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Abstract. A higher spin analogue is presented of the eight vertex-SOS correspondence in the sense of 
Andrews-Baxter-Forrester. The resulting hierarchy of solvable models contain the hard hexagon model and 
its recent multi-state generalizations. 

I .  I n t r o d u c t i o n  

Among exactly solved models in two-dimensional lattice statistics, the eight vertex 
model and the hard hexagon model stand as the prototype [1]. In these models, the 
fluctuation variables are placed either on each edge or on each site of the lattice, and 
are allowed to take two possible states. The Boltzmann weights satisfy the star-triangle 
relation (STR), which ensures solvability of the model. 

It has been noted earlier by Baxter [2] that one can associate to the eight vertex model 
a series of multi-state SOS models in which neighbouring heights must differ by unity 
(see Section 4 below). Subsequently, the hard hexagon model was identified as the 
simplest nontrivial one in this SOS hierarchy [3]. 

The algebraic structure that underlies the eight vertex model is a deformation of the 
universal enveloping algebra of st(2) as formulated by Sklyanin [4]. From this point of 
view, the original eight vertex model corresponds to the spin �89 representation. In [5] was 
developed a method to generate vertex models corresponding to higher spin represen- 
tations, sometimes referred to in the literature as the fusion procedure. One is then 
tempted to examine SO S hierarchies associated with these 'higher spin' models. The aim 
of the present article is to execute this program. In so doing we find that the recent 
(N + 1)-state generalization of the hard hexagon model of Kuniba-Akutsu-Wadati [6] 
(N = 2, 3, 4) and Baxter-Andrews [7] (N = 2) is actually contained in the spin N/2 SOS 
hierarchy. 

In Section 2 we reformulate the fusion procedure in terms of the eight vertex SOS 
model. For each N we obtain a series of models in which the height variables/,, run over 
integers with the restriction 1,.-/j = N, N - 2  . . . . .  - N  for adjacent sites i,j. The 
Boltzmann weights are Nth order polynomials of elliptic theta functions of u depending 
on arbitrary parameters 2 and ~. An explicit formula is given in the appendix. In 
Section 3, we describe a reduction of these models by specializing r to 0 and 2 to a 
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fraction 2K/L of the period, thereby getting a model with finitely many states. In 
Section 4, we discuss the relation between the fusion procedures for the vertex and SOS 
models. 

Throughout the paper we use the following notations for the Jacobian theta functions 
of half periods K, iK' [8]: 

[u] = n(2u)| (2: a c o n s t a n t ) ,  

[u]m=[u][u-1]...[u-m+l], [U]=[Ulm/[m]m.  

2. Fusion of  the Eight Vertex SOS Model  

Consider a weight Wpq(a, b, c, d[ u) where p, q ~ N, a, b, c, d ~ Z and u ~ C. Here, 
a, b, c, d represent the 'heights' of four surrounding sites of a face at the SW, SE, NE, 
NW comers, respectively. We require that the heights li,/j of two adjacent sites i,j are 
subject to the following condition 

(I, - l s + N ) / 2  e {0, 1 . . . . .  N } ,  (1) 

where N = p for a horizontal pair (i, j), N = q for a vertical pair (i, j). Sometimes we 
denote the (p, q)-weight Wpq(a, b, c, d[ u) by 

U 
b pq 

By the STR of type (p, q, r) we mean 

E Wpq(a, b, g,f] u)Wpr(f, g, d, e ]u + v)Wqr(g, b, c, dr v) g 
= E Wqr(f, a, g, el v)Wpr(a, b, c, g lu + v)Wpq(g, c, d, el u). (2) 

g 

Let us construct such a solution to (2) that the (1, D-weight is given by the weight 
of the eight vertex SOS model [2]: 

(, (, - u = [ u +  1 ] / [ 1 1 ,  
l +  1 l +  11 l +  1 

(' '+'L) 
- u = [ ~ + / + _ I ] [ u ] / [ I } [ ~ + / ] ,  

lT  1 l 11 

I+  1 \ 
u l  = [r + l ~  ul/[r + l] ,  

l / /  II 

where ~ is a constant. 
The (p, 1)-weight is obtained by 'fusing' the (1, 1)-weight: 

Wpl(a,b,c,d[u) 

=(E fi Wll(bl-l'bi'ct'ci-llUl-P-i)) 

(3) 

(4) 
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where b o = a ,  bp=b, co=d, Cp=C, the sum is over bl . . . . .  bp_~ such that 
Ib, - b,+ ll = 1 and c~ . . . .  ,Cp_ l are arbitrary under Ici  - c i+  l l  = 1. By using the 
STR(2) with u = - 1 for the (1, 1)-weight, one can show that (4) is independent of the 
choice of c~ . . . . .  Cp_ 1. In fact, we have 

( '  ' )p [ "' plE ' "p]/ u = 4 + - -  u +  [1 ] [ r  1], 
/ + 1  l ' + 1  1 2 2 

( ll+1 l'-11' U)p = i - u +  I+I'-p]II'-I+P]/[1][~+I],-2 2 

(t  r ) [ t+t' +?][:-t' +?]/t u = r  1 ] [ ~ + / ] ,  
l - 1  l ' + 1  pl 2 2 

(, , E ,,,,pIE ,,,p]/ u = 4+  u +  [1 ] [4+1]  
l - 1  l ' - 1  1 2 2 " 

(5) 

For general (p, q), the weight is given by (see the appendix) 

Wpq(a, b, c, d lu ) 

= Wqp(a,d,c, b t u + p - q )  

= ( ~  FI wpl(ai, bi, b i - l , a i _ l l U - q +  i)~ [1]q/[q]q (q ~<p), (6) 
\ i=I / 

where ao = d, aq = a, bo = c, bq = b, and the sum is over a~ ..... aq_ i such that 

l a,- a,+ i[ = I. Again, (6) is independent of the choice of b~ ..... bq_ i under 

Ib,- bi+11 = 1. 
The following is a direct consequence of the fact that the (1, 1)-weight satisfies the 

STR. 

THEOREM 1. The system of weights Wpq(a, b, c, d l u) (p, q ~ N) given by (3)-(6) satisfies 
the STR (2). 

Define 

((a, b)p(d, a)qy/2 
Spq(a,b,c, dtu ) = \~C~p(C,~q/i Wpq(a'b'c'dlu)' 
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The STR (2) is equally valid for Spq. Using the explicit formulas in the appendix, we 

have 

T H E O R E M  2. 

Spq(a, b, c, d l u) = Spq(C, d, a, b l u ) ,  

= (gagc/gbga)Sm(b,  a, d, c l - p  + q - 1 - u ) ,  

where 

g, = e t ~ + l] , e~ = 1 and e,e,+ , = ( -  )z.  

3. Restricted Model 

In this section, we will treat the case p = q = N only. So far the parameters  2, ~ were 
arbitrary. We now specialize them to 2 - 2 K / L  (L: a positive integer > N),  ~ = 0, and 

impose besides (1) the following restrictions to the height variables li: 

l , ~ { 1 , 2 , . . . , L -  1}, N < I , + l y < 2 L - N ,  (7) 

where i and j are adjacent sites. This provides us with f'mitely many  Bol tzmann weights. 
In [3] the case N = 1 was considered and the model  obtained was called the restricted 

SOS model. We have in general 

T H E O R E M  3. For an arbitrary N,  the weights o f  the restricted S O S  model  satisfy the 

S T R  (2) with p = q = r = N among themselves. 

Ske tch  o f  proof. Because of  the l emma in [9], it is sufficient to show the unitarity 

[ + ull-N- u]I (8) 
N~v J k  N J M, AN, k,l(U)Ay, k,l(--U) = 

where 

A~,k.Au) 

= (SNN(1 + N - 2r, l + 2(N - k),  1 + N - 2s, II U))m I ~ r . s ~ m : ,  

M = m 2 - m I + 1, ml = max(0,  2 N -  k + ! - L + 1) and m2 = min(l  - l, k ) .  

| fm~ = 0 and m2 = k, then (8) follows from Theorem 1. Other cases reduce to this case 
by the following identities. 

SNN(1 + N - 2r, l + 2(N - k), l + N - 2s, II u) 

= ( [N - Ulk- t+ 1/ [N]k-  t+ , ) S ~ ( 1  + N - 2r, i + 2(N - k), i + N - 2s, II u) 

( ~ r = N - k + l -  1 ,  - # = l -  1, l = k +  1, m l < ~ r , s < < . k < k ) ