of the static-coding approach discussed 
above. On the other hand, however, it is claimed to be 
based on Buffart's (1987) concept of hierarchical com- 
pleteness (see below). In this section, the network model as 
such will be considered in a discussion first of the network 
structure and then of the measurement of Prfignanz. 

The network structure 

The network consists of nodes and two kinds of link. Each 
node contains an abstract code (see above) representing an 
allowed pattern interpretation. All allowed interpretations 
are thus represented in the network, and are assumed to be 
given precisely by the DIT rules. So, in other words, each 
node contains an abstract DIT code. 

The links between the nodes represent perceptual in- 
ference relations between the interpretations. One kind of 
link represents so-called substitution relations, and may be 
illustrated by the three abstract DIT codes abab, yy, and ab. 
Note that abab can be obtained by substituting ab for each 
symbol y in yy. Because of that, the network node re- 
presenting abab gets two efferent substitution links: one 
link to the node representing yy, and one link to the node 
representing ab (see Figure 4). The series yy is said to re- 
present the superstructure of abab, and ab its substructure. 
But there are restrictions. For instance, the series aabbc 
could be said to have a superstructure ayz with sub- 
structures y = ab and z = bc. This, however, is not allowed, 
because it introduces an identity between a superstructure 
symbol and a substructure symbol (the symbols a), and also 
because it introduces an identity between the substructure 
symbols b which belong to different substructures. In other 
words, beside identities in the superstructure, new identities 
may be introduced only inside a substructure. For instance, 
for aabbc, an allowed superstructure is yzc with sub- 
structures y = aa and z = bb. 

The other kind of link represents so-called inclusion 
relations, and may be illustrated as follows. The abstract 
DIT codes abab and abac both express the identity of the 
first and third elements, but abab moreover expresses the 
identity of the second and fourth elements. So, if the in- 

terpretation represented by abab fits (i. e., is possible for) a 
given input pattern, then, automatically, also the inter- 
pretation represented by abac fits that input pattern. 
Therefore, the interpretation represented by abac is said to 
be included in the interpretation represented by abab. Be- 
cause of that, the network node representing abab gets an 
efferent inclusion link to the node representing abac (see 
Figure 4). 

The measurement of  Priignanz 

In the dynamic-network approach, the static network 
structure (nodes and links) is seen as the carrier of a dy- 
namic activation-spreading process. Although this process 
is not a topic in the present paper, its general idea may be 
explained as follows. The Prggnanz of a given input pattern 
is assumed to be influenced by history, i. e., by earlier input 
patterns. That is, the current strength, due to earlier input, 
of an interpretation is given by an activation value for the 
node that represents the interpretation. Then, in reaction to 
a following input, activation-spreading functions determine 
how the activation spreads through the links between the 
nodes. Finally, a node that ends up with the highest acti- 
vation value is taken to represent the preferred interpreta- 
tion and therefore determines the Pr~ignanz of the given 
input pattern. For more details about the implementation of 
the network model, see Mellink and Buffart (1987), Van der 
Vegt, Buffart, and Van Leeuwen (1989), and Van Leeuwen, 
Buffart, and Van der Vegt (1988). 

Resonance as Prdgnanz measure. In the present paper, I 
shall focus on the measure of Pr~gnanz as presented in Van 
Leeuwen and Van den Hof (1991). That paper is not di- 
rectly concerned with the dynamic activation-spreading 
process, but with finding a "static" indication about how 
the dynamic-network model may be further developed. To 
that end, a static Pr~ignanz measure, named Resonance, is 
derived from the static network structure. The Resonance 
measure implies that the Pr~ignanz of a pattern is 
determined and quantified by simply the number of all 
resonating network nodes, i.e., the number of all allowed 
interpretations that fit the pattern. For instance, if Figure 4 
represented the entire network and the series aaaa were 
given as input pattern, then the Resonance measure for 
that pattern would yield the value 4, as the four network 
nodes representing abab, abac, abcb, and abcd would 
resonate. 

In Van Leeuwen and Van den Hof (1991), the Resonance 
measure was tested, together with the Iold load from the 
coding approach, in an experiment involving tasks such as 
pattern segmentation, goodness rating, and recall. The ex- 
perimental data showed that the Resonance measure per- 
forms slightly better than the Iold load (see below). The 
authors concluded that a static Pr~ignanz measure based on 
pattern coding "does not exist" (p. 442), and that a static 
Pr~gnanz measure may make sense only if it is based on 
that notion of resonance. They argued that this "static" 
indication suggests that, in reaction to a given input pattern, 
probably only the resonating network nodes should take 
part in the dynamic activation-spreading process. This 
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L 
Fig. 5. Generally, for both patterns 1 and 2, the figure-ground 
interpretation (B) is preferred to the mosaic interpretation (A respec- 
tively C), on the basis of an intrapanern judgement for each pattern. 
For pattern 2, however, the figure-ground interpretation is generally 
considered to be stronger (more prgignant) than for pattern l, which 
implies an interpattern judgement of the two patterns 

of the Inow load would still be challenged. However, in 
the next section, Buffart's claim will be shown to be in- 
correct. 

Hierarchical completeness versus accessibility? 

In Buffart (1987), the more conceptual approach in Buffart 
(1986) was formalized for symbol series, with the follow- 
ing central assumption: 

Hierarchy assumption: Allowed interpretations are given by 
representations that can be decomposed into independent 
substructures plus a superstructure that relates those sub- 
structures, such that the superstructure is hierarchically 
complete and, recursively, each of the substructures is al- 
lowed. 

would imply a revision of the activation-spreading func- 
tions proposed in earlier studies. 

Discussion. The suggested revision of the activation- 
spreading functions might be a good idea, as it would imply 
that a given input pattern wakes up only those network 
nodes that may be relevant for that pattern. The question, 
however, is whether the Resonance measure (which is seen 
as a typical network measure) is responsible for the sug- 
gested revision. For, by definition, in the static-coding ap- 
proach of SIT also, only all allowed interpretations of a 
given pattern are involved in the search for the preferred 
one. This implies that if the dynamic-network approach had 
been conceived as a network implementation of SIT, then 
the suggested revision would be nearly self-evident. 
Moreover, it implies that the Resonance measure could be 
adopted in SIT just as well. So, on the one hand, the fact 
that the Resonance measure performs (slightly) better than 
the Iold load does not mean at all that a static Pr~ignanz 
measure based on pattern coding does not exist. On the 
other hand, it does mean that the Resonance measure has to 
be taken seriously in SIT as well. To that end, the following 
two points are relevant. 

First, the Resonance measure does not yield preferred 
pattern interpretations, and simply implies that pattern 
Pr~ignanz is determined by the number of all possible in- 
terpretations of a pattern. This contrasts with the I loads 
(Ida and Inew), which imply that pattern Pr~gnanz is deter- 
mined (primarily) by one interpretation of a pattern, namely 
by the simplest, which is also assumed to be the preferred 
one. This means that the Resonance measure can be applied 
only to interpattern judgements, whereas the I loads can be 
applied to both interpattern and intrapattern judgements 
(see Figure 5). This is relevant to the experimental data. 

The second point is that the Resonance measure may 
perform (slightly) better than the Iold load, but performs 
worse than the Inew load. The In~w load, however, is based 
on the concept of accessibility and cannot be applied to, 
e.g., the DIT rules, which are claimed to be derived from 
the concept of hierarchical completeness (Buffart, 1987). 
So, if accessibility and hierarchical completeness were 
equally valid concepts, then the theoretical plausibility 

Buffart claims that such hierarchically complete decom- 
positions correspond one to one to the chunkings as in- 
duced by the DIT rules. Here, I shall rephrase only the main 
points of Buffart's formalization, which are clear enough to 
show that it is inconsistent. 

Representations 

Buffart's first step is to consider permutations, i.e., opera- 
tions that interchange two or more symbols in a series. For 
instance, for the 5-symbol series S = aabab, permuting the 
second and third symbols, yields the series abaab. This 
permutation will be denoted by P = [1-3-2-4-5] in which 
the numbers are indices indicating the resulting order of the 
symbols. The application of P to S will be denoted by P*S. 

Definition 1: An invariance permutation for a symbol se- 
ries S is an operation that describes identity of symbols in S 
by interchanging symbols in S such that a series equal to S 
results; 
a representation of a symbol series S is a group (see below) 
of invariance permutations for S; 
a characterization of a symbol series S is a representation 
of S that describes all identity of symbols in S. 

The notion of a group is standard mathematics, and refers 
to a set with nice mathematical properties. The main 
property is closedness. That is, if e. g., the two permutations 
P = [1-4-3-2-5] and Q = [2-1-5-4-3] belong to a represen- 
tation R, then R also contains the permutation P*Q = [2-4- 
5-1-3] (P*Q means: permute the indices in Q according to 
P). Furthermore, a representation of an n-symbol series 
contains the (not really permuting) unity permutation 
En = [1-2-3-...-n] which is required to form a group. 

For instance, the set of permutations R = {Es,[2-4-3-1- 
5],[4-1-3-2-5]} is a group. R is a representation of series 
S = aabab, as R consists of invariance permutations for S 
(describing the identity of the symbols a). R is not a 
characterization of S, as R does not describe the identity of 
the symbols b. For series T = aabac, however, R is a 
characterization since R describes all identity of symbols in 
T. This holds even though there are invariance permutations 
for T, e.g. [2-1-3-4-5] that are not contained in R. 
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Clustering 

Buffart's next step is to consider clusters in a series. A 
cluster is not simply a subseries, but a subset of the symbols 
in a series. For instance, the subseries abc and acb in the 
series abcacb are not identical, but the clusters {abc} and 
{acb} are identical. 

Definition 2: A cluster is a subset of the symbols in a 
symbol series. A clustering in an n-symbol series is an 
operation that yields a series of m disjunct clusters 
(1 - m < n) which, together, contain all symbols in the 
series. 

Definition 3: A representation R allows some clustering, if 
R possibly permutes symbols inside the resulting clusters, 
but only permutes symbols from one cluster to another by 
permuting clusters "as a whole", i. e., with one permutation. 

For instance, consider representation R = {E5,[1-4-5-2-3] }, 
which characterizes series s1s2s3s4s5 = cabab. According to 
Definition 3, R allows clustering into the cluster series 
{S1}{S2S3}{$4S5}  = {c}{ab}{ab}, since R permutes the last 
two clusters "as a whole". 

A cluster is a subset, so, in principle, the symbols for a 
cluster may be gathered in any order from anywhere in the 
series. This implies that, if a representation R allows a 
clustering into some cluster series, then R allows any 
clustering that yields the same clusters (in some order). 
And also, in order to allow a clustering, a representation R 
does not necessarily have to contain permutations of clus- 
ters as a whole. Thus, for instance, any representation of 
aabab allows clustering into { bb } { aaa }. 

Two special cases 

On the basis of the formalization so far, Buffart distin- 
guishes two special cases: indivisible representations and 
diagonal representations. An indivisible representation is a 
representation that does not allow any clustering except for 
the "meaningless" clustering into only one cluster. In 
Buffart (1987), indivisible representations are taken to be 
hierarchically complete "by definition". Now, indivisible 
representations characterize series in which all symbols are 
identical, as in aaaaa. Thus, together with the Hierarchy 
Assumption, indivisible representations correspond one to 
one to codes obtained by means of the I rule. No other 
relation between hierarchical completeness and the I rule is 
given, so in fact, the I rule results "by definition" and not as 
an "implication" of hierarchical completeness. 

Definition 4: A diagonal representation D characterizes a 
series consisting of at least two "independent" subseries, 
i.e., with only identities inside such a subseries; a sub- 
representation of D that describes precisely all identity of 
symbols in only one of those independent subseries is a 
subdiagonal. 

For instance, the series aababccc can be characterized by a 
diagonal representation, since it has aabab and ccc as in- 
dependent subseries. In a personal communication, Buffart 
confirmed that in Buffart (1987) it was wrongly suggested 

that all symbols in an independent subseries have to be 
identical (then, his claim could be rejected much more 
easily). A diagonal representation allows clustering into 
clusters that each contain all symbols of an independent 
subseries. Such a cluster corresponds to a chunk (i. e., a 
subseries, not a randomly ordered set of gathered symbols). 
Probably because of that, in Buffart (1987), diagonal re- 
presentations are hierarchically complete "by definition", 
and serve as the basis for the general definition of hier- 
archical completeness. 

Hierarchical completeness 

Before giving the general definition of hierarchical com- 
pleteness (Definitions 6 and 7), we first need some standard 
mathematics, as given in Definition 5. Definition 5 may 
seem rather complex, but is followed by an explanation in 
simple words. 

Definition 5: Let representation K consist of permutations 
Ki (i = 1,2 ..... m), and let representation L consist of per- 
mutations Li  (i  = 1,2 ..... m) such that, for some permutation 
P: P*Ki = Li*P (i = 1,2 ..... m); then K and L are equivalent 
representations, and P is an equivalence transformation 
from K to L. 

In simple words, Definition 5 states the following. Let K 
characterize the series $1 and let L characterize the series 
$2 = P*SI. So, series $1 and S; contain the same symbols, 
but in a different order. Then, K and L, are equivalent if the 
permutations in K correspond one to one to those in L. That 
is, if some permutation in K permutes certain symbols in $1, 
then L contains a permutation that permutes precisely the 
same symbols in $2, even though these symbols are moved 
by P. 

In contrast to what Buffart seems to conceive, the 
equivalence of K and L implies that any cluster allowed by 
K is also allowed by L. For instance, representation 
K = {E5,[4-5-3-1-2]} of SI = s 1 s 2 s 3 s 4 s 5  -~ abcab and re- 
presentation L = {E5,[3-5-1-4-2] } of $2 = sls2sgs3s5 = abacb 
are equivalent under transformation P = [1-2-4-3-5]. For $1, 
K allows clustering into C1 = {s~sz}{s3}{s4ss} = {ab}{c} 
{ab}. For $2, L allows clustering (see Definition 3!) into 
C2-= {sls2}{s4ss}{s3} -- {ab}{ab}{s), which contains the 
same clusters as C~. 

Definition 6: Two representations, say K and L, are hier- 
archically equivalent if they are related by a hierarchical 
equivalence condition; such a condition is given by an 
equivalence transformation (from K to L) plus two clus- 
terings (one allowed by K, the other allowed by L) that 
yield the same set of clusters. 

Definition 7: A non-indivisible and non-diagonal repre- 
sentation F is hierarchically complete if for each diagonal 
representation D, with D equivalent to F, it holds that each 
hierarchical equivalence condition, which relates a sub- 
representation Sub(F) of F and a subdiagonal Sub(D) of D, 
also relates F and D. 

On the basis of these definitions, Buffart tries to prove 
several theorems, which can be summarized as follows. 
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Theorem: A nonindivisible and nondiagonal hierarchically 
complete representation allows a clustering into two clus- 
ters which correspond one-to-one to the two arguments in 
either a D or a T form. 

This theorem together with the Hierarchy Assumption, 
should complete Buffart's claim that hierarchical com- 
pleteness is the basis for the DIT rules (remember that the 
I rule results "by definition"). However, consider the fol- 
lowing counter-example. 

Counter example 

With the DIT rules, all identity in the series abacab can be 
described by only the code D[(a),T[((b)),((c))]]. So, if 
Buffart's claim is correct, there has to be a hierarchically 
complete representation, say F, that characterizes abacab. 
This F has to be like F in Definition 7, since abacab cannot 
be characterized by a diagonal or indivisible representation. 
So, there also has to be a diagonal representation D as in 
Definition 7. This D has to characterize a series with in- 
dependent subseries aaa and bcb corresponding to the ar- 
guments in the D form D[(a),(b)(c)(b)]. 

There are several possibilities of choosing F and D, but 
the results would be the same. For instance, let D char- 
acterize aaabcb, and let D be the group of permutations 
generated (remember the closedness of a group) by the two 
permutations D1 = [2-3-1-4-5-6] and D2 = [1-2-3-6-5-4]. 
Let F be the group of permutations generated by the two 
permutations Ft = [3-2-5-4-1-6] and F2 = [1-6-3-4-5-2]. 
Then, F and D are equivalent under transformation P = [1- 
3-5-2-4-6] which transforms abacab into aaabcb. 

Now, take Sub(F) = {E6,F2} and Sub(D) = {E6,D2}. 
Sub(D) is the subdiagonal that only permutes inside the 
independent subseries bcb of aaabcb. Sub(F) and Sub(D) 
are, just like F and D, equivalent under transformation P. 
Furthermore, Sub(F) and Sub(D) are related by many 
hierarchical equivaience conditions: among others, by 
means of clusterings by which the three symbols a are not 
clustered into one cluster, e.g., {aa} {abcb}. 

Now, such clusterings are not allowed by F, nor by D. 
So, according to Definition 7, F is not hierarchically 
complete. But this contradicts Buffart's claim that abacab 
can be characterized by a hierarchically complete repre- 
sentation. 

Discussion 

In the counterexample, it may look strange that the sub- 
diagonal Sub(D) of the independent subseries bcb is used 
for clustering in the other independent subseries aaa. 
However, this trick is not only possible with Buffart's 
formalization, it is also precisely the trick used by Buffart 
to prove that series like abacab can be characterized by a 
hierarchically complete representation. This shows that 
Buffart's formalization is inconsistent as, apparently, any- 
thing can be proven, which renders it unacceptable. 

One problem with Buffart's formalization is the use of 
clusters and the definition of allowed clustering: permuta- 
tions inside one cluster may affect the situation between 
clusters and inside other clusters. Nevertheless, Buffart's 

Table 1. Schematic overview of approaches of Pr~gnanz 

Approach Implementation Measure for a given pattern 

Network 
approach 

Coding 
approach 

Network with all DIT codes Resonance measure: number 
as nodes, and substitution of all nodes that fit the 
relations and inclusion rela- pattern 
tions as links; incorrectly 
claimed from hierarchical 
completeness 

Encoding scheme with Iold load: minimal number of 
mainly the DIS rules; intui- symbols and I and S forms 
tively chosen needed for a code of the 

pattern. 

Encoding scheme with the Inew load: minimal number of 
ISA rules; based on accessi- symbols and chunks needed 
bility for a code of the pattern; 

requires transparent coding 
rules 

mathematical tools, i. e., groups of invariance permutations, 
are interesting as means to investigate hierarchy, at least, if 
chunks are used instead of clusters. Then, for instance, it is 
possible to formalize a restriction on the hierarchical 
structure of representations (I shall not elaborate on this), 
leading to the substitution links in the network model (see 
above). It is also possible to provide an alternative for- 
malization of the notion of transparency as given within the 
concept of accessibility (Van der Helm, 1988). 

Another problem with Buffart's formalization is that 
those tools only deal with hierarchy and seem insufficient 
to obtain a plausible set of coding rules. It is as if one tries 
to select the best basketball players by considering only 
their lengths: length is relevant, but is not what the game is 
basically about. Analogously, although hierarchy is rele- 
vant, coding rules basically describe regularity. Within the 
concept of accessibility, for instance, the notion of holo- 
graphy is used as basis for regularity. Buffart's tools may be 
suited for an a-posteriori description of regularity, but seem 
unsuited for an a-priori basis of regularity. 

Summarizing, one has to reject Buffart's formalization 
and his claim that the concept of hierarchical completeness 
is the basis for the DIT rules. This implies, on the one hand, 
that the network approach has to search for its real roots in 
the coding approach of SIT. On the other hand, it implies 
that the concept of hierarchical completeness does not 
undermine the ISA rules and the Inew load, which are based 
on the concept of accessibility. 

Experimental tests of the Priignanz measures 

In the previous sections, I have discussed two approaches to 
Prggnanz (a network approach, and a coding approach), 
three sets of allowed interpretations (obtained by the 
DIT rules for the network approach, and by the DIS rules or 
the ISA rules for the coding approach), two theoretical 
frameworks (hierarchical completeness for the DIT rules, 
and accessibility for the ISA rules), and three static mea- 
sures of Pr~gnanz (Resonance for the network approach, 
and [old load and Inew load for the coding approach). Table 1 
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Table 2. Schematic overview of compared models 

Name Implementation Measure of Pr~ignanz 

Resonance model Network of DIT-codes Resonance-measure 
lvL model DIS roles Iold load 
lola model ISA rules Iold load 
Inew model ISA rules Inew load 

Table 3. Correlations between theoretical models and experimental 
tasks (N = 128 series) 

Model Grouping Unpracticed Practiced Immediate Intermedi- 
entropy rating rating recall ate recall 

Inew .732* .760* .804* .569* .568* 
Resonance -.681" -.647* -.720* -.557* -.568* 
IrE .579* .613" .629* .305t .412' 
Iola .571" .534* .565* .384* .506* 

+ p < .0005 
* p <.0001 

Table 4. Intercorrelations for the theoretical measures (N = 128 series) 

Models compared Correlations 

provides a schematic overview. I have argued that, in 
Buffart (1987), hierarchical completeness is incorrectly 
claimed to be the basis for the DIT rules. So, in fact, the 
DIT rules have to be seen as merely an intuitively chosen 
variation on Leeuwenberg's (1969, 1971) DIS rules which 
were chosen also intuitively. Furthermore, I have argued 
that accessibility implies a strong relation between the 
1SA rules and the Inew load, since the Inew load requires 
transparent coding rules. 

In this section, I shall repeat the analysis of the ex- 
perimental data that were obtained in Van Leeuwen and 
Van den Hof (1991), for four models (see Table 2). First, 
from Van Leeuwen and Van den Hof (1991), I shall copy 
the results for the Resonance-model (network of DIT codes 
plus Resonance measure) and for the IvL model (DIS rules 
plus Iola load). Second, I shall add the Iold model (ISA rules 
plus Iold load) and the [new model (ISA rules plus [new load). 
The Appendix in Van Leeuwen and Van den Hof (1991) 
and the Appendix of the present paper together provide the 
necessary data. 

One reason for adding the Iola model is to get a more 
detailed insight into the decisiveness of the chosen com- 
plexity measure as compared with that of the chosen coding 
rules. That is, the Iold model is constituted by the com- 
plexity measure of the IrE model and the coding rules of the 
Inew model. Another reason is to get a more acceptable test 
of the Iold load than the one provided by the IvL model. That 
is, beside the actual three DIS rules, the Iv> model employs 
several other coding rules, among which one, the so-called 
Continuation-rule, which has been applied wrongly, i. e,, 
not as it was meant to be applied. Several other minor flaws 
in the experimental set-up in Van Leeuwen and Van den 
Hof (1991) will be indicated below. However, the main 
reason for the present analysis is to show unquestionably, 
i.e., with the same experimental data, that the conclusions 
in Van Leeuwen and Van den Hof (1991), which favor the 
Resonance model, are untenable if the Inew model is taken 
into account. 

Updated experimental analysts 

For a detailed description of the experiment, see Van 
Leeuwen and Van den Hof (1991). In short, in each of 128 
stimuli, the target was a seven-element series of empty and 
full circles, similar to the pattern in Figure 1 B. There were 
five tasks: grouping (free pattern segmentation), immediate 
recall (recall right after 200-ms target presentation), un- 
practiced goodness rating (without any other task), practiced 
goodness rating (after grouping task and immediate-recall 
task), and intermediate recall (recall of 1,000-ms presented 

Inew, Resonance -.735* 
Inew, IrE .630* 
I ..... Iold .664* 
Resonance, IvL -.686* 
Resonance, Idd -.753' 
IvL, Iold .679* 

* p <.0001 

Table 5. Within tasks, t test on differences between theoretical models 
(df= 125) 

Models Grouping Unpracticed Practiced Immediate Intermedi- 
compared entropy rating rating recall ate recall 

Inew- 1.209 2.726** 2.290* 0.231 0.000 
Resonance 

Inew--IvL 2.994** 3.049** 3.967** 4.187"* 2.472* 
In~w-Iold 3.269** 4.751"* 5.495** 3.068** 1.051 

Resonance 2.010" 0.661 1.920 4.316"* 2.676** 
- I v L  

Resonance 2.407* 2.368* 3.557** 3.321"* 1.211 
- Iold 

IvL--Iold 0.143 1.425 1.184 -1.196 -1.530 

* p  < . 0 5 ; * * p  <.01 

target after the previous target has been recalled and the 
next target has been presented). In the grouping and rating 
tasks, the target was presented until the response was given. 

For the rating tasks, mean ratings per stimulus were 
calculated; ratings were from 1 (very orderly) to 7 (very 
disorderly). For the recall tasks, mean number of errors per 
stimulus were calculated: an error is a wrongly recalled 
element. For the grouping task, agreement among the 
subjects was quantified per stimulus using the entropy 
formula X{(xi/n)ln(xi/n)} with xi the number of subjects 
who gave grouping i, and n the total number of subjects; a 
higher entropy means less agreement. The results of these 
calculations are given in the Appendix of Van Leeuwen and 
Van den Hof (1991). 

Table 3 shows the correlations between the theoretical 
and experimental data. As in Van Leeuwen and Van den 
Hof (1991), the Resonance measure was log-transformed 
by means of the formula ln(l+Resonance). Table 3 shows 
that the IvL model and the Iold model score considerably 
lower than the Resonance model and the Inew model, and 
that the Inew model scores equal to the Resonance model for 



the intermediate-recall task and better for the other tasks. 
Table 5 shows the result of a t test on the differences be- 
tween the (absolute) correlations, within tasks, using the 
(absolute) intercorrelations between the models as given in 
Table 4. In short, Table 5 shows that the IvL model and the 
Iold model do not score significantly different, and that the 
Inew model scores significantly better than the Resonance 
model for the rating tasks. 

Discussion 

The three static-coding models. The nonsignificance of the 
difference in performance between the IvL model and the 
Iold model is relevant. It confirms that the chosen com- 
plexity measu re  (Iold load) is probably more decisive than 
the chosen coding rules (DIS rules versus ISA rules) and 
illustrates the empirical deadlock in deciding between dif- 
ferent sets of coding rules (cf. Simon, 1972). 

The results for the Inew model (ISA roles plus Inew load), 
however, show a way out of that deadlock. The Inew model 
scores highly significantly better than both the IvL model 
and the Iold model for four tasks, and significantly better 
respectively better for the fifth task (see Table 5). This 
confirms the finding in Van der Helm et al. (1992). In that 
study, the Iold model and the Inew model were tested on a 
forced-choice grouping task for serial stimuli, similar to the 
ones in the experiment presently discussed, but with the 
following differences. First, several different types of 
stimulus element were used, i.e., not just one type (empty 
and full circles) as in Van Leeuwen and Van den Hof 
(1991). Second, the stimuli were selected more critically, so 
that the theoretical predictions discriminate more between 
the models. Third, instead of comparing the I loads of 
simplest codes with (dis)agreement among subjects about 
segmentations, the segmentations induced by simplest 
codes (see above,~ concerning Figure 1 B) were compared 
directly to the segmentations given by the subjects. Thus, 
one gets a more direct test of the model assumptions. In that 
setting, the Inew model was shown to be highly significantly 
better than the Iola model, i.e., scored a five-times larger 
percentage of significantly correct predictions. 

So, as far as the static-coding mode~s are concerned, the 
Inew model is clearly superior. This implies not only support 
for the lnew load as an appropriate measure of Pr~ignanz, but 
since the lnew load requires transparent coding rules, it also 
implies support for the ISA rules as an appropriate set of 
coding rules. 

The Inew model versus the Resonance model. Table 5 shows 
that the static-coding based [new model scores the same as 
the dynamic-network based Resonance model for the in- 
termediate-recall task, slightly better for the immediate- 
recall and the grouping tasks, and significantly better for 
both rating tasks. So one may reject Van Leeuwen and Van 
den Hof's (1991) conclusion that a static Prfignanz measure 
makes sense only if it is based on the notion of resonance. 
Nevertheless, the performance of the Resonance model 
requires some further discussion. 

The results on the grouping task should be taken with a 
grain of salt. The Resonance model is not suited for in- 
trapattem judgements such as are required in the grouping 
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task, since it does not predict segmentations (see above). 
This was the reason for using agreement among subjects 
about segmentations. But therefore the actual segmenta- 
tions as predicted by the Inew model are not taken into ac- 
count, so that the Inew model may be incorrectly taken to 
perform well or badly. For instance, agreement about a 
segmentation may be predicted correctly, but that seg- 
mentation may differ from the predicted segmentation. So 
agreement among subjects yields an inaccurate test. 

