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ABSTRACT. We prove the existence of a # product on the cotangent bundle of a parallelizable
manifold M. When A is a Lie group the properties of this * product allow us to define a linear
representation of the Lie algebra of this group on L*((), which is, in fact, the one corresponding
to the vsual regular representation of .

0. INTRODUCTION

A # product on a symplectic manifold (M, ) is a particular deformation of the associative algebra
N of smooth real-valued functions on M. Such deformations, which in the case (M = R*?, w = ¢, =
canonical symplectic form) reduce to the Moyal product [3], have been used to give a completely
autonomous presentation of quantum mechanics in the framework of classical phase space [1].

The existence of # products have been proved for various mutually overlapping classes of
symplectic manifolds. Let us mention (i) symplectic manifolds with a vanishing third De Rham
cohomology group [4] ; (ii) certain quotients of open sets of IR?” by a group of linear symplectic
transformations [2] . This method has, in particular, given the existence on the torus 7%, and on
the cotangent bundle to the compact classical groups.

We prove the existence of a * product on the cotangent bundle of a parallelizable manifold M.
When M is a connected Lie group G this # product is G-invariant and is a * representation of the
Lie algebra @ of g. The assoclated linear representationt of % on the space of formal series on 77%G
stabilizes a subspace isomorphic to £.2(G) and is equivalent on this subspace to the differential of
the usual regular representation of G

1. #PRODUCTS, PARALLELIZABLE MANIFOLDS, HOCHSCHILD COHOMOLOGY

In this section we recall the definition of a * product and of the relevant Hochschild co-
homology. We then study some elementary properties of the cotangent bundle o a parallelizable
manifold. Finally we prove a technical proposition an Hochschild coboundaries.

1.1. Let (M, w) be a symplectic manifold and let ¥ = % (M, IR). The symplectic structure w
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induces an isomorphism between the MN-module of smooth vector fields on M and the N-module of
smooth |-forms. In particular, if f€ ¥ one denotes by X, the Hamiltonian vector field associated
to fby:

i(Xp)yos = —df. (1.1)

The Poisson bracket {f, g} of elements fand g of ¥ is a Lie algebra multiplication law on &, it
hag the expression:

{f;g}:ng=¥ng= w(sz Xg) (1.2)
Let £(, A) be the space of formal power series in a complex parameter A with coefficients in V.
DEFINITION 1 [1]. A * product on (M, w) is a bilinear map N x N = E(N, \): (4, v} »u % v =

Z5t o N'Go(n, v) where the so-called cochains C, are bilinear, bidifferential operators with values
in AV and satisfy the following axioms:

(i) Colu, v) =ur, Ci(u,v)= {w, 0}, Yu, vCN,
(ii) G, 2)= (-1YCylo, ), Vi, 0 EN, VFEN,
(iii) Clk u)=0, YuEN, VKER, Vr>1,
(iv) when extended to £(, A), the product is associative, i.e.,

(uro)sw=us(v*w),Vu v, wEN.

The general theory of deformations in the sense of Gerstenhaber relates the deformations of an
assoctative algebra to the corresponding Hochschild cohomology.

DEFINITION 2. A p-cochain is a p-linear map N¥ — N. The coboundary of a p-cochain Cis a
p + 1 cochain 6C defined by:

~ p=1 R
8 g, ..., Up)= 3. (¥ [u;Clatg, oo, gy ey tp) — Qs wees Ui 15 Uiy Winsweny Up) T
i=0

(1.3)

+idpo Clidg, ooy Bygts ooy Up)], VG EN

A p-cochain is called a p-cocycle if 5C=0anda pcoboundary it C = GB. As the operator 3 is such
that 8 2 = 0, one defines the pth Hochschild cohomology space as the quotient of the space of
p-cocycles by the space of p-coboundaries. It is denoted I?f,’iff N) because all cochains considered
are multidifferential operators.

PROPOSITION 1. {(Vey) [5] . H8i(N) is isomorphic to the space of p-contravariant, skew-symmetric,
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smooth tensor fields on M

Explicitly if Cis a p-cocyele, there exists a skew-symmetric contravariant smooth p-tensor 4 such
that:

s, o tiy) = Aty .., Qi) + 8B, .o, 1),

In particular, a p-cocycle is exact if and only if its completely antisymmetric part vanishes.
Furthermore, the skew-symmetric part of a p-cocycle is always a p-differential operator of order 1
in each argument.

When one studies by order the associativity relation {axiom (iv)) of a = product one observes
that at the order 7 (¢ > 2)it has the following form:

ng(u, o, w)= 5 [CACu, v)w) — Clu, Colo, w))] = Ely, v, w).
res=t def
rny=1

Furthermore, by virtue of the associativity relations at order ¢ < ¢, one shows that the 3-cochain
£, is a 3-cocycle. This means that a * product constructed up to order (7 — 1) can be extended to
order ¢ provided £, i8 a 3-coboundary. The philosophy of the proof of our existence theorem is to
choose particular cochains C,. such that at each order £, will be a 3-coboundary.

1.2, Let M be a parallelizable manifold of dimension 7. Let X; (i < m) be smooth vector fields
on M, which, at each point x, form a basis of the tangent space 4, . Let 8 be the smooth 1-forms
such that Hi(X'J-) = §!; denote by cf;-(x) the smooth functions on M such that

G X () = T efe)Xe(x). (1.4)
k

Let us introduce the functions p; on 7% by:

pdE) = E(X))- (1.5)

If H: 7*M — M is the canonical projection, one checks that the 2m smooth 1-forms

{dp,, [1*6%; i <m) form at each point £ a hasis of the dual of the tangent space (T *M);. The
classical Liouville 1-form A and the corresponding symplectic structure w = dA can be expressed in
terms of these i-forms. Indeed:

A= 2 P, (16)

w=F dp; AR 1 5 p (I )I*e A 11%6F, (1.7)
i LK

It is useful to introduce the 2m vector fields (Z { Y;; i <m)on T*M such that:
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dpZh) = 11*67(Y) =8},  dpl(Y;)=T1*6'(z) = 0. (1.8)
They form in each point £ a basis of (T*M); and furthermore:

N.2°=0, MY =X, (1.9)
The commutators of these vectors fields read:

(2 2] =[Zi v =0, 1Y, Y] =3 I*CSY;. (1.10)
k

The Poisson bracket of two functions fand g on T*M can be expressed in terms of the action of
these vector fields; explicitly:

g} = Z @ NYHR) - Z@YN+ 3 pFCHE(NZ/(g). (1.11)

ri

1.3. We recall here some results concerning Hochschild cohomology. More precisely, we show
that an exact p-cocycle is the coboundary of a (p — 1) cochain which is ‘given in terms of the
p-cocycle’. For the sake of simplicity, we consider here only differentiable 3-coboundaries, null
on the constants, defined on the cotangent bundle of a parallelizable manifold M.

To express a 3-cochain £ on 7*M we use (cf. Section 1.2) the global vector fields
Z', ¥; (i < m); to simplify the notation we denote them by 7% (T® = Z° T *% = Y,, a < m) and
we omit the summation signs. Then if 4, v, w € €7 (T*M, R):

1 . .
E@, o w)= 3 Aptet B gy e oK e (Th L Theu) x
0<a, b, c<K "

(1.11a)
x (T ... T} x (T%: .. T¥ew),

where B i j .. jy. &, ... k, 8r¢ smooth functions on T*M which are symmetric in 7y ... ), in

(y ... Jp)and in (k; ... k). The order of a term in £ is, by definition, the triple of strictly positive
integers (a, b, c). We consider on these triples the lexicographic ordering and call the symbol of E,
denoted o(F), the terms of maximal order in £ relative to this ordering. Thus:

1 ) ‘ A 4
U(E)(u, 7, W) = mEil '"ir- ii "'i.!'l kl"' kt(T!l e T'i’u)(Tfl T"J"SU)(:FJ{:L .. TktW).

LEMMA 1. Let F by a 3-cocycle. Then the order of its symbol is (¥, s, 1).
Proof. Assume it is of order (#, s, ) with £ > 1. Then the terms of 3£ of order rsr—1,1)
come only from the symbol of E and one has thus the condition:

Ei ity oo ey o b T Ty L Tl L TR—1w) Tz = 0,
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YEET*M and Yu, o, w, z € €7 (T*M, R). Hence £ ; ceefor Ky . i = 0 and the conclusion.

LEMMA 2. If the symbol of @ 3-cocycle E is of order (r, s, 1) with s >> | then it coincides with the
symbol of §C where

1 , _ _
A, v) g +“—1’)7E1-1A.,;-,,,-,...,;v. o (T T (T .. Tls+1y), (1.12)

Proof The terms of SE of order (r.s—1,1, 1) come from terms in £ of arder (¥, 5, 1) and of
order {, s — 1, 2). Hence, the cocycle condition implies that:

Eooipjyoic bt YL e i) X
x (T4 Ty (Th . Th~-1)(T*w)(T2) =0

Vi, o, wEF(I*M, R). Hence & ; ;.. ;. &1 1S symmetric in k and /; thus symmetric in

all its (s + 1) last indices. The cochain C given by (1.12) is well defined and the result follows.

LEMMA 3. If the symbol of a 3-cocyele E is of order (r, 1, 1), then it coincides with the symbol of
6 C with

Qu v):—l g +lg . +
2 2w 2 Bobe kL ky Db Ry Ry

~

+ (£}, FE b ik ey, i) I T TH )+

1
_— kg ki
— s dp o Bpitg, 1r
r+2p=1 124 14

r+1
+

(#+2)! ZlE"l-»":7"-"';-+1x{p,k(Tf‘ o T+ 1) (T50), (1.13)
5=

We include the case r = | by assuming, in this situation, that the completely antisymmelric part
of & vanishes (cf. Proposition 1).

Proof. If r > 1 the terms in £ of order (r — 1, 1, 1, 1) come from terms in £ of crder (7, 1, 1),
(r— 1,2, Dand (r — 1, 1, 2). The cocycle condition implies that:

Ei o int Y E o it EL e (T Tr= L) (TR (TPw)(Tiz) = 0,

Yu, v, w EET(T*M, R). In particular, E3 .. 44 &, antisymmetrized over its last three indices
vanishes. This is also the case for#=1,
Let us define a; _ ; ) by:

-1
Byt ot 2 Eooipoie 1 By Y ok

Clearly one has:
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@, gk Y, Y i g,k = 0

Thus, as a; %, ¢ Is antisymmedric in its last 2 indices, one has:

G gk 1= 2 gk gt (‘1:’,.‘_ i, ko ¥ 8k j)-

Hence:
r
rt D, iy ,1=2 3 gty 0 280 et
r-=1
,
upy @Byt ety Y1k, fp)-
p=1
Define then:
2 r+l
! =——_ . .
EEL...frk,l T2 zlai,... e et Lo £
P

N
>

1
L2 1 1
By okt =5 etz ok Y

It

p=1

K@ gy et G, )

One sees that I is symmetric in its (7 + 1) first indices and that £ is symmetric in its 7 first
indices and in its 2 last indices. Furthermore:

e

By k=B e YEL
The conclusion follows casily.

