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Abstract. Few boundary-value problems in fluid mechanics can match the attention that has been' 
accorded to the flow of fluids, Newtonian and non-Newtonian, between parallel rotating disks 
rotating about a common axis or about distinct axes. An interesting feature which has been 
recently observed is the existence of solutions that are not axially symmetric even in the case of 
flow due to the rotation of disks about a common axis. In this article we review the recent efforts 
that have been expended in the study of both symmetric and asymmetric solutions in the case of 
both the classical linearly viscous fluid and viscoelastic fluids. 

I. Introduction 

In 1921 von Karman [141] used a similarity transformation to study the steady axially symmetric 
swirling flow of the classical linearly viscous fluid, induced by the rotation of an infinite disk. Later, 
Batchelor [8] showed that such a similarity transformation would be appropriate for studying the 
flow of a linearly viscous fluid between two infinite parallel disks, rotating with constant but differing 
angular speeds, about a common axis (see Figure 1). These two works have been followed by 
extensive studies on the swirling flow of the classical linearly viscous fluid, the like of which has been 
accorded to few problems in fluid mechanics. These studies cover a broad spectrum ranging from 
those which are concerned with the physics and fluid mechanics of the problem to those which 
address rigorous mathematical questions regarding existence and uniqueness of solutions. The 
problems have also been used as test problems for numerical schemes and in the study of matched 
asymptotic expansions. Such intensive studies notwithstanding, several basic questions regarding the 
flows remain unanswered and the analysis of the problem is far from complete. 

The recent works of Berker [12] and Parter and Rajagopal [93] have exacerbated the situation. 
Breaking away from the approaches of von Karman [141] and Batchelor [8] which assumed axial 
symmetry, Berker [12] considered the possibility of solutions that are not necessarily axially symmet- 
ric and established a one-parameter family of solutions for the flow of the classical linearly viscous 
fluid between two plane parallel disks rotating about a common axis with the s a m e  angular speed. 
The only axially symmetric solution in this family is the rigid-body motion; the only solution that 
would follow from the classical assumptions of von Karman. However, Berker [12] did not investi- 

1 The support of the Air Force Office of Scientific Research is gratefully acknowledged. 
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Figure 1. Flow domain--disks rotating about a common 
axis. 

gate the implications of his study when the angular speed of the two disks are distinct in which case 
there is also a flow in the axial direction. More importantly, the boundary-value problem studied by 
Berker is linear while the problem governing the rotation of the two disks with distinct angular speeds 
is nonlinear. 

In the light of Berker's work, Parter and Rajagopal [93] re-examined the problem of flow of the 
classical linearly viscous fluid between parallel disks rotating about a common axis with differing 
angular speeds. Parter and Rajagopal 1-93] rigorously proved that the problem admits solutions that 
lack axial symmetry and that the axially symmetric solutions are never isolated when considered 
within the full scope of the Navier-Stokes equation. Similar results apply to the case of the flow due 
to a single rotating disk and flow due to rotating disks subject to suction or injection at the disk. 
Based on the existence theorems of Parter and Rajagopal [93], extensive numerical computations 
have been carried out recently [79], 1,80]. 

An interesting related problem is the possibility of existence of such asymmetric solutions in the 
case of a viscoelastic fluid due to the rotation of a single disk or due to the rotation of two disks. As 
with the classical linearly viscous fluid flow problem, until recently the investigations have been 
concerned with the study of axially symmetric solutions. Motivated by the work of Berker [10], 
Rajagopal and Gupta [104] have examined the possibility of existence of asymmetric solutions for the 
flow of a special subclass of the fluids of the differential type between parallel plates rotating with the 
same angular velocity, about a common axis. More recently, Huilgol and Rajagopal 1-66] have 
established the possibility of asymmetric solutions for the flow of a popular class of viscoelastic fluids 
of the rate type, between parallel plates rotating with differing angular speeds. We discuss these and 
other more recent results on the steady asymmetric flow of viscoelastic fluids due to two rotating 
disks. 

The results of Berker [12] have relevance to another very interesting application in fluid dynamics, 
the flow occurring in the orthogonal rheometer 1,84]. The apparatus consists of two parallel disks 
which rotate with the same constant angular speed about two parallel but different axes (see Figure 
2). The fluid to be tested fills the space between the plates. If the fluid is non-Newtonian, then normal 
stress differences develop due to the flow and measuring these will help in characterizing the fluid that 
fills the apparatus. The motion occurring in such an instrument has been studied by several authors 
and all the early works ignored the inertial effects in the treatment of the problem 1-64]. Abbot and 
Waiters [1] were the first to include inertial effects and they obtained an exact solution in the case of 
the Navier-Stokes fluid. They also studied the flow of a viscoelastic fluid in the same domain by 
means of a perturbation analysis by expanding in a power series in the distance between the axes of 
rotation. 

Rajagopal z [101] recognized that a velocity field similar to that used by Berker 1-12] can be 

2 Goddard [51] later independently established results which are essentially the same. 
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Figure 2. Flow domain--disks rotating about distinct axes. 
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employed in this problem and that the velocity field assumed by Berker [12] was a motion with 
constant principal relative stretch history. He used this fact to show that the flow of any homoge- 
neous incompressible simple fluid in such a configuration is governed by a second-order partial 
differential equation (even in the case of fluids with finite memory wherein the Cauchy stress is given 
by an integral representation). Thus, unlike other boundary-value problems in which additional 
boundary conditions might be required for specific non-Newtonian fluid models of the differential 
type [102], [106], [107], [69], the adherence boundary condition is sufficient for determinancy. The 
problem being well posed, we can discuss issues concerning existence, uniqueness, and other related 
questions. Detailed numerical computations have been carried out recently for specific integral 
constitutive models and these results are also discussed in this article. 

There has been such a great deal of work with regard to symmetric solutions for the linearly 
viscous fluid and for specific non-Newtonian fluid models due to a single rotating disk and due to two 
parallel disks rotating about a common axis or about noncoincident axes, that it would be impossible 
to discuss all of these here. In this review article we restrict our discussion to the flow between parallel 
disks, 3 present some of the recent results for the flow of both Newtonian and non-Newtonian fluids, 
and discuss questions that remain unanswered. 

2. Flow Between Parallel Disks Rotating About a Common Axis 

2a. Axially Symmetric Solutions 

An up-to-date review of the numerical and mathematical work on the axially symmetric solutions for 
a Navier-Stokes fluid can be found in the review article by Parter [92]. Few boundary-value 
problems within the context of the Navier-Stokes theory have been the object of the kind of intense 
scrutiny that has been accorded to this problem and it has occupied a central place in the Navier- 
Stokes theory by continuing to attract interest to this day. Even early in the game, it became 
quite apparent that the problem would present the opportunity for the study of bifurcation and 
nonuniqueness of solutions, for Batchelor [8] predicted that at high Reynolds numbers in the case of 
flow between two disks rotating about a common axis, boundary layers would develop adjacent to 
the disks with the core rotating with constant angular speed, while Stewartson [130] reasoned that a t  
high Reynolds numbers the flow in the core would be purely axial. This early disagreement set the 
stage for the intensive studies that have followed which show that not only are both Batchelor-type 
and Stewartson-type solutions possible, but also solutions that do not fall into either category. The 
analytical, numerical, and asymptotic studies (see [2], [9], [27], [35], [41], [56], [58], [60]-[63], 
[74], [77], [78], [81], [83], [85], [86], [88], [91], [94], [95], [116], [122], [124], [135], [1451 [147], 
and [148]) within the context of the Navier-Stokes theory are too numerous to discuss in detail. 
After presenting the similarity transformation used by von Karman [141], which forms the backbone 

3 We comment on problems related to the flow due to a single disk, if relevant, but these comments are minimal. 
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for the problem under consideration, we turn our discussion to the flow of viscoelastic fluids between 
rotating plates. 

Von Karman [141] assumed an axially symmetric velocity field of the form 

v, = rF',  v o = rG, and vz = - 2 F .  (2.1) 

Here, vr, Vo, and v z denote the components of the velocity in the r, 0, and z directions, respectively. We 
notice that the velocity field (2.1) automatically satisfies the constraint of incompressibility. 

Substituting (2.1) into the Navier-Stokes equation leads to the celebrated von Karman equations: 

~F iv + 2 F F "  + 2GG' = 0, (2.2) 

eG" + 2FG'  - 2F 'G  = 0, (2.3) 

where 5 = (la/p). 
If we are interested in the flow due to the two rotating disks at z = h and z = 0, then (2.2) and (2.3) 

would be valid in the interval 0 < z < h. The appropriate boundary conditions for the problem are 

F(O, ~) = F(h,  ~) = 0 (no penetration), (2.4) 

F'(O, 5) = F'(h,  e) = 0 (adherence), (2.5)1 

G(0, e) = f/o, G(h, 5) = f~+h (adherence), (2.5)2 

where ff/o and f~+h are the angular speeds of the disks at z = 0 and z = h, respectively. References [2], 
[9], [27], [35], [41], [56], [58], [60]-[63] ,  [74], [77], [78], [81], [83], [85], [86], [88], [91], [92], 
[94], [95], [116], [122], [124], [130], [135], [145], [147], and [148] are but a few of the many 
studies on the system of equations (2.2)-(2.5). 

~'We now turn our attention to a discussion of the flow of non-Newtonian fluids due to rotating 
plates. Srivastava [129] studied the flow of a Reiner-Rivlin fluid between rotating parallel plates 
using a perturbation approach. Bhatnagar [17] studied the flow between two disks of a Reiner-Rivlin 
fluid in which one disk is stationary and the other rotating. This model was introduced by Reiner 
[117] to describe the behavior of wet sand but was at one time considered as a possible model for 
non-Newtonian fluid behavior. The model does not account for the possibility of both normal stress 
differences or shear-thinning or shear-thickening and is not currently considered as a viable model 
for viscoelastic fluids. Erdogan [43] 4 seems to have been the first to study the flow of a fluid of 
second grade, a model [140] which allows for both the normal stress differences, due to a rotating 
disk, with the fluid at infinity also rotating with an angular speed. Later, Bhatnagar and Zago [21] 
studied the flow of a fluid of second grade due to two rotating disks, about a common axis. 

The Cauchy stress T in an incompressible homogeneous fluid of second grade is given by 

T = - p l  +/~A 1 + 0~IA 2 + 0~2 A2, (2.6) 

where the spherical part of the stress - p l  is due to the constraint of incompressibility, /~ is the 
viscosity, ~1 and ~2 are the normal stress moduli, and A 1 and A 2 are the kinematical tensors [121] 
given by 

A1 = (grad v) + (grad ¥)T (2.7)1 

and 
d 

A 2 = dt(A1) + A,(grad v) + (grad v)TA1, (2.7)2 

where d/dt  denotes the usual material time derivative. A detailed study of the thermomechanics of the 
fluids modeled by (2.6) was carried out by Dunn and Fosdick [39]. The signs of the material moduli 
~1 and ~2 are the subject of much controversy (see [48]- [50]  and [40]), and we shall not discuss this 
here. 

The equations governing the flow of fluids of second grade are of higher order than the Navier -  
Stokes equations because of the presence of the term d A 1 / d t  in the expression for the stress and, since 

Flow of non-Newtonian fluids due to the rotation of a single disk has also been studied by Balaram and Sastri [6] and 
Balaram and Luthra [5]. 
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only the adherence boundary condition obtains, we do not have enough boundary conditions to make 
the problem determinate. To overcome this difficulty, Erdogan [43] perturbs in terms of the parame- 
ter which multiplies the highest-order term in the equation, thereby reducing the order of the 
problem but, however, treating a singular perturbation as though it were regular. Bhatnagar and 
Zago [21] use a numerical method which treats the higher-order terms in the equation as a lower 
iterate, essentially once again lowering the order of the equation. A plausible way out of the impasse 
of additional boundary conditions of fluids of the differential type of grade n, n > 1, is the presence of 
a thin layer adjacent to any solid surface wherein the fluid behaves as though it is a Navier-Stokes 
fluid. In this case there would be no problems with boundary conditions. This is, of course, a 
conjecture that may or may not be borne out physically. 

Using the similarity transformation (2.1), Phan-Thien [97] studied the time-dependent flow of a 
Maxwell fluid between two disks rotating about a common axis. This was followed by a study by 
Bhatnagar and Parera [20] of an Oldroyd-B fluid [90] between two disks, one of which is rotating, 
the other being held fixed, and that of Phan-Thien [98]. Huilgol and Keller [65] set up the equations 
governing the flow of an Oldroyd-B fluid between two disks both rotating about a common axis and 
presented a numerical scheme for handling the problems. Walsh [143] used the formulation of 
Huilgol and Keller [65], and restricting his analysis primarily to a Maxwell model, studied the 
problem in great detail. He found subcritical bifurcation when the Weissenberg number W was 1.405. 
Walsh [143] also studied the nature of the bifurcation for various values of the Ekman and 
Weissenberg numbers. 

Recently, Ji et al. [67] have carried out a detailed investigation of the flow an Oldroyd-B fluid in 
the above geometry, and as it includes the Maxwell model studied by Walsh [143] as a special case, 
we discuss this in some detail below. The Oldroyd-B fluid [90] is defined through 

T = - p l  + S, (2.8) 

with 

S + A 1  d t - - L S - S L  r - - #  A I + A 2 \ ~ - - L A 1 - A 1 L  r , (2.9) 

where/~ is the viscosity, and Ai and A 2 are material constants which have the units of time and are 
called relaxation time and retardation time, respectively. We note that when A~ = A 2 = 0, the model 
(2.8)-(2.9) reduces to the classical linearly viscous model, while when A 2 --0,  it reduces to the 
Maxwell model. 

It follows from (2.1) and (2.9) that [67] 

Srr + A1 [r(F'Smr - 2F"Szr) - 2F'Sr, - 2FS~, z + GSmo] 

= #{2F' - 2A2[-rEF "2 - 2(F '2 + FF")]}, (2.10)1 

&o + A1 [r(F'S,o,, - 2F"Szo - G'Sz,) - 2F'S~o - 2F&o,z + GS, o,o] 

= - 2#A 2 r E F"G',  (2.10)2 

S,~ + A1 [r(F'S~z,~ - F"S=) + F'&z - 2FSr~,z + GS~z,o ] 

= #r [F"  + 2A2(3F'F" - FF") ] ,  (2.10)3 

Soo + A1 [r(F'Soo,r - 2G'Szo) - 2F'Soo - 2FSoo,z + GSoo, o] 

= #{2F' - 2AE[rEG '2 + 2 ( f  '2 + FF")]} ,  (2.10)4 

Soz + A~ [r(t'So~,r - G'S=) + F'So~ - 2FSoz,~ + GSo~,o] 

= pr[G'  + 2A2(3F'G'  - FG")], (2.10)5 
/ 

S=z + A1 [rF'S~,r + 4F'S= - 2FS=,z + GS=,o] 

= r / o [ - 4 f '  + 8AE(FF" - 2F'2)]. (2.10)6 

It follows from the assumption of rotational symmetry that dS/OO = O. 
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On substituting (2.1) and (2.9) into the balance of linear momentum 

dv 
div T + pb = p~v, 

at 

we obtain 

p r ( F  ' 2  - 2FF" - G 2) -- - ~ r r  d- ~ - r  Oz -1- - -  

~Sro ~Soz 
2pr(F'G - FG') = ~ + ~ + Sro, 

4 p F r '  = Op + OS, z 
-~z W + 

It is also easy to verify that 

S = Z r"S,(z), 
n = O  

where the {Si} have the following representations [67]: [ z,o oj 
S o ( z ) =  B(z) 0 , 

0 R(z) 

Let 

Srr - So0 

eSzz s,z  
~z-z +- 'r  

(2.11) 

(2.12)1 

(2.12)2 

(2.12)3 

(2.13) 

(2.14) 

I00 
Z(z)  P(z)  0 ) ' 

(2.15) 

S2(z)= Y(z) Q(z) , (2.16) 
0 0 

S,(z) = 0, n > 2. (2.17) 

o K  
p = pl(z) -F y r  2. 

We introduce the following nondimensional quantities: 

(2.18) 

z = a~, F = ~1 af(~), G = nlo(~) ,  
V 

E -  ~ l d  2' 

A2 
W =  ~1A1, 22 = ~1A2, fl = ~ ,  

K 
k = f~-~, 

#~i - 

Q = ~9, P = T P ,  R =/zf~lR, 

#~i -- ~ #~i - 
X = d 2 - X ,  Y = Y, Z = ~ - - Z ,  (2.19)1-14 

where E is the Ekman number, W is the Weissenberg number, and fl is the ratio of retardation time 
relative to relaxation time. 

After dropping the overscore bars, the above set of ordinary differential equations reads 1-67]: 

Q - 2 W ( f Q '  + g 'P)  = - 2 f l w 9  '2, (2.20)a 

P - W(ZfP '  - 2 f ' P  + g 'R)  = g' + 2 f lW(3 f ' g '  - fg"),  (2.20)2 

R -- 2 W ( f R '  - 2 f ' R )  = - - 4 f '  + 8 f l W ( f f " - -  2f'2), (2.20)s 
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X - 2 W ( f X '  + f " Z )  = - 2flWf~ '2, 

Y -  W(2 fY '  + o 'Z  + f " P )  = - 2 f l W f " 9 ' ,  

Z - W(ZfZ'  - 2 f ' Z  + f " R )  = f "  + 2f lW(3f ' f"  -- i f " ) ,  

3 X _ Q + Z , = _ 2 ( f f ,  ' f ,2  02 ~ )  
, 

4 Y +  P '  2 , = ~ ( f  O - fo ' ) .  

The bounda ry  condit ions appropria te  for the flow under  considerat ion are: 

f(0) = 0, f ' (0 )  = 0, 9(0) = 1, 

f(1) = 0, f ' (1 )  = 0, g(l) = s, 

191 

(2.20)4 

(2.20)5 

(2.20)6 

(2.20)7 

(2.20)8 

(2.21)1 

(2.21)2 

where s = ~ ' )2 /~ '~1 .  We have eight differential equations governing the mot ion  of  the fluid and the 
above condit ions yield but  only six of  the required twelve boundary  conditions, and thus we have to 
augment  (2.21)1,2. We evaluate the stress components  Z, P, and R at bo th  z --= 0 and z = 1. Thus, 

Z(O) = f"(O), Z(1) = f"(1),  (2.22), 

P(0) = 9'(0), e(1) = 9'(1), (2.22)2 

R(0) = 0, R(1) = 0. (2.22)3 

The system (2.20)1_8 subject to the boundary  conditions (2.21)1,2 and (2.22)1_ 3 was studied in 
detail by Ji et al. [673 using an analytic cont inuat ion method that  is suited for nonlinear equations 
that  exhibit turning points and bifurcation points [119], [1203, [73]. There are four parameters  s, E, 
IV, and fl which enter the problem• Thus, if one of them is held fixed, the corresponding solution 
manifold is three-dimensional. In order  to make the problem manageable,  Ji et al. [673 fix both  the 
ratios of  the speed s and the E k m a n  number  E. They find that  the solutions exhibit a turning point  as 
the Weissenberg number  W is increased for various values of fl (see Figure 3). The value of  the critical 

Figure 3. Variation of the Weissenberg number with k, for 
various values of/3. - - - ,  /3 = 0, s = 0.8; - - - - - - ,  /3 = 0.5, 
s = 0.8; , 13 = 0.75, s = 0.8; - - - - - ,  /3 = 1.0, s = 0.8; 
. . . . . .  , /3=0, s=O; . . . . .  , /3=0.5, s=O; . . . . . .  , /3= 
0.75, s=0;  , /3=1.0, s=0;  . . . .  , /3=0, s = - - l ;  
- - - - ,  /3=0.5, s = - - l ;  - - - ,  /3=0.75, s=  -1;  ........ 
/3= 1, s=  -1.  
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, s = 0 ;  . . . . .  , s =  - 1 .  
, s = 0.8; 

Weissenberg number is strongly dependent on fl, and this can be seen from the projections on the 
W-fl plane of the fold curves for various values of s, each point on the fold curve being a limit point, 
where two solution branches coincide (see Figure 4). Representative velocity profiles for the solutions 
on the two branches are shown in Figures 5 and 6. We note that the velocity profiles corresponding 
to the multiple solutions are quite different in structure. Ji et al. [67] also found that turning points 
persisted even at very low values of the Ekman number. The variation of the torque on the plates 
with the Weissenberg number is shown in Figure 7. 

We next turn our attention to the recent exhaustive analysis by Crewther et al. [31] wherein they 
study steady and unsteady axisymmetric flows 5 of an Oldroyd-B fluid between rotating plates. Their 
results on steady flows are in keeping with work of Ji et al. [67] in that they also find the existence of 

1 .,.. ' 1 

0.5- 0.5 

. . . " % f  , . . 

0 , 8 5  0.90 0.95 1 1.05 1.10 1.15 0.80 1.20 -0.15 -o.io -0.65 0.00 0.05 o.io 0i5 
g f '  

Figure 5. Nondimens iona l  azimuthal  velocity profiles. - -  
Branch I, /~=  0.5; , branch I, B =0 .0 ;  - - - - -  
b ranch  II, fl = 0.5; - - - - - ,  branch II, fl = 0.0. 

, Figure 6. Nondimensional  radial velocity profiles. - - ,  
, Branch I, /~ = 0.5; . . . . .  , branch I, fl = 0.0; . . . .  , 

branch II, /~ = 0.5; - - - - - ,  branch II, fl = 0.0. 

5 Thornley [-137] presented an exact solution for the unsteady rotat ing flow of the classical linearly viscous fluid and this 
and other  related problems are discussed in Greenspan  [57]. Recently, Rao and Kasiv ishwanathan [114] have studied unsteady 
asymmetr ic  flows due to two disks rotat ing abou t  a c o m m o n  axis within the context of the Nav ie r -S tokes  theory. 
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Figure 7. V a r i a t i o n  o f  t o r q u e ,  w i t h  W e i s s e n b e r g  number. 
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turning points. Crewther et al. [31] use a scaling lemma that allows them to extend their analysis to a 
larger domain in the parameter space once they are able to obtain solutions for a specific set of values 
for the parameter. They also carry out a linearized stability analysis of the problem. 

Between the works of Ji et al. [67] and Crewther et al. [31] practically all the information that can 
be obtained from the equations governing the flow of an Oldroyd-B fluid between rotating plates 
have been extracted. The Oldroyd-B model is one of the several models that have been suggested 
to explain the behavior of non-Newtonian fluids, but it cannot adequately describe non-Newtonian 
fluids which exhibit shear thinning (or shear thickening) or those that have finite memory. In general, 
we need to use nonlinear integral models, and for such models even simpler kinematical situations 
have not been handled adequately. This open problem while daunting is definitely worth pursuing in 
view of the technological significance of the problem. 

The earliest experiment on the flow between two rotating disks was carried out by Stewartson 
[130]. He studied the flow of air due to the rotation of two 6-in diameter cardboard disks to obtain 
some qualitative information regarding the flow. Experimental investigations have also been carried 
out by Mellor et al. [86], Picha and Eckert [99], and by Dijkstra and van Heijst [35]. Recently, Szeri 
et al. [134] have carried out a detailed experimental investigation of the flow between finite parallel 
rotating disks. They used Laser-Doppler velocity measurements and the fluid under consideration 
was water. They were able to duplicate the velocity field conjectured by Batchelor [8]. However, they 
were unable to observe the several other solutions predicted numerically or asymptotically. Experi- 
mental results regarding the onset of spiral vortices and instability waves in the Ekman layer have 
also been the object of considerable scrutiny (see [26], [59], [46], [47], [136], [146], [76], [132], 
[126], and [127]). 

2b. Solutions that Are Not Axially Symmetric 

Let us consider the case f~h = f~0 = f~ ~ 0, within the context of the von Karman equations (2.2)-(2.6). 
Then the only solution to the Navier-Stokes equation is the rigid-body solution: 

G-=f~ and F-=0,  (2.23) 
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which is isolated and stable. By isolated we mean that there is a neighborhood of this solution 
wherein there are no other solutions, and by stable we mean there is no bifurcation from this solution, 
in particular the linearized problem at this solution is nonsingular. 

Recently, Berker [12] established a truly remarkable result for the problem of two infinite parallel 
disks rotating with the same angular velocity t2, about a common axis. He sought solutions of the 
form 

v~ = - f ~ [ y  - g(z)], (2.24) 

vr = f~ Ix - f(z)],  (2.25) 

v z = 0, (2.26) 

where vx, vy, and vz are the components of the velocity in the x, y, and z directions, respectively. Such 
a velocity field corresponds to a flow wherein streamlines in any z = constant plane are concentric 
circles, with no flow across any such plane; the locus of the centers of these circles as the z = constant 
plane shifts from z = 0 to z = h being a curve in space described by x = f ( z )  and y = g(z). Notice that 
the velocity field (2.24)-(2.26) automatically satisfies the constraint of incompressibility. 

The motion represented by (2.24)-(2.26) falls under the category of pseudoplane motions which 
have been studied extensively by Berker [10], [11]. 

The appropriate boundary conditions are 

f ( h )  = O, f(O) = O, g(O) = O, 9(h) = 0. (2.27) 

Since the plane z = h/2 and the locus of the centers of the rotation intersect at some point (l, 0, 0) (we 
can always pick such a Cartesian coordinate system) 

f ( ~ ) - - I  and 9 ( ~ ) = 0 .  (2.28) 

When l = 0, Berker [12] showed that the rigid-body solution obtains. However, this is but one of 
an infinity of solutions that are possible. Moreover, when l ¢ 0, the solutions are not axially 
symmetric. Thus, in the special case when f~h = ~2o, the axially symmetric solution to the Karman 
equations is embedded in a much larger class of solutions. This naturally leads us to ask the question 
whether the axially symmetric solutions to the yon Karman equations are embedded in a larger class 
of solutions when f~h ¢ f~o ? This question has been answered in the affirmative by Parter and 
Rajagopal [93]. 

Parter and Rajagopal [93] assumed a velocity field of the form 

+ g(z), (2.29) 
Z Z 

vr = 2 H'(z)  + 2 G(z) - f (z) ,  

and 
v z = - H ( z ) .  

The above velocity field in cylindrical coordinates has the form 

r H ' ( z )  + g(z) cos 0 - f ( z )  sin 0, Vr 
Z 

(2.30) 

(2.31) 

(2.32) 

r 
v o = ~G(z)  -- 9(z) sin 0 -- f ( z )  cos 0, (2.33) 

Vz = -- H(z).  (2.34) 

Notice that when f = 0, g = 0, we recover the velocity field assumed by von Karman. When H = 0 
and G --- 2f~, we obtain the velocity field assumed by Berker. It should also be noted that the function 
G that appears in (2.29) is not the same as that defined in (2.1). We use the representation (2.29) to be 
consistent with that of Parter and Rajagopal [93]. 
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Substituting (2.32)-(2.34) into the Navier-Stokes equations we obtain 

8H iv + H H "  + GG' = 0, 

~G" + HG' - H'G = O, 

eft" + Hf"  + ½H'f' -- ½H"f + ½(Gg)' = O, 

~g" + Hg" + ½H' g' ~ " - ~ H  g - ½ ( G f ) '  = O. 

The appropriate boundary conditions are 

H(O, ~) = H(h, ~) = O. 

n'(o, ~) = n'(h, ~) = O, 

G(0, ~) = 2f~ o, G(h, ~) = 2~h, 

f(O, ~) = f(h, ~) = O, 

g(O, ~) = O, g(h, ~) = O. 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

The system of equations (2.35)-(2.38) and boundary conditions (2.39)-(2.43) are underdetermined and 
as before we can augment the system by requiring 

f ( ~ ,  ~) = 11, g ( ~ ,  ~)=12.  (2.44) 

The above system has a very interesting feature. Equations (2.35), (2.36), and the boundary 
conditions (2.39)-(2.43) are precisely the same as those that govern the axially symmetric problem. 
More importantly, these are the only equations which are nonlinear. The ,equations for f and g are 
linear with coefficients which are solutions to the nonlinear axially symmetric problem. We are now in 
a position to answer the following question: Whenever there is a solution (F(z), G(z)) to the system 
(2.35), (2.36), (2.39)-(2.41), can we find a one-parameter family of solutions (f, g) to the system (2.37), 
(2.38), (2.42)-(2.44)? The answer is in the affirmative. 

In the special case ~h = f~-h, a one-parameter family of solutions that is not axially symmetric has 
been analytically established by Rajagopal and Gupta [104] in the case of the incompressible fluid of 
second grade, 6 and by Rajagopal and Wineman [109-1 in the case of a special subclass of the K-BKZ 
[723, [14] fluid. 

When tl  h # fl o, Huilgol and Rajagopal [66] show that a situation similar to that considered by 
Parter and Rajagopal [93] obtains in the case of an Oldroyd-B fluid [90]. Huilgol and Rajagopal 
[66] assume a velocity field of the form (2.32)-(2.34) and show that the problem is governed by four 
coupled equations for the four functions F, G, f,  and g. A rigorous existence theorem has not yet been 
established for this problem. Similar to the situation in the case of the Navier-Stokes fluid the 
functions F and G are governed by two coupled nonlinear ordinary differential equations. The other 
two equations involve the four functions F, G, f ,  and g. Having established the existence of the 
solution (F, G) we can once again proceed to ask the question whether a one-parameter family of 
solutions (f, g) exists. 

Using the formulation of Huilgol and Rajagopal [66] for flows of an Oldroyd-B fluid that lack 
axisymmetry, Crewther et al. [31] have recently carried out extensive numerical calculations. An 
interesting feature of their work is the existence of shear layers in the flow field. Such layers have also 
been observed experimentally by Sirivat et al. [128]. 

To this date there has been no attempt to study the flow between two disks rotating with distinct 
speeds within the context of nonlinear integral models which represent fluids with finite memory, 
when the angular speeds of the two disks are not the same, and this problem is well worth 
investigating. 

6 Earlier, Drouot 1-38] extended Berker's analysis, and her work clearly implies the possibility of exact solutions in the case 
of an incompressible homogeneous fluid of second grade. However, she did not solve the specific boundary-value problem. 
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3. Flow Between Parallel Disks Rotating about Different Axes 

3a. f~h = 1~o 

We first discuss the special case when flh = f~O-----f~ ¢ 0. Let a denote the distance between the 
parallel but distinct axes (see Figure 2). In the case of Navier-Stokes fluid, Abbot and Waiters [1] 
restricted themselves to solutions which possess midplane symmetry and exhibited an exact solution 
to that problem, the result being valid for arbitrary values of the offset. However, if we relax the 
requirement of midplane symmetry, it is easy to show that the problem under consideration possesses 
a one-parameter family of solutions [13]. As we mentioned earlier, the above flow has relevance to 
the flow occurring in an orthogonal rheometer. Unlike the preceding studies on the flows of fluid in 
such an instrument, Abbot and Waiters [1] include inertial effects in their analysis. 7 In the case of a 
viscoelastic fluid they carried out a perturbation analysis in which they used the offset a as the small 
parameter. Goldstein and Schowalter [54] have also used a similar expansion to study the effect of 
inertial nonlinearities. While these studies solved the problem to various orders, no rigorous results 
regarding the convergence of such solutions have been established. The analysis of Drouot [38] once 
again implies the possibility of exact solutions, similar to Berker's, in the case of a fluid of second 
grade. Rajagopal and Gupta [105] and Rajagopal [100] have since established these exact solutions. 

We now discuss in some detail the flow of an incompressible simple fluid in the orthogonal 
rheometer. We assume that the motion occurring in the orthogonal rheometer has the form (2.8)- 
(2.10). Let ~ = (4, q, () denote the position occupied by a particle X = (X, Y,Z) at time z. Let 
x = (x, y, z) denote the position occupied by the same particle X at time t. It follows from (2.24)-(2.26) 
that 

= -f~(q - g(¢)), (3.1) 

0 = - f~(~ - f(¢)), (3.2) 

¢ = 0, (3.3) 

with 
¢ ( t )=x ,  q ( t ) = y ,  and ; ( t ) = z .  

Rajagopal [101] has shown that the motion (3.1)-(3.4) is a motion with constant principal relative 
stretch history [28], [29], [89], [138]. In such motion, the stress is determined by the first three 
Rivlin-Ericksen tensors A1, A2, and A 3 [144]. 

However, for the motion under consideration 

A 3 = --£"~2A 1 . (3.4) 

Thus, the stress is given by 
T = - -p l  + t(A~, a2). (3.5) 

The balance of linear momentum has the form [101]: 

10p &o 1 
- + ~2[x - f ]  + - h l ( f ' , o ' , f " , g " ) ,  (3.6) 

p t?x t?x p 

10p ~q) 1 
_ + f~2[y _ / ]  + _h2(f, ,  #,, f,,, g,,), (3.7) 

p ~3y ~y p 

1 ~ p  Oq~ 1 
p az Oz + pha( f"  9', f" ,  g"). (3.8) 

The specific constitutive equations determine the functions hi, h2, and h 3. This can then be substi- 
tuted into (3.6)-(3.8) and the appropriate partial differential equations analyzed. Notice that (3.6)-(3.8) 
are of second order and hence the no-slip boundary conditions are sufficient for determinacy. 

7 The problem wherein the inertial effects are ignored, has been studied by numerous authors [84], [23], [64]. 
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and 

The appropriate boundary conditions for the velocity field are 

~'~a 
u = ~ - - f ~ y ,  v = O x ,  w = 0  at z = h ,  (3.9) 

~'~a 
u . . . .  f l y ,  v = f ~ x ,  w = 0  at z = 0 ,  (3.10) 

2 

u ~ -T-oo, v ~ + 0 %  as  x ,  y --* +_oe. (3 .11)  

It follows from (3.9), (3.10), and (3.1)-(3.3) that 

f ( h )  = f (O)  = O, (3.12) 

(3.13) 

and 

where 
Ct(z) = FT(z)Ft(z). (3.17) 

In (3.16) U denotes the strain energy function for the viscoelastic fluid and is a function of the 
principal invariants of Ct(z) and C~-l(z): 

U = U(11,  12, t - z), (3.18) 

I1 = tr C;-l(z), I2 = tr Ct(z ), (3.19) 

~U 
Ui - 9Ii '  i = 1, 2. (3.20) 

a a 
g ( h )  - 2' g(0) = - ~ .  

In eliminating the pressure field we have raised the order of the equations. Thus, the boundary 
conditions (3.12) and (3.13) are not sufficient to determine the solution to the system (3.6) and (3.8). As 
before, we augment the number of boundary conditions by recognizing that the locus of the centers of 
rotation cuts the plane z = 0 at some point, say (/1,/2). Thus 

However, if we restrict ourselves to solutions which have midplane symmetry, then 

For the rest of this section we restrict ourselves to a discussion of solutions which possess midplane 
symmetry. 

Rajagopal [100] studied the flow of a fluid of second grade undergoing a motion of the form 
(3.1)-(3.3) subject to the boundary conditions (3.12) and (3.13), and the augmented condition (3.14). He 
also obtained expressions for the traction and moments acting on the plates. Recently, Kaloni [68] 
extended the analysis of Rajagopal to incompressible homogeneous fluids of third grade. 

We now discuss a nontrivial example, wherein no approximations with regard to the Reynolds 
number or the Weissenberg number are made and the field equations are solved numerically, namely 
the flow of the K-BKZ fluid. The problem is also interesting because there are conflicting claims 
about the nature of the solution and additional work needs to be done to resolve the apparent 
numerical discrepancies. 

The Cauchy stress T in the K-BKZ fluid has the structure 

= - p l  + 2 f t {U1C;-i(z) - UaCt(z)} dt, (3.16) T 
d -  o0 



198 

For the motion under consideration, a lengthy but straightforward computation yields 

and 

where 

s 
C,('r) = 1 --  ~ A  1 + A 2 

C;-1('0 1 + s [ 1  + 2(1 - c) ( f  '2 + g'2)]A 1 (1..~-.,C)[l-- = + 2(1 -- c) ( f  '2 + g'2)]A 2 + s 2 a 2  
~ 2 ' C l l  t J, 

+ ~ A 2  2 + ~ ( A a A 2  + A2A1), 

s - s i n  f~ ( t  - z) ,  c -= c o s  D ( t  - z).  

Also, notice that 

It(t, z) = I2(t, z) = 3 + 2(1 - c) ( f  '2 + g '2) =- I(~(t  - ~), z). 

It follows from ( 3 . 6 ) - ( 3 . 8 ) ,  ( 3 .16 ) ,  (3 .21) ,  a n d  ( 3 . 2 2 )  that 

d { f ' B 0 c )  + g'a0c) } = pD2f, 

d 
dz { - f ' A ( x )  + g'B(~)} = p~2g, 

K.R. R~agopal 

where 

and 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

x -- ( f ,2  + g,2)l/z (3.27) 

A(~c) = 2 J o  U[3 + 2(1 - cos D~)K 2, 0(1 sin d~, (3.28) 

B(x) = 2 ; o  /~[3 + 2(1 - cos f~c0K 2, c~](1 - cos 1"~) d0c, (3.29) 

U(I, o~) =-- UI(I, I, c~) + U2(I, I, cO. (3.30) 8 

Let tx and ty denote the x and y components of the traction on the plates. It follows that 

tx(h) = +B(x,  O)f'(h) + A(x, f~)g'(h), (3.31) 

tr(h) = - A ( x ,  f~)f'(h) + B(K, f~)g'(h). (3.32) 

Thus the material parameters A(x, ~) and B(K, ~) can be expressed in terms of G and ty as [25] 

A(x, f~) = @2 [tyf '  + txg'], (3.33) 

B(rc, f~) = ~ [ t x f '  + trg']. (3.34) 

Let A and B denote the value of the material properties for the inertialess case. In the inertialess case 

s Rajagopal and Wineman [110] have found an exact solution for the flow of a special subclass of models of the K-BKZ 
type. 
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the solutions for f and g are given by 

a 
f(z) =- O, g(z) = ~ z (3.35) 

h 
.4 = -t~, (3.36) a 

h 
(3.37) = a ty ,  

The relative error made in evaluating the material properties A and B, by neglecting inertia, can be 
defined as [25] 

A-A-~f'(h)B+(~o'(h)-l),-~ (3.38) 

o .  : ; ( :  ) 
B - f'(h) + g'(h)-  1 , (3.39) 

where f and g are the solutions in which inertia is included. Computations indicate that f '  is very 
small and the first term in (3.38) and (3.39) can be neglected. However, g' is not small and, for flows 
with high Reynolds number, the error can be significant. Bower et al. [25] discuss in detail the error 
made in neglecting the inertial effects in this problem. 

Rajagopal et al. [108] have studied the flow of fluids of the Wagner [142] and Currie [32] types in 
an orthogonal rheometer. In the case of the Currie model, the strain energy function U has the 
structure 

U(I~, Iz, s) = -()(s)[5 ln(J - 1) - 9.73], (3.40) 

where 

When 

J = 11 + 2(12 + 3.25) 1/1. (3.41) 

(3.42) 

and 

where 

z f g = #_ ~ _ A2 ~ _ B2 (3.47) 
~ = h '  f =a '  a' C '  C '  

n (c/,~ 2) 
W = ~, E - ph2D, (3.48) 

where W is the Weissenberg number and E is the Ekman number. The Ekman number is the inverse 
of a Reynolds number and is a ratio of the Coriolis forces to the viscous forces. We first discuss the 

G ( s )  = - Ce -~s, 

the material functions A(x, ~) and B(K, fl) are given by 

2C f ~  
A = fl[1 - exp(-2n2/D)] e-~t~[3 + 2(1 - cos ~)a)x] sin F~ct d~, (3.43) 

2C f ~  B = fl[1 - exp(-2n2/D)] e-X~t~[3 + 2(1 - cos fla)x] (1 - cos Dot) d~. (3.44) 

The equations can be nondimensionalized appropriately [108] to yield 

d ( ~ d f - d ~ )  1 - 
d~\ d~ + A~z = ~Wef + 7t2, (3.45) 

dSz - A ~ z  + ~ = E We~ + 92, (3.46) 
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situation when the Ekman number is large and the Weissenberg number is large. When ql = q2 = 0, 
we find that the numerical solution converges to a solution which is symmetric about the midplane 
with f (z)  and g(z) being approximately linear up to some critical value of a/h. For values of a/h larger 
than this critical value, the solutions lose their symmetry and the locus of the centers of rotation 
possesses discontinuous derivatives (see Figures 8 and 9). When s ~ 0, q ~ 0, the solutions are not 
symmetric. Above a critical value of a/h the numerical scheme fails, no range of values of a/h for 
which solutions with discontinuous slopes exist. In the case of small Weissenberg numbers and large 
Reynolds numbers, as would be expected there is a boundary-layer structure to the solution (see 
Figures 10 and 11). 

Zhang and Goddard [150] reinvestigated the problem studied by Rajagopal et al. [108]. They 
indicated that they were able to find smooth solutions for the range of parameters for which 
Rajagopal et al. [108] found discontinuous solutions. Their numerical results are nearly two orders of 
magnitude higher than those obtained by Rajagopal et al. [108] for the same values of the parame- 
ters. Moreover, Zhang and Goddard [150] remark that they encountered convergence problems with 
their numerical scheme for larger values of the parameter and allude to the possibility of bifuration of 
solutions. However, their numerical method is not suitable for the study of bifurcation, and they do 
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Figure 10. Locus of centers indicating boundary layers, Figure 11. Locus of stagnation points. 
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not exhibit bifurcated solutions. Since Zhang and Goddard [150] do not provide details regarding 
their numerical work (and more importantly their error estimates), Dai et  al. [33] have recently 
restudied the problem in detail using a parameter continuation method which is specifically used to 
study bifurcation problems numerically. In contrast to the work of Zhang and Goddard [150], but in 
keeping with the results of Rajagopal et  al. [108], they have no difficulty with convergence, and more 
importantly their results agree perfectly with those of Rajagopal et  al. [108]. Dai et  al. [33] were able 
to push their study to much larger values of the Weissenberg and Reynolds numbers. They were able 
to go as high as 10,000 in the Reynolds number, and as is to be expected the solutions exhibit a 
strong boundary-layer structure. At the value ~ = 0.9750, where ~ is the separation between the axes 
normalized with the distance between the plates, Rajagopal et  al. [108] obtained solutions with 
discontinuous velocity gradients. Dai et  al. [33] were able to go well past this value of the parameter 
using the continuation method. Also, they found that the discontinuity occurs immediately adjacent to 
the disks so that it suggests that there might be a singularity at the boundary. Also, since the 
equations are highly nonlinear, it is possible that there are smooth solutions to the problem which 
have not been discovered. 

When Oh V~ f~O, the flow of a Navier-Stokes fluid between plates rotating about different axes is 
governed by the same system of differential equations (2.24)-(2.27). The only difference in the 
boundary-value problem from that governing the flow about a common axis occurs in the specifica- 
tion of boundary conditions. The boundary conditions (2.32)1 and (2.32)2 are replaced by 

a~o a ~ +  h 
g ( - h ,  ~) - 2 ' g(h,  e) - 2 (3.49) 

Approximate analytical and numerical solutions to the above problem were first obtained by 
Knight [75]. 

Parter and Rajagopal [93] have discussed questions regarding the existence of solutions to the 
system (2.24)-(2.27), (2.28)-(2.31), (2.33), and (3.43). A detailed numerical study has been carried out by 
Lai et al. [79]. 9 In this case the locus of the stagnation points is far from simple and once again does 
not possess any midplane symmetry (see Figure 12). 

Not much has been done with regard to non-Newtonian fluids and as it stands is an important 
open problem, both with regard to analytical and numerical results. 

Figure 12. Locus of stagnation points for flow about distinct 
axes. 
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9 The corresponding problem of solutions that lack symmetry due to the rotation of a single disk has been studied by Lai et 
al. [80] in the case of the Navier-Stokes fluid. 
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4. Related Problems 

There are many problems of practical importance wherein swirling flows that are turbulent are 
encountered. Some details regarding such flows can be found in Schlichting [123]. 1° 

Thus far we have restricted our discussions to the rotating flow of a single fluid. There are however 
several practical applications where the study of the flow of a stratified fluid between rotating plates is 
relevant. One important example is the study of reaction kinetics at the fluid-solid interface due to a 
rotating disk, in electrochemistry. Such flows can be used to generate surfaces across which the 
transfer of heat and mass are uniform. Goddard et  al. [52] have studied the flow of a system of two 
homogeneous fluids confined between infinite porous plates rotating with different angular velocities, 
about a common axis. They find that an axisymmetric similarity solution of the form suggested by 
von Karman is possible and a flat interface exists for a range of rotation speeds and injection rates. 
The structure of these solutions are most interesting as the numerical simulations indicate a very wide 
range of characteristics, based on the rotation rates, the rate of injection, etc. Questions regarding the 
existence and uniqueness of these solutions are interesting open problems. 

Peucheux and Boutin [96] have studied the steady flow of two immiscible vertically stratified fluids 
between two plates rotating about a common axis. Recently, Gogus [53] has studied the flow of a 
binary mixture of fluids between plates rotating about distinct axes, within the context of the theory 
of interacting continua [4], [24], [139] using a model due to Craine [30]. 

Early work incorporating heat transfer in the classical linearly viscous fluid between two disks 
rotating about a common axis was carried out by Reshotko and Rosenthal [118] and this has been 
followed by several other studies (see [3], [125], [36], [37], and [87]), Banerjee and Borkakati [7] 
studied the heat transfer characteristics of the flow of a linearly viscous fluid between disks rotating 
with different speeds about distinct axes. Recently, Kasivishwanathan and Rao [71] have considered 
the unsteady flow due to two disks rotating about noncoincident axes with heat transfer taking place. 

Stuart [131] studied the effects of suction on the flow of the classical linearly viscous fluid due to a 
rotating disk in the case of axially symmetric flows, and this work was extended to flows which lack 
axial symmetry due to streaming by Szeri et  al. [133]. Szeri et al. [133] found bifurcation of solutions 
as the parameter s, which is the ratio of the angular velocity of the fluid at infinity to the angular 
velocity of the disk, is varied. Rajagopal [103] obtained a class of exact solutions, that lack symmetry, 
for the flow due to the rotations of two porous coaxial disks. As nothing in the way of rigorous 
mathematical analysis has been carried out for these flows, except for the work of Elcrat [42] in the 
case of one disk being porous and the rotating disk being impervious, such work remains an open 
area meriting the interest of mathematical analysts. 

Flows of the linearly viscous fluid due to a single rotating disk or two rotating disks under the 
application of a magnetic field has also received considerable attention because of its relevance to 
astrophysical and geophysical problems. Devanathan [34] has studied rotating flows when the fluid is 
assumed to be electrically conducting, in the presence of an applied magnetic field. Extensions to the 
case of specific non-Newtonian fluid models have been carried out by Bhatnagar [18], [19]. Unsteady 
flow due to the oscillations of a disk in the presence of a magnetic field normal to the disk, in the case 
of a Reiner-Rivlin fluid, was studied by Bhatnagar [15]. Murthy and Ram [87] have studied the flow 
due to a porous rotating disk under the action of a magnetic field allowing for heat transfer when 
there are also rotations at infinity. Rao and Rao [115] have studied the heat transfer between disks 
rotating about distinct axes under the influence of an applied magnetic field for the linearly viscous 
fluid. 

There has also been some work on the swirling flows of polar and micropolar fluids. Bhatnagar 
[16] studied the flow of a dipolar fluid [22] between two plates rotating about a common axis. Rao 
and Kasivishwanathan [113] established a class of exact solutions for the flow of a micropolar fluid 
[44], [45] between disks rotating about noncoincident axes, but with the same angular speed. 
Recently, Kasivishwanathan and Gandhi [70] have investigated the flow of micropolar fluids in the 
previous geometry, subject to a magnetic field. 

10 Of particular interest is the effect of the roughness of surfaces on the flow characteristics [55]. 
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The review article by Zandbergen and Dijkstra [-149] discusses several issues related to that 
covered here. It would be apropos to conclude by remarking that there are several analogous 
problems within the context of finite elasticity which have been studied recently (see [111], [112], 
and [82]). 
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