The two goodness-rating tasks require interpattern jud- 
gements, for which both the Resonance model and the 
lnew model are suited (again, see above). So the fact that the 
1new model scores significantly better can be taken as a 
reliable result. 

As was reported in Van Leeuwen and Van den Hof 
(1991), the intercorrelation between the ratings without any 
other task (unpracticed) and after two other tasks (prac- 
ticed) is very high (r = .945, p < .0001). This suggests that 
long-term history (i. e., the other two tasks) hardly affects 
the judgements of subjects, and that a really dynamic net- 
work process does not have to account for it. This agrees 
with Mens (1988), who found that an SOA of several 
seconds between a prime and a stimulus is already large 
enough to prevent influence of the prime on the stimulus 
interpretation. Mens also found (Leeuwenberg, Mens, & 
Calls, 1985) that two stimuli presented with an SOA of less 
than about 30 ms are interpreted as one stimulus and in- 
dependent of the short-term history (i. e., the presentation 
order). Only in case of medium-term history, i.e., between 
about 30 ms and 1,000-2,000 ms, Mens found (Mens & 
Leeuwenberg, 1988) some influence in the sense that good, 
but without-history-second-best, alternative interpretations 
may become almost just as preferred as the without-history- 
best interpretation. So a really dynamic network process 
could be useful in simulating such a medium-term history 
effect (see also next section). 

Whereas the grouping and rating tasks involve a process 
of selecting a preferred interpretation, the two recall tasks 
involve a process of retrieving an already selected-and- 
stored preferred interpretation. For the recall tasks, the 
basic assumption is that good patterns are remembered 
better. Despite the shorter presentation times in the imme- 
diate-recall task, subjects made fewer mistakes than in the 
intermediate-recall task (see Appendix in Van Leeuwen & 
Van den Hof, 1991). Furthermore, the tasks not only yield 
the same low correlations with both the Inew model and the 
Resonance model (see Table 3), but also show a rather low 
intercorrelation (r = .346, p < .01), as was reported in Van 
Leeuwen and Van den Hof (1991). 

In these recall tasks, the low correlations with the 
models suggest that the Pr~ignanz of the pattern to be re- 
called is not the only important factor - at least, if one 
accepts the Inew load and (to a lesser degree) the Resonance 
measure as indicators of pattern Prfignanz, on the basis of 
the rating tasks. This agrees with the between-task differ- 
ence in the number of errors, which suggests that the recall 
of a pattern is influenced more by the complexity of the 
task than by the Prfignanz of that pattern. The low inter- 
correlation may suggest that in the intermediate-recall task, 
the complexity of the task depends on the Prfignanz of the 
target after which the previous target has to be recalled. 
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2*(a) , ~ - a z ~  

Fig. 6. In this directed graph, each edge represents a subseries of the 
5-symbol series aabab. Only those subseries that consist of one 
symbol, or can be encoded entirely into one ISA form are repre- 
sented. Thus, each path from vertex 0 to vertex 5 represents a possible 
code for the entire aabab. For instance, the path along vertices 0, 2, 5, 
reseriepresents the code 2*(a)S[(b),(a)]. In principle, the number of 
codes is combinatorially explosive. But this graph shows that they can 
be represented in a nonexplosive way, using the static interaction 
(common parts) between the codes 

(4~.) ~ __-----------~(a~ 

Fig. 7. The paths vertex 0 to vertex 10 in this directed graph represent 
all A forms < (a) > / <  (Xl)(X2)... (xn) > into which the series akafaaa- 
kafcan be encoded. Each edge represents a possible pair (a)(xi), so that 
e.g., the A form < (a) > / < (k)(C)(a)(k)(j') > is represented by the path 
along vertices 0, 2, 4, 6, 8, 10, and the A form < ( a ) > /  
<(kaf)(a)(ka¢)> by the path along vertices 0, 4, 6, 10. In principle, 
the number of A forms is combi•atorially explosive. This graph, 
however, shows that they can be represented in a nonexplosive way, 
using the static interaction (common parts) between the A forms 

This seems to be an aspect that is well suited for simulation 
by means of a really dynamic network process (see also 
next section). For instance, the better the Prggnanz of a 
target (so, highly activated), the more difficult the previous 
target is recalled (as it lost much activation to the inter- 
vening target). 

Dynamic versus static? 

In the static-coding Inew model, visual perception is con- 
ceived of as a modular process with the raw pattern as input 
and a simplest interpretation as output. This interpretation 
is considered to be embedded in stored-knowledge struc- 
tures, and therefore may play different roles, depending ou 
knowledge (history, intention). So the static-coding ap- 
proach does not deny a dynamic process, once the simplest 
interpretation has been embedded in stored-knowledge 
structures, but it is that simplest interpretation in which the 
static-coding approach is interested and which is not as- 
sumed to be dependent on knowledge (cf., e.g., Rock, 
1985). 

This starting point implies that the static-coding ap- 
proach is less suited for explaining effects such as the 
medium-term history effect or the recall effect mentioned 
above. I therefore agree that a dynamic-network model may 
be a powerful instrument in simulating such effects. This 
simulation as such, however, is not yet an explanation. The 
explanatory power could come from a theory that forms the 
basis for the nodes, links, and activation-spreading pro- 
cesses, as used in the network. 

Now, on the one hand, Buffart's (1986, 1987) theory 
about hierarchical completeness does not have implications 
with respect to activation-spreading processes. Further- 
more, I have shown above that Buffart's theory is incon- 
sistent, and therefore cannot be accepted as a basis for the 
nodes and links in the dynamic-network model in Van 
Leeuwen and Van den Hof (1991). On the other hand, re- 

member that the concept of accessibility, specified by the 
notions holography and transparency, provides a sound and 
firm theoretical basis for the ln~w model, i.e., for both the 
ISA rules and the [new load. Furthermore, the Inew model 
showed the best experimental performance. These static 
results suggest that it might be relevant to develop a dy- 
namic-network model that starts from the Inew model, as 
follows. 

Consider a network in which the nodes represent all 
ISA codes, while the links represent so-called regularity 
relations and hierarchy relations between those 1SA codes. 
These two kinds of relation can be based on the notions of 
holography and transparency, respectively, and would be 
more or less analogous to, respectively, the inclusion and 
substitution relations discussed above. Now, let the acti- 
vation-spreading functions be such that, for a arbitrary first- 
input series (i. e., without history), fitting ISA codes with 
minimal Inew load end up with the highest activation value. 
Indications that this is feasible can be found in Van der Vegt 
et al. (1989). So, without the influence of history, this 
network model would simply simulate the Inew model. This 
way, the activation-spreading functions would not be just 
functions found by trial and error that simulate empirical 
data, but would be based on a theoretically and empirically 
supported starting criterion. 

A probably more intriguing solution may now be 
available for the following problem. In the DIT-codes 
network, each possible DIT code is represented by one node 
in the network. This is unrealistic, as the number of 
DIT codes is combinatorially explosive and, for larger 
networks, would exceed the number of neurons in the 
human brain. According to Mellink and Buffart (1987), the 
number of nodes is about 4k/3 for a network with inter- 
pretations from length (number of symbols) l to k. A 
similar problem exists (or, rather, existed) for the Inew model 
since a simplest code has to be selected out of a combi- 
natorially explosive number of possible ISA codes (cf. 
Hatfield & Epstein, 1985). For the [new model, however, 
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this problem has been solved on the basis of the concept of 
accessibility. That is, the simplest codes can be found with 
all possible codes being taken into account, but without 
each of those codes being considered separately (Van der 
Helm & Leeuwenberg, 1986, 1991; Van der Helm, 1988). 
The key to this solution is illustrated in Figures 6 and 7, 
showing graphs in which each edge represents a code part 
that may belong to several different codes, while each code 
is represented by a path in the graph. Then, in order to get a 
simplest code, the so-called shortest-path-method (Dijkstra, 
1959) can be applied, requiring only a polynomial amount 
of processing time. So, this way of representing codes 
implies a nonexplosive amount of processing time and 
storage space. 

Now, the way of representing codes, as given in Fig- 
ures 6 and 7, might also be applicable in the ISA-codes 
network. That is, an interpretation is not represented by one 
node, but by a set of nodes or, in other words, by a trace in 
the network. Then, one still faces the so-called binding- 
problem, i.e., how to distinguish between different and 
possibly overlapping traces. For that problem one could 
turn to oscillatory mechanisms: each trace shows a peri- 
odicity in activation spreading, but different traces at dif- 
ferent moments in time (see, e.g., Goebel, 1990; Crick & 
Koch, 1990). 

For the ISA-codes network, this way of representing 
codes may not only avoid an explosive number of network- 
nodes, but may also affect positively the performance of the 
network. For, the essence of a dynamic-network model is 
that the result depends on the interaction of interpretations, 
and Figures 6 and 7 show a more sophisticated represen- 
tation of the static interaction (common parts) of inter- 
pretations, which may enable a more sophisticated simu- 
lation of the dynamic interaction of interpretations. So all in 
all, the dynamic-network approach does not have to be seen 
as an alternative opposing the static-coding approach, but 
rather as an enriching alternative based on the same prin- 
ciples. 

Summary 

In an investigation into pattern Pr~ignanz, Leeuwenberg's 
(1969, 1971) static-coding approach (which uses pattern 
information only) was contrasted with the dynamic-net- 
work approach (which also uses history) initiated by Buf- 
fart (1986, 1987). Within this framework, I have discussed 
the experiment in Van Leeuwen and Van den Hof (1991), in 
which a static network measure of Pr~ignanz, namely the 
Resonance measure, was compared with the Iold load used 
in the static-coding approach until several years ago. The 
better performance of the Resonance measure was taken as 
a "static" indication for further development of the network 
model. 

With the same experimental data, however, I have 
shown that the more recent static-coding measure of 
Pr~ignanz, namely the Inew load, performs better than the 
Resonance measure. The Inew load is derived from the 
concept of accessibility (Van der Helm & Leeuwenberg, 
1991), which is also the basis for choosing the transparent 
holographic ISA rules as the only coding rules appropriate 

for obtaining allowed pattern interpretations. The good 
performance of the Inew load also supports the ISA rules, as 
the Inew load requires transparent coding rules. I have ar- 
gued that these "static" results suggest the development of a 
network model different from the one proposed in Van 
Leeuwen and Van den Hof (1991). This is relevant the more 
since I have shown that Buffart's (1987) theory about 
hierarchical completeness is inconsistent, and therefore 
cannot be accepted as a basis for the network model in Van 
Leeuwen and Van den Hof (1991). 

A network model, based on the concept of accessibility, 
might be shaped such that the activation-spreading func- 
tions yield a simulation of the Inew model (ISA rules plus 
lnew load), in case the influence of history is not (yet) 
present. This way, the activation-spreading functions would 
be based on a theoretically and empirically supported 
starting criterion. Furthermore, in the network, the allowed 
interpretations would not have to be represented by one 
node each, but might be represented by oscillating traces in 
the network. This way, all allowed interpretations can be 
represented without the implementation of a combinato- 
rially explosive number of nodes. Then, moreover, the 
network might enable a more sophisticated account of the 
dynamic interaction of interpretations and thus may even 
yield an enrichment of the static-coding approach. 
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Appendix 

This appendix and the appendix in Van Leeuwen and Van den Hof 
(1991) together provide the necessary theoretical and experimental 
data. In the following table, the symbolized patterns are given together 
with the minimal Iold load and the minimal Inew load, as computed by 
the algorithm PISA (Van tier Helm et al., 1986, 1991) using only the 
ISA rules. Generally, several minimum codes are possible; below, a 
minimum code is given for the Iold load, and one for the Inew load but 
only if it cannot be the one for the Iold load. The total set of patterns 
consists of 128 patterns; here, only the first 64 patterns from the ap- 
pendix in Van Leeuwen and Van den Hof (1991) are given; the second 
64 patterns can be obtained from the first 64 patterns in reversed order, 
by changing symbol a into b and symbol b into a. 
a represents an empty circle, and b a full circle. 

Pattern Iold + code Inew + code 

aaaaaaa 2 7*(a) 
aaaaaab 3 6*(a)b 
aaaaaba 4 5*(a)ba 
aaaaabb 4 5*(a)2*(b) 
aaaabaa 5 4*(a)b2*(a) 
aaaabab 4 < (4*(a))(a) > / <  (b) > 
aaaabba 5 4*(a)2*(b)a 3 
aaaabbb 4 4*(a)3*(b) 2 
aaabaaa 4 S[3*((a)),(b)] 2 
aaabaab 5 3*(a)S[(b)(a)] 3 
aaababa 5 3*(a)2*(ba) 4 
aaababb 5 3*(a)<(b)>/<(a)(b)> 4 
aaabbaa 5 aS[2*((a))(b)] 3 
aaabbab 5 a<(a)(b)>/<(ab)> 4 
aaabbba 5 3*(a)3*(b)a 3 
aaabbbb 4 3*(a)4*(b) 2 
aabaaaa 5 2*(a)b4*(a) 3 
aabaaab 5 S[(2*(a)b), (a)] 4 
aabaaba 5 aS[S[((a)),((b))]] 3 
aabaabb 5 a<(ab)>/<(a)(b)> 3 
aababaa 5 S[2*((a))(b),(a)] 3 
aababab 4 a3*(ab) 4 
aababba 5 a<(a)(b)>/<(ba)> 4 
aababbb 5 a<(a)>/<(b)(3*(b))> 4 
aabbaaa 5 S[2*((a))(b)]a 3 
aabbaab 5 S[2*((a))(b)]b 3 
aabbaba 5 a<(ab)>/<(b)(a)> 4 
aabbabb 5 a2*(a2*(b)) 3 
aabbbaa 5 S[2*((a))(b),(b)] 3 
aabbbab 5 aS[(ab)(b)] 4 
aabbbba 4 < (a)(4*(b)) > / < (a) > 3 
aabbbbb 4 2*(a)5*(b) 2 
abaaaaa 4 abS*(a) 3 
abaaaab 4 <(a)(4*(a)) > / < ( b ) >  3 
abaaaba 5 S[S[((a)),((b))],(a)] 3 
abaaabb 5 a<(b)>/<(3*(a))(b)> 4 
abaabaa 5 S[S[((a)),((b))]]a 3 
abaabab 5 S[S[((a)),((b))]]b 3 
abaabba 5 < (ab) > / < (a)(b) > a 4 
abaabbb 5 <(a)>/<(b)(a)>3*(b) 4 
ababaaa 5 a<(b)>/<(a)(3*(a))> 4 
ababaab 5 a<(b)(a)>/<(ab)> 4 
abababa 4 a3*(ba) 3 
abababb 4 3*(ab)b 4 
ababbaa 5 a<(ba)>/<(b)(a)> 4 
ababbab 5 aS[S[((b)),((a))]] 3 
ababbba 5 aS[(ba)(b)] 4 
ababbbb 4 <(a)>/<(b)(4*(b))>  3 
abbaaaa 5 a2*(b)4*(a) 3 
abhaaab 5 a<(b)(3*(a))>/<(b)> 4 
abbaaba 5 a<(b)(a)>/<(ba)> 4 
abbaabb 5 aS[2*((b))(a)] 3 
abbabaa 5 < (ab) > / < (b)(a) > a 4 
abbabab 5 aS[(b)(ba)] 4 
abbabba 5 S[(a)2*((b)),(a)] 3 
abbabbb 5 S[(a)(b)]3*(b) 3 
abbbaaa 5 a3*(b)3*(a) 3 
abbbaab 5 <(a)>/<(3*(b))(a)>b 4 
abbbaba 5 a<(b)>/<(b)2*((a))> 4 
abbbabb 5 S[(a2*(b)),(b)] 4 
abbbbaa 4 <(a)>/<(4*(b)) (a)>  3 
abbbbab 4 <(a)>/<(4*(b)) (b)> 3 
abbbbba 4 S[(a),(5*(b))] 3 
abbbbbb 3 a6*(b) 2 

1 
2 
3 
2 
3 
3 4*(a)S[(b),(a)] 

3*(a)2*(b)ab 

S[2*((a)),(b)]2*(b) 

2*(a)bS[(a)(b)] 
2*(a)ba3*(b) 

2*(a)2*(b)S[(a),(b)] 
2*(a)S[2*((b)),(a)] 

2*(a)3*(b)ab 
2*(a)4*(b)a 

aS[(b)2*((a))] 

ab3*(a)2*(b) 

S[(a),(b)]S[(a)(b)] 

aS[(b),(a)]3*(a) 
S[(a),(b)]S[(b)(a)] 
S [S [((a)),((b))],(b)] 

S[(a),(b)]2*(b)2*(a) 

S[(a),(b)]3*(b)a 
S[(a),(b)]4*(b) 

a2*(b)3*(a)b 
S[(a)(b)]S[(a),(b)] 

S[(a)(b)]b2*(a) 
S[(a)(b)]S[(b),(a)] 

a3*(b)2*(a)b 
a3*(b)S[(a),(b)] 

a4*(b)2*(a) 
S[(a)2*((b))]b 