If one applies one of the above lemmas to a 3-cocycle £ one constructs a 2-cochain €', whose
coefficients are linear combinations of the coefficients of £ corresponding to the same set of
indices, and such that o(Z) = o(5C"). Using a recursive procedure one gets:

PROPOSITION 2. Let E be a differentiable 3-cocycle, null on the constants, on the colangent
bundle of a pavallelizable wmanifold M. Then if E is a 3-coboundary, one can choose a 2-cochain
Csuch that E= 6Cand.:

Uy, ») = 7 Ci.,.,ip: I ...J'q(Ti’ . TRu) (T . Tlay)
0<p,gsK

where the coefficients C; are linear combinations of the coefficients

Sy g
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Ekl... kg bty my . mg of B with {i; ... fp,jl ]ql ={ky kbl my o mp )

2. EXISTENCE QF A * PRODUCT ON THE COTANGENT BUNDLE OF A PARALLELIZABLE
MANIFOLD

Let M be a parallelizable manifold, 7% its cotangent bundle. A * product on T%¥ is given by a
formal power scries

uxv=uv+ 3 NCu, v)
r=1

where the C, are bidifferential operators which, with the notations of Section 1, are writien as:

C,,(u, U) = z Ci(xr-)‘-’.a:j: '_4jb(Til TEHIJ)(T’.‘ ijv).
1<a,b<K

DEFINITION 1. The Z-order af a term of C, is the number of indices i, ... i , 7, ... 7, which are
<, i.e., the number of Z vector fields arising in the bidifferential operator.

We want to prove the existence of a # product on 7*M whose cochains satisfy axioms (1} — (iv)
and in addition:

H1 (resp. H1") For r =1, C, is given as a sum of terms of Z-order varying from r to 2r; a term
of Z-order (v + 1) has a coefficient which is the product of @ homogeneous
polynomial in py, of degree i by a function |1*f, fE €™ (M, IR} (resp. by @
constant).

H2 Fory>1and forall 1 <i,j<m, C(p;, p;) = 0.
REMARK I. These assumptions are satisfied by ¢, . Indeed:
G 0)= {u, v} =Z (W)Y e) — Z'(0)Yiw) + p,TT*CLZ (u)Z! (v).

The 2 first terms have Z-order 1 and their coefficients are constants. The m{m — 1)/2 last terms
have Z-arder 2 and their coefficients are the product of a polynomial in p of degree 1 by the
functions II*CY. In the case where the (; are constants, assumption H1' is satisfied.

REMARK 2. HI implies H2 for # > 2. Indeed a term of Z-order 2> 2 is automatically zero for

u=p,-,v=pj.

LEMMA 1. If the cochains C, satisfy H1 (resp. H1") for r < n then E,, .1 is a sum of terms of
Z-order varying from (n + 1} to 2(n + 1) and the coefficient of a tevin of order n+1+1
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(0 < i< n+1)has the form P(p, I*(f) where P is a homogeneous polynomial of degree i and
FE E7(M) (tesp. is a constant).
Proof. Recall that:

Ey . 1(34; v, W) = Z (Cr(Cs(H: 7))5 W) - Cr(us CS('U: w)))'

rt+s=t
el

As the vector fields Z f commute with each other and with the vector fields Y}, and as

[Y. Y] = (H*C,-;'—’)Yk, the Z-order of a term in a given cochain does not depend on the particular
way of writing the bidifferential operators in terms of the vector fields ¥, Z/. In particular, it does
not change if one symmetrizes the coefficients. Consider a term of C, of Z-order r + § (0 <7 <7)
and a term of € of order s +7 (0 <j < 5). They give rise to termsin £, ., of Z-orderr+s+i+j—-k
(0 < k < J) with coefficients which are homogeneous polynomials in p of degree (7 + 7 — &) multi-
plied by a IT*f (resp. a constant). Hence, the conclusion.

COROLLARY. If the cochains C, satisfy H1 (resp. HL") for r < n and if E,, .| s exacr then
E,+1 = 8C, 4+, where C,, 4 satisfy H1 (resp. H1").
Proof. The result follows immediately from Lemma 1 and Proposition 2.

LEMMA 2. There exists on IT'*M a % product up to order 3 whose cochains satisfy H1 and H2
(resp. H1' and H2 if Cf are constants).

Proof We know that C; = {, } satisfies H1 (resp. H1") and £, is exact because its antisymmetric
part is zero by Jacobi’s identity. Thus £, = ng where C, satisfies 1 (resp. H1") by virtue of the
Corollary. We can assume that, Vi, j =1, ..., w1; G5 (p;, pj) = (. Indeed, it would be satisfied if we
use the construction described in Section 1.3. Another argument is that we can subtract from C,
a term of the form a2 7! which is the only one contributing to C;(p,, pj). Finally, we can
assume C, to be symmetric. Indeed Ey(u, v, w) = —E5(w, », &) and if (e, v) = (—1Y (v, u) then
50, v, W)= —{—1Y 80w, v, ).

The cochain £5 is then automatically exact because its antisymmetric part is zero. Using once
more the Corollary wehave 75 = BJC;., and C; satisfies H1 (resp. H1"). Finally, as above,

Ca{y, ©) = —Cs(v, u).

LEMMA 3. If the cochains C, satisfy H1 (resp. H1"), H2 and the parity assumption (ii) for r <n,
then £, ., is exact and E, 41 = 8C,, +; where Cq.q satisfies H1 (resp. H1") and (ii).
Progf. The assumptions imply immediately that:
C(II*. I*g) =0, Vf, g€€” (M), vr=1,
Gppp)=0, Yij=1,.,m v¥r>1,
Clp,, IFNH =0, VYi=1,..,m V/CFTM), Vr>1,
Cr( {pz : p]}.— pk) = D, Vl: f,- k= 17 sy T, vr > 2:
Clipu i}, ¥ =0, Vi j=1,..,m VFSE"(M), vr>2.
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This implies that the antisymmetric part of £, {# = 3), which one knows, 2 priori, to be a
1-differential operator in all its arguments (Proposition 1), vanishes identically. Hence E,, 4 is
exact and using the Corollary one sees that £, . ; = E'Cn +1 where C,,_; satisfies HI (resp. HL"). By
the argument used in Lemma 2, one can assume C, ;¢ to satisfy the parity assumption, replacing
C, +1 by its symmetrization or its antisymmetrization which still satisfies H1 (resp. H1').

Using Lemmas 2 and 3 we get by induction:

THEQREM 1. Let M be a parallelizable manifold, T#M its catangent bundle. Then there exists a
= product on T*M:

urv=uo+ Ay, v} + . NCily, o).

r=2

where the C, are bidifferential operators satisfying assumptions Hl and H2. If the functions C,{,-‘
are constants, then the C, satisfy H1' and H2.

When M is a connected Lie group G, the above results apply obviously. If one uses for vector
fields X; on G the left invariant vector fields corresponding to a basis X; of the Lie algebra @ of
G one gets:

COROQLLARY. Let G be g connected Lie group, T#G its cotangent bundle and 1: TG — G the
canonical projection. There exists a * product on TG, invariant by the lift of the left translations
of G, such that:

(#}If Pand Q are homaogeneous polynowmials in p of degree r and s and if f, g €€~ (5)

(7 P+ (P~ Q)= 3. N(TI*h)R;
/=0

I
where h; €€ (G) and R; is a homageneous polynomial of p in degree (v + 5 — 1).

The ‘left’ action of G on T*G has a momentum map £ and one sees easily that if
JENXD) = ~Zg (A TUE) ™ kapr(8) =ger AE), then:

A # AI'-—'A]' ¥ A; =20 A, A]}

The # product is thus, with the terminology of [1], a * representation of %, which we call the
regular = representatinn. The linear representation p of & on E(V, A) defined by:

- 1
(X )s = ﬁ(A,- £5—-5%A), YSEEN V)

contains, among the invariant subspaces, the space TI*L? (7). One checks that on this subspace,
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p is equivalent to the differential of the regular representation of G.

It thus seems reasonable to assume that the regular # representation plays an important role
among the = representations of (7. This point will be studied elsewhere, in particular in the case
of a compact group.
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