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ABSTRACT. We prove the existence of a * product on the cotangent bundle of a paralMizable 

manifold M. When M is a Lie group the properties of this * product allow.us to define a linear 

representation of the Lie algebra of this group on L~(G), which is, in fact, the one corresponding 

to the usual regular representation of G. 

0. INTRODUCTION 

A * product on a symplectic manifold (M, c~) is a particular deformation of the associative algebra 

N of smooth real-valued functions on M. Such deformations, which in the case (M = IR 2n, co = COo = 

canonical symplectic form) reduce to the Moyal product [3], have been used to give a completely 

autonomous presentation of quantum mechanics in the framework of classical phase space [1]. 

The existence of * products have been proved for various mutually overlapping classes of 

symplectic manifolds. Let us mention (i) symplectic manifolds with a vanishing third De Rham 

cohomology group [4] ; (ii) certain quotients of open sets of N. 2p by a group of linear symplectic 

transformations [2]. This method has, in particular, given the existence on the toms T 2n, and on 

the cotangent bundle to the compact classical groups. 

We prove the existence of a * product on the cotangent bundle of a paralMizable manifold M. 

When M is a connected Lie group G this * product is G-invariant and is a * representation of the 

Lie algebra fr ofg.  The associated linear representation of fr on the space of formal series on T*G 

stabilizes a subspace isomorphic to L 2 (G) and is equivalent on this subspace to the differential of 

the usual regular representation of G. 

1. * PRODUCTS, PARALLELIZABLE MANIFOLDS, HOCHSCHILD COHOMOLOGY 

In this section we recall the definition of a * product and of the relevant Hochschild co- 

homology. We then study some elementary properties of the cotangent bundle to a paralMizable 

manifold. Finally we prove a technical proposition on Hochschitd coboundaries. 

1.1. Let (M, co) be a symplectic manifold and let N =  cg =(M, IR). The symplectic structure co 
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induces an isomorphism between the N-module of  smooth vector fields on M and the N-module of  

smooth 1-forms. In particular, i f f E N o n e  denotes by Xf, the Hamiltonian vector field associated 

t o f b y :  

i(Xy)co = -d r .  (1.1) 

The Poisson bracket ~, g} of elements f a n d  g of N is a Lie algebra multiplication law on N; it 

has the expression: 

{f, g} = Xlg = - X g f  = co(Xf, Xg). (1.2) 

Let E(N, X) be the space of formal power series in a complex parameter X with coefficients in N. 

D E F INI TIO N 1 [ 1]. A * product on (M, co) is a bilinear map N x N ~ E(N, X): (u, v) -+ u * v = 

E=r=0 XrCr(u, v) where the so-called cochains C r are bilinear, bidifferential operators with values 

in N and satisfy the following axioms: 

(i) Co(U, v)=uv, Cl(u,v)= {u,~}, Vu, vEN, 

(ii) G(u, v) = (-1)rCr(v, u), Yu, v EN, Yr e ~q, 

(iii) Cr(k, u) = O, Yu ~ N, Vk E IR, Yr >1 1, 

(iv) when extended to E(N, X), the product is associative, i.e., 

(u * ~) * w = u * (~ �9 w) ,  v u ,  ~, w e 

The general theory of deformations in the sense of Gerstenhaber relates the deformations of  an 

associative algebra to the corresponding Hochschild cohomology. 

DEFINITION 2. A p-cochain is a p-linear map N p -+N. The eoboundary o fa  p-cochain C is a 

p + 1 cochain 3C defined by: 

p--1 
~C(uo ..... up) = ~ (-1)i[uiC(uo ..... fii ..... Up) - -  C ( u o ,  . . . ,  U i _ l ,  u i u i +  1, u i+  2 . . . . .  Up) + 

i=0  
(1 .3 )  

+ b/i+lC(b/0 . . . . .  /~i+1 . . . . .  Up)] ,  V u j E N .  

A p-cochain is called a p-coeycle if ~C  = 0 and a p-coboundary if C = 6"B. As the operator ~ is such 

that ~2 = 0, one defines the p th  Hochschild cohomology space as the quotient of  the space of 

p-cocycles by the space of p-coboundaries. It is denoted H~irf(N ) because all cochains considered 

are multidifferential operators. 

PROPOSITION 1. (Vey) [5]. HdPiff(N) is isomorphic to the space o f  p-contravariant, skew-symmetric, 
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smooth tensor fields on M. 

Explicitly if C is a p-cocycle, there exists a skew-symmetric contravariant smooth p-tensor A such 

that: 

C(ul .. . . .  up) =A(dul ..... dup) + BE(u1 ..... up). 

In particular, a p-cocycle is exact if and only if its completely antisymmetric part vanishes. 

Furthermore, the skew-symmetric part of a p-cocycle is always a p-differential operator of order 1 

in each argument. 

When one studies by order the associativity relation (axiom (iv)) of a * product one observes 

that at the order t (t ~> 2) it has the following form: 

gC,(u, ~, w) = Z [cAc,(u,  ~)w) - c~(u, c,(~, w))] = e,(u,  ~, w). 
r+ s=t def 
r,s> l 

Furthermore, by virtue of the associativity relations at order t' < t, one shows that the 3-cochain 

E t is a 3-cocycle. This means that a * product constructed up to order (t - 1) can be extended to 

order t provided Et is a 3-coboundary. The philosophy of the proof of our existence theorem is to 

choose particular cochains Cr such that at each order E t will be a 3-coboundary. 

1.2. Let Mbe  a paralMizable manifold of dimension m. Let X i (i <~ m) be smooth vector fields 

on M, which, at each point x, form a basis of the tangent space M x. Let 0 i be the smooth 1-forms 

such that Oi(X/) = 6}; denote by c~.(x) the smooth functions on M such that 

[Xi, Xjl(x) = • c~.(x)Xk(x ). (1.4) 
k 

Let us introduce the functions Pi on T*M by: 

p,.(~) = ~(x3. (1.5) 

If 11: T*M ~ M is the canonical projection, one checks that the 2m smooth 1-forms 

{dp i, II*0i; i ~< m ) form at each point ~ a basis of the dual of the tangent space (T*M)~. The 

classical Liouville 1-form k and the corresponding symplectic structure co - dX can be expressed in 

terms of these 1-forms. Indeed: 

X~ = ~ pi(~)(II*Oi)~, (1.6) 
i 

oo = E dpr A rI*o' - �89 E m(II*c~:k) II*Oj A II*0 k. (1.7) 
i i , j ,k  

It is useful to introduce the 2m vector f ields (Z  i, Yi; i ~ m) on T*M such that: 
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dpi(ZJ) = f l*oJ(Yi)  = 8i, dpi(Y/)  = fl*Oi(Z i) = O. (1.8) 

They form in each point ~ a basis of (T*M)~ and furthermore: 

I -[ ,Z  i = O, l ' I ,  Y i  = Xi" (1.9) 

The commutators of these vectors fields read: 

[Z i, Z j] = [Z i, Yj] = O, [Yi,  Yj] = 7, II*C~o'Yk. (1.10) 
k 

The Poisson bracket of two functions f and  g on T * M  can be expressed in terms of the action of 

these vector fields; explicitly: 

(f, g )  = Z ( Z i ( f )  Yi(g) - Zi (g)  Y i ( f ) )  + Z Pr(f l*Co')Zi( f)ZJ (g) �9 (1.11) 
i r , i , j  

1.3. We recall here some results concerning Hochschild cohomology. More precisely, we show 

that an exact p-cocycle is the coboundary of a (p - 1) cochain which is 'given in terms of the 

p-cocycle'. For the sake of simplicity, we consider here only differentiable 3-coboundaries, null 

on the constants, defined on the cotangent bundle of a parallelizable manifold M. 

To express a 3-cochain E on T*M we use (cf. Section 1.2) the global vector fields 

z i ,  Yi (i <<, m); to simplify the notation we denote them by T a (T  a = Z a, Z rn + a = Ya, a <~ m) and 

we omit the summation signs. Then if u, v, w ~ ~ = ( T * M ,  IR): 

g ( u ,  v, w) = 
O < a , b , c < K  

1 
a!b !c! --~il ... i a , A .../b, k~... kc~Ti~, ... ~i~ "au ) X 

x ( r J l  ... : r i b s ) •  (~rkl ... Tk~w),  
(1.11a) 

where Eil .." ia ' il... ib, kl ... kc are smooth functions on T * M  which are symmetric in (il ... ia), in 

(]1 ... ]b) and in (k l  ... kc).  The order of a term in E is, by definition, the triple of strictly positive 

integers (a, b, c). We consider on these triples the lexicographic ordering and call the symbol  of E, 

denoted a(E), the terms of maximal order in E relative to this ordering. Thus: 

l ~ g  o ~ . . . . .  
o(E)(u,  v, W)=r!s ! t !  ~ .... ir, jl...js, k l . . . tc t (T i' T i r u ) ( T  j' T / s O ( T  k~ ... TtCtw). 

LEMMA 1. Le t  E by a 3-eocycle. Then the order o f  its symbol  is (r, s, 1). 

Proo f  Assume it is of order (r, s, t) with t > 1. Then the terms of 6E  of order (r, s, t - 1, 1) 

come only from the symbol of E and one has thus the condition: 

Ei~ ... it, J, "..is, kl  ... kt--1 l ( ~ ) ( T i l  "'" Tiru)(TJl "'" Tisv)(Tk~ "'" T k t - l  w ) T l z  "- 0, 
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V~ E T*M and Vu, v, w, z E ~'= ( T*M, IR). Hence Ei~ ... ir, h .../), k~ ... k t = 0 and the conclusion. 

L E M M A  2. l f  the symbol  o f  a 3-cocycle E is o f  order (r, s, 1) with s > 1 then it coincides with the 

symbol  o f ' S C  where 

1 
C(u, V) jr? 

J s + l ( T  tl 
t-l. -~ { w I .  

l r ,  ] l  r!(s + 1)! ~i~ . . . . . .  ~ ' r u ) t ~  i' ... I"~ (1.12) 

Proof. The terms of 6E  of order (r, s - 1, 1, 1) come from terms in E of order (r, s, 1) and of 

order (r, s - 1, 2). Hence, the cocycle condition implies that: 

(Ei~ ... ir, J ~ ... is _ l k, l + Ei~ ... ir, J ~ . . . i s - l ,  kl) • 

• ( T  i~ ... T i r u ) ( T  s ... T i s - l v ) ( T k w ) ( T l z ) =  0 

Vu, v, w E cg~ ( T ' M ,  IR). Hence Ei~ .." Jr, J~ ... i s-  1 k, l is symmetric in k and l; thus symmetric in 

all its (s + 1) last indices. The cochain C given by (1.12) is well defined and the result follows. 

L E M M A 3. I f  the symbol  o f  a 3-cocycle E is o f  order (r, 1, 1), then it co&cMes with the symbol  o f  

~C with 

1 1 1 
C(u, v)=2r-  ~ g E i , . . . i r ,  k , , k  2 + gE i~ . . . i r ,  k2, k ~ + 

1 L r+ 2 (Eil""fP'"irk2'k1'iP + Eil""fP'"i~k"k*'iP)](Ti~"" Tir)(TglTk~v)+ 
p = l  

2 r+l 
+ ( r  + 2)~ Z El,  ... ~p... Jr+l, ip, k (  T i l  "" T t r+  l u ) ( T k v )  �9 (1.13) 

p = l  

We include the case r = 1 by assuming, in this situation, that the complete ly  ant isymmetric  part 

o r E  vanishes ( c f  Proposition 1). 

Proo f  If r > 1 the terms in E of  order (r - 1, 1, 1, 1) come from terms in E of order (r, 1, 1), 

(r - 1, 2, 1) and (r - 1, 1, 2). The cocycle condition implies that: 

(Ell... ir - 1/, k, t + Ell... ir - 1, ]k, l + Ell... ir - 1, ], kl) ( Ti~ ... Tir - 1 U) (TJv) ( T k w)  (T1z ) = O, 

Vu, v, w E ~=(T*M, IR). In particular, Ei, ... it-1/', k, l antisymmetrized over its last three indices 

vanishes. This is also the case for r = 1. 

Let us define ai, ... it, k, l by: 

= 1 + g i ,  k )  + a i  I Jr, E i l . . . i r ,  k, l d e  f $ ( g i l . . . i r ,  k , l  . . . ir ,  l . . . .  k,l" 

Clearly one has: 
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ai2.., irj, k, l + ai2.., irk, l, j + aia.., irl , j, k = O. 

Thus, as ai~ ... irk, l is antisymmetric in its last 2 indices, one has: 

ai2 ... irj, k, l = 2ai2 ... irk,/, l -I- (ai~ .." irl, k, j + ai~ ... irk, l,/)" 

Hence: 

( r+  2)ai~...ir, k , l =  2 Z ai,. . .~p...irk, ip, l + 2ai . . . .  irk, l + 
p = l  

Define then: 

+ E 
p = l  

2 r+l ~yr 
,~ . . i r k , ~ - ~  E a;~. . .~ . . . ir+~,;p, , ,  

p = l  

tr = i Ei  ~ + 1 1 Ei~...ir, kl ~ ...Zr k,l -ffEi,...i r,t ,k + -  x 
r + 2 p = l  

x (ail ... ~p.../rk, l + a/~ ... ,~... irl, k). 

One sees that E ' is symmetric in its (r + 1) first indices and that E "  is symmetric in its r first 

indices and in its 2 last indices. Furthermore: 

EiI irk, l = E ' " �9 .. il... irk, l + Ell . . .  i r, kl" 

The conclusion follows easily. 

If  one applies one of  the above lemmas to a 3-cocycle E one constructs a 2-cochain C' ,  whose 

coefficients are linear combinations of  the coefficients o r e  corresponding to the same set of 

indices, and such that or(E) = or(6 C'). Using a recursive procedure one gets: 

PROPOSITION 2. L e t  E be a d i f ferent iable  3-cocycle,  null  on  the constants ,  on  the co tangen t  

bundle  o f  a parallelizable m a n i f o l d  M. Then  i r e  is a 3-coboundary ,  one  can choose  a 2-cochain 

C such that  E = "6C and: 

C(u, v) = ~ C i . . . .  ip, i l . . . j q (T i ' . . .  T i p u ) ( T  i~ ... T /qv )  
O < p , q < ~ K  

where  the  coe f f ic ien ts  Cia ... ip,/1 ...jq are linear comb ina t ions  o f  the  coe f f ic ien ts  

400 



E k ,  . . .  k a, l~ . . .  l b, m 1 . . .  m c o f F .  with (il ... ip, Jl ... ]q } = ( kl  ... ka, ll ... lb, ml  ... mc }. 

2. E X I S T E N C E  O F  A * P R O D U C T  O N  T H E  C O T A N G E N T  B U N D L E  O F  A P A R A L L E L I Z A B L E  

M A N I F O L D  

Let M be a parallelizable manifold, T*M its cotangent bundle. A * product on T*M is given by a 

formal power series 

/ ' = 1  

where the Cr are bidifferential operators which, with the notations of  Section 1, are written as: 

Cy(u,v) = Z Cff.!. ia, L . . . jb(T i' ... T iau ) (T  i' ... rJ~v). 
l <~a,b<~K 

DEFINITION 1. The Z-order o f  a term of Cr is the number of  indices i 1 ... ia, ]1 . . .  ] b  which are 

-~n, i.e., the number of  Z vector fields arising in the bidifferential operator. 

We want to prove the existence of  a * product on T*M whose cochains satisfy axioms (i) - (iv) 

and in addition: 

H1 (resp. HI ' )  For r >~ 1, Cr is given as a sum o f  terms o f  Z-order varying f rom r to 2r; a term 

o f  Z-order (r + i) has a coeff icient  which is the produc t  o f  a homogeneous  

polynomial  in Pk o f  degree i by a funct ion II*f, f E  T=(M, JR) (~esp. by a 

constanO. 

H2 For  r > 1 and for  all 1 ~ i, f <~ m, Cr(p i, pj)  = O. 

REMARK 1. These assumptions are satisfied by C1. Indeed: 

C 1 (u, v) = {u, v } = Z i (u )Y i (v )  - Z i (v )Y i (u)  + prH*C~Z i(u)ZJ(v). 

The 2m first terms have Z-order 1 and their coefficients are constants. The m ( m  - 1)/2 last terms 

have Z-order 2 and their coefficients are the product of  a polynomial in p of  degree 1 by the 

functions II*C~.. In the case where the C~ are constants, assumption H I '  is satisfied. 

REMARK 2. HI  implies H2 for r > 2. Indeed a term of  Z-order > 2 is automatically zero for 

u = pi, v = p j. 

LEMMA 1. I f  the cochains Cr satisfy HI (resp. Hl ') for  r <<, n then E n +1 is a sum o f  terms o f  

Z-order varying f r o m  (n + 1) to 2(n + 1) and the coeff icient  o f  a term o f  order n + 1 + i 
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(0 ~< i ~< n + 1) has the form P(pk )II*O0 where P is a homogeneous polynomial o f  degree i and 

f E  cg =(M) (resp. is a constant). 

Proof Recall that: 

E,,+~(u, ~, w)= 
r +  3 = t 

r , s ; ~ l  

(cr(c~(u, ~), w) - cAu, c~(~, w))). 

As the vector fields Z i commute with each other and with the vector fields Y], and as 

[Yi, Yj] = (II*Cff)Yk, the Z-order of  a term in a given cochain does not depend on the particular 

way of  writing the bidifferential operators in terms of the vector fields Yi, z i .  In particular, it does 

not change if one symmetrizes the coefficients. Consider a term of C r of Z-order r + i (0 ~< i ~< r) 

and a term of  C s of order s + j  (0 ~<j ~< s). They give rise to terms in E n +1 of Z-order r + s + i + j -  k 

(0 < k ~< j) with coefficients which are homogeneous polynomials in p of  degree (i .+ j - k) multi- 

plied by a II*f(resp.  a constant). Hence, the conclusion. 

C OR O L L AR Y. I f  the cochains Cr satisfy H1 (resp. H1 ') for r <~ n and i f E  n + 1 is exact then 

En+l = 8Cn+1 where Cn+ i satisfy H1 (resp. HI ' ) .  

Proof The result follows immediately from I.emma 1 and Proposition 2. 

LEMMA 2. There exists on T*M a * product up to order 3 whose eoehains satisfy H1 and H2 

(resp. H I '  and H2 i f  Ci~ are constants). 

Proof We know that C1 = {, } satisfies H1 (resp. HI ' )  and E2 is exact because its antisymmetric 

part is zero by Jacobi's identity. Thus E2 = 8C2 where C2 satisfies H1 (resp. H I ' )  by virtue of  the 

Corollary. We can assume that, Vi, ] = 1 . . . .  , m; C2 (Pi, Pj) = 0. Indeed, it would be satisfied if we 

use the construction described in Section 1.3. Another argument is that  we can subtract from C2 

a term of the form aijZiZ j which is the only one contributing to C2 (Pi, Pj). Finally, we can 

assume C2 to be symmetric. Indeed E2(u, v, w) = -E2(w,  v, u) and if C(u, v) = (-1)rc(v,  u) then 

~'C(u, ,,, w ) = - ( - l y ~ ' C ( w ,  ~, ,,). 
The cochain E3 is then automatically exact because its antisymmetric part is zero. Using once 

more the Corollary we have E3 = 8"C3 and C3 satisfies H1 (resp. HI ' ) .  Finally, as above, 

G(u,  v ) = - G ( v ,  u). 

LE M M A 3. I f  the eochains Cr satisfy H1 (resp. H I ' ) ,  H2 and the parity assumption (ii) for r <, n, 

then En +1 is exact and E n +1 = 8Cn +1 where Cn +1 satisfies H1 (resp. H I ' )  and (ii). 

Proof The assumptions imply immediately that: 

c r  n*g)=O,  Vf, g e ~ ( M ) ,  Vr.-->l, 

Cr pj) = O, Vi, j = 1 ..... m, Vr > 1, 

Cr(pi, II*f)=O, V i = l  ... .  ,m ,  V f C ~ ' ~ ( M ) ,  V r >  l ,  

Cr( {Pi, P]}, Pk) = O, Vi, f k = 1, ..., m, V r >  2, 

Cr({pi, p j } ,n* f )=O,  Vi, j= l ..... m, V f E q ~ = ( M ) , V r > 2 .  
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This implies that the antisymmetric part o f E  n +1, (n >1 3), which one knows, a priori, to be a 

1-differential operator in all its arguments (Proposition 1), vanishes identically. Hence En + 1 is 

exact and using the Corollary one sees that En + I = ~Cn + 1 where C n + 1 satisfies H1 (resp. HI'). By 

the argument used in Lemma 2, one can assume C n +a to satisfy the parity assumption, replacing 

Cn +1 by its symmetrization or its antisymmetrization which still satisfies H1 (resp. HI'). 

Using Lemmas 2 and 3 we get by induction: 

THEOREM 1. Let  M be a parallelizable manifold, T*M its cotangent bundle. Then there exists a 

* product on T'M: 

u * v = uv + X (u, v }  + ~ XrCr(u, ~). 
r = 2  

where the Cr are bidifferential operators satisfying assumptions H1 and H2. I f  the functions Cff 

are constants, then the C r satisfy HI' and H2. 

When Mis a connected Lie group G, the above results apply obviously. If one uses for vector 

fields X i on G the left invariant vector fields corresponding to a basis ~-i of the Lie algebra fr of 

G one gets: 

CO R O L L A R Y. Let  G be a connected Lie group, T*G its cotangent bundle and l-l: T*G ~ G the 

canonical projection. There exists a * product on T 'G,  &variant by the lift o f  the left translations 

o f  G, sueh that: 

(*) I f  P and Q are homogeneous polynomials in p o f  degree r and s and i f  f, g E ~ ~ (G) 

r + 8  

( I I*f-  P) �9 (rI*g. Q) - Z X~(rl*h3Ri 
i = 0  

where h i E cg~(G) and R i is a homogeneous polynomial o f  p in degree (r + s - i). 

The 'left' action of G on T*G has a momentum map ~ and one sees easily that if 

J(~) (~-i) = - Z k  (Ad I/(~))- 1 kipk(~) =aef Ai(~), then: 

Ai * Aj - A! * A i = 2X (Ai, Aj}. 

The * product is thus, with the terminology o f [ l ] ,  a * representation of ~ ,  which we call the 

regular * representation. The linear representation O of N on E(N, X) defined by: 

- 1 
p(Xi)s = ~ ( A i  * s - s �9 A3, Vs ~E(N,  X) 

contains, among the invariant subspaces, the space II*L 2 (G). One checks that on this subspace, 
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p is equivalent to the differential of the regular representation of G. 

It thus seems reasonable to assume that the regular * representation plays an important role 

among the * representations of G. This point will be studied elsewhere, in particular in the case 

of a compact group. 
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