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ABSTRACT. If a selfadjoint generator of a diffusion process is perturbed by nonnegative 
potentials different on a compact region of non-zero measure the corresponding ~vave operators 
exist and are asymptotically complete even if one potential is singular on the region considered. 
That includes the hardcore potential scattering problem for second-order elliptic differential 
operators with variable coefficients. 

1. I N T R O D U C T I O N  

Let K be a generator of a diffusion process defined in L 2 (1Rn). K is perturbed by a nonnegative 

potential V(x) = Vg(x) + Vs(x ). Let Vg(x) EL=(IR n) and ITs, the singular part, be given by 

Vs(x ) = oo on a compact region G, G C IR n, and zero otherwise. Let VM(x) = Va(x)+Mxc(x) ,  

M >10, Xc indicator function of G. Moreover, set KM = K + V M and define a truncation 

projection P by (Pf)(x) = Xwn\a(x)f(x) ,  f ~  L 2 (IRn). Then the semigroup e -  tKM tends in 

L 2 (IRn\G) to a contractive Co-semigroup e -  tK = as M ~ oo. By means of Markov process 

properties the differences 

e - t K M p - - P e  - tK~,  e - t K ~ p - P e  - tKM (1) 

are shown to be trace class operators for each M 1> 0 and t ~> O, and to tend to zero in trace 

norm as M-+ oo. Hence, for selfadjoint KM and K= such a result implies with respect to the 

scattering theory the existence and completeness of the corresponding wave operators. That 

means the wave operator existence for perturbed diffusion process generators is independent 

of changing the potential arbitrarily on compact regions. 

Generators of diffusion processes can be obtained by certain second-order differential 

operators of the form 

n 6~2 n 
_1 - - +  ~ hi(x) 0 L - ~ Z ae/(x) ~xi Ox/ Ox--]" 

i,]= 1 i-= 1 
(2) 

Consequently the present paper connects hard-core potential problems and wave operator 

existence for diffusion process generators including scattering problems for second- order 
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elliptic differential operators by means of the stochastic process theory and stochastic 

differential equation solutions. More details of this subject can be found in [1 ] and [2]. 

Wave operator existence for pairs of selfadjoint differential operators with variable co- 

efficients was proved by means of several methods by Birman [3], Kako [4] or H6rmander [5]. 

Scattering problems in the exterior of bounded domains are studied for the Laptacian by 

Kupsch, Sandhas [6] and Ikebe [7] in IR 3 , by Hunziger [8], Arsenev [9], Deift, Simon [10], 

Baumg~rtel, Demuth [11], and Semenov [12] in 1R n. Birman [13] studied the same for 

elliptic differential operators with variable coefficients. 

In Section 2 the results of this paper are concentrated. All proofs are given in Section 3. They 

are reduced to the bare essentials. 

2. R E S U L T S  

2.1. Unperturbed Diffusion Process Generators 

A S S U M P T I O N  1, Let (s 93~x, co(t), Px) be a time-homogeneous diffusion process. Here ~2 x 

denotes the set of  all continuous function co(.) mapping [0, ~] into IR n with co(O) =x, 

s ~ O, B any Borel set o f lR  n. Px {" ) is a probability measure on 9Jlx. Let b(x) = (bl (x), .... bn(x)) 

be the drift vector and a(x) = (cO(x)), i, / = 1 ..... n, the diffusion matrix o f  the process con- 
sidered. 

ASSUMPTION 2. The transition probability function P(t, x, B) o f  the process considered has to 

possess a density p(t, x, y) which can be estimated by 

- ~ i x  - y t  2 
p(t, x, y) <~ (27tt) n/2 exp 2t , t > 0, (3) 

a, ~ are some positive constants. 

DEFINITION. Because of(3) the function P(t, x, B) allows us to define (see [1]) a contractive 

Co-semigroup Tt in L2(IR n) given by (Ttf)(x) =fmn f(y)p(t,  x, y) dy, t > 0, and Tof=f .  

The generator K of Tt with domain tg(K) is defined by 

1 
K f  = lim t ( I -  T t ) f  (4) 

t -+  0 

O(K) = If: fEL2(IRn),  /irn ~ 1 ( 1 - T t ) f e x i s t s  I. (5) 

Now, let us specify the generator K in more detail. 
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THEOREM 1. Let assumptions 1 and 2 be satisfied. 

(a) Let a(x) be nonnegative definite, symmetric, and twice continuously differentiable with 
bounded second-order derivatives. Let I b(x) - b(y)[ ~< CIx - y I, x E IR n, C some constant. 

Then the diffusion process generator K is an extension o f  - L  (see (2)) with domain 

O(L)= ~f:f@W~(lRn), LfEL2(IRn),  ( l+x~)l/Zfxi(X)EL2(lRn)).  (6) 

W~ (IR n) denotes the Sobolev-space o f  all L 2-functions with derivatives up to second order in 

L2 (lRn)" fxi is the partial derivative o f f ( x )  with respect to x i. 

(b) l f L  is symmetric and strongly elliptic K is a selfadfoint semibounded extension o f  - L  with 

O(L) given by (6). 

REMARKS. The simplest example is the usual Wiener process where a =/3 = 1 and Kf= - A f  
for f E  W~(IR n) = O(K). Estimate (3) is satisfied also for canonical diffusion processes (see 
Dynkin [14] ) or for generalized diffusion processes (see Portenko [15] ). 

Assumption 2 implies l e - tg f l  = ~ - n / 2  et/5 4 Ill. Such an estimate is also satisfied in the 

physically more interesting case of a Schr6dinger operator with magnetic field (see Simon [16] ) 

where K is given by �89 - A) 2 with some vector potential A(x). 

2.2. Perturbed Diffusion Process Generators 

A S S U M P T I O N  3. Let V be a nonnegative multiplication operator given by V(x) = VR (x) + Vs(x ) 

with VR(x)EL=(IR n) and V s ( x ) = %  x E G ,  and Vs(x)=O, xEIRn\G,  whereGissome 
compact region in IR n. Let Xc( ' )  be the indicator function o f  G. We set VM(X ) = VR(X) + Mxa(x),  

M >~ O. Finally, we assume a truncation projection P given by (Pf)(x) = Xm n\c(x) f (x  ), 
f @ L 2 (lRn). 

In the following theorems all three assumptions are supposed. 

THEOREM 2. Set K M = K + V M. Then K M generates a contractive Co-semi group which can be 
represented by 

(exp (--tKm)f)(x)= / e x p  

$2 x 

t 

-- f VM(CO(S)) ds}f(eo(t))Px(dw), 
o 

t ~> 0, (7) 

for all f E L 2 (IR n) and a.a. x E IR n. 

THE O REM 3. The semigroup e- tKM has a strong limit as M-~ o o  for each t >~ O. Calling this 
limit U(t) it holds for all f EL2(IR n) and a.a. x E IR n 

(U(t) f)(x)= f exp l -  [ VR(W(s)) ds f(eo(t))X(~)Px(dco), 

~2 x 

(8) 
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with X(co) = X{ co: co(s) q~ G, s E [0, t ] ,  co(O) = x }. In particular, U(t)P = PU(t). 

contractive Co-semigroup in L 2 (IRn\G). Denoting its generator by K= we get 
e - t K ~ p  = U(t)P = U(t). 

u ( t )  is a 

THEOREM 4. Let n > 2 

(a) K~ is an extension o f  K + VR restricted to L 2 (IRn\G) n O(K) where LoORn\G) is the 

space o f  all L X-functions with compact support in IRn\G. 

(b) l f  K is selfadfoint and semibounded then K~ is the Friedrichs extension o f  K + V R 

restricted to L 2 (IRn\G) N O(K). 

THEOREM 5. Let n > 2. 

(a) The difference e - tKM - e- tK~p,  t > 0 is a trace class operator for each M ~ O. I t  

tends to zero in trace norm as M ~ ~o. 

(b) l f  K and K~ are selfadjoint the wave operators W+_ (K~, P, KM) = s -- limt--, _+ 

X eitK~p e-itKMPaMc exist and are complete, pM is the projection onto the absolutely 

continuous subspace o f  K M. 

In proving the last two theorems we need the following Lemma. 

LEMMA: Let Tt(co) be the penetration time o f  w(s) in G during [0, t ] .  Let x E IRn\G and the 

distance between x and G p(x, G) > O. Let  n > 2. Then the measure o f  all paths with values in 

G can be estimated by 

Px {co: Tt(co) > O, CO(O)=x}<. C1 exp ( - C 2  p2(x't G_~___))) (9) 

where C,, C2 are some constants depending on ~, ~ and n. 

REMARKS. The Equations (7) and (8) are the diffusion process form of  the Feynman-Kac  

formula or a special form of  Ito's formula. They can be extended to more general VR (x). But 

the aim here is to investigate the singular potential influence. 

The most interesting case of  Theorem 4 with respect to the scattering theory are essentially. 

selfadjoint elliptic differential operators. In that case K~ is the selfadjoint operator in L 2 (IRn\G) 

generated by N~,I= 1 ~/~Xi(ai](X)~/~X]) + VR(X) with Dirichlet boundary condition with respect 

to G. 

3. PROOFS 

As mentioned, the main parts of  this paper are the resnlts and remarks of  Section 2. The proofs 

here are reduced very strongly or only sketched. More details are given in [1] and [2].  

Proof to Theorem 1: (a) See [2].  Let f C  O(L)given by (6). It is to prove [It-1 (I - e- tK) f+Lf l l  

tends to zero as t ~ 0. Expanding f (y)  - f ( x )  up to second order it suffices to show 
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II 1 [ .. t~lim= t . ( Y i -  xi)(Y] - xi)p(t, x, y) dyfxix](2 ) - 
IR n 

-- a i ] (X ) f x i x ] (X ) [ t  = O, ( 1 0 )  

lira II 1 / t-* ~ t (Vi - xi)P(t, x, y)  dyfxi(X ) - bi(x)fxi(x)ll = O, 
IR n 

(11) 

with X = ( X  1 . . . . .  x i + O l x i - - Y i [  , ...,x/ + O l x i - y i [  . . . . .  Xn )  , 0<.0 <~ 1. 
(10) holds using the fact that a(x) is the diffusion matrix of the process considered, using the 

definition (6) of O(L) and estimation (3). For (11) we need that b(x) is the drift vector of the 

process and estimation (3) such that (11) is satisfied if 1/tf ~-yt< e (Yi-xi)p(t, x,y)dyfxi(X) is 

in L2(IRn). This holds because by Assumptions 1 and the assumptions in the theorem the 

process considered is a unique solution of the stochastic differential equation corresponding to 

b(x) and a(x), where o(x) is given by a(x) = o(x)o(x). Hence (see e.g. Friedman [17] ) 

t 

1 dSPx(dco) t (Cl C2x]) 1/z 

[ x - y l < e  ~2 x 0 

with some positive constants C1, C2. By (6) (1 +x])l/2fxi(X) ELa(IRn). 
(b) I fL  is symmetric and semibounded on Co(IR n) C O(K) the same holds for K because 

C~ is dense in 0(K). Then the Hille-Yosida theorem provides the selfadjointness of K. 

Proof o f  Theorem 2. For K and VM the Trotter product formula holds. Then the representation 

(7) of the semigroup e-  t(K+ VM) follows by the definition of the measure Px { .}. The Co-property 

is a consequence of the C0-property of e -  t K .  

Proof o f  Theorem 3. By the dominated convergence theorem it suffices to prove the pointwise 

convergence of(e-tI(Mf)(x).  Using (7) we have for each f E L 2 ( I R  n) and for N > M  

f 
-- t K M f ) ( X )  --  ( e -  t K N j O ( X  ) = ] f ( c o ( I ) )  ( e  - T t (  co)M _ e - T t (  c o ) N ) e  x (do9). (e 

~2 x 

Tt(co) is the penetration time of co(s) in G during [0, t] .  Because the paths are continuous the 

integral over (co: Tt(co) < e} tends to zero as e ~ 0. And the integral over {co: Tt(co) i> e} is 

smaller than e-  eM lift tending to zero as M ~ oo. Calling the limit U(t) (8) follows on account 

of the definition of Px (.  }. By (8) U(t) = U(t)P = PU(t) follows immediately. The Co-semigroup 

property of U(t) comes from that of e -  triM. 

Proof o f  the Lemma. Let (ti} be a countable dense set in [0, t].  Let x E IRn\G, p(x, G) > O. 
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On account of  the continuity of  co(t) we obtain Px {co: Tt(co) > 0 } <~Px {U/(co: Ico(t/) - x l /> 
1 p(x, G)}. Using the Markov process theory (see Dynkin [18] p. 128) this is smaller than 

Px {co: tco(t) - x[>~p(x ,  G)} +Px {co: Ico(s) - co(t)i >~p(x,  G)} with some s(co) E [0, t ] .  

By means of  (3) it follows 

P~ {co: Tt(co) > 0)  <C1  

That implies estimate (9) if n > 2. 

exp 4 2 
C 2 (p2(x,  G)/t)  

Proof o f  Theorem4. (a) Let fEL2(IRn\G)  with support S. Let G1 be a region, such that 

G C G1 Q IRn\S with p(G, IRn\G1 ) ~ d, P(Ga, S) ~ d with some d > 0. Then 

I l t - l ( f  - e-tK~ -- (1(+ VR)fll~,(mn ) <<. lit - 1  e-tK*fllL2(C,) + 

+ I l t - t ( e - t K ~ f -  e--t(K+VR)f)II~2(IRn\G1) + 

+ lit-- l ( f  - e-t(K+VR)f) -- (1<2 + VR)fI[~2 (ran\G,). 

The first term tends to zero as t + 0 because of  (3) and p(GI, S) >~ d. The second term vanishes 

by use of  the Lemma. The third term is zero as t ~ 0, obviously. 

(b) I f  K is selfadjoint, semibounded the same holds for Ko~ in the same manner as in Theorem 

1 (b). The proof  that K is exactly the Friedrichs extension of K + VR restricted to L 2 (IRn\G) (q O(K) 
is given in [10]. 

Proof o f  Theorem 5. (a) Let ~2 y ' t  be the set of  all continuous functions from [0, t] with 

co(0) = x and co(t) = y. On f2x y' t there is a conditional measure PY' t ( 0  corresponding to Px(') 
such that for x E IRn\G. 

py, t {co: Tt(co) > O} = p(t, x, Y)Px {co: Tt(co) ~> 0). 

The advantage ofPYx ' t is that the semigroups e - tKM and e - t K ~  turn out to be integral operators 

with kernels 

t t 

,t 0 ~2 y ' t  

Let the operator D be given by (Df)(x) = (1 + lx iz)n/2f(x). The trace norm, if it exists, can be 

estimated by 
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lie -2tKM --e-2tK~plll ~ [le-tKMv -1112 IID(e - t K M -  e-tK~p)ll2 + 

+ liD- 1 e-  tK~pI[2 II (e-  tgM _ e-  tK ~P)D [12, 

where [I. 112 denotes the Hilbert-Schmidt norm. The kernels of e-  tKMD- 1 and D -  1 e-  tK~p are 
inL2(iN n . INn), trivially. IID(e - tgM - e-tg~e)ll~ is smaller than 

/ dxdy(1 + Ix12) n X 
IR n IR n 

/ f  [ e x p ( - f  V M ( C O ( s ) ) d s ) - x ( c o ) e x p ( - f  VR(co(s))d ' t(dw) 
l a Y ' t [  0 o 

Because of Theorem3 the integrand tends to zero as M-+ oo. Its square root is smaller than 

(1 + txl2)n/2p(t, x, Y)Px {co: Tt(co ) > 0}, which is in L2(IN n �9 IN n )  by the lemma. 

(b) Because e-K=P -- P e -KM and e-KMp -- P e - x =  are trace class @erators the two-space 

wave operators We (e-K% P, e -KM) exist and are complete. Hence the invariance principle for 

wave operators (see Pearson [19]) provides the existence of W+_(Kv, P, KM) and W+_(KM, P, K=). 
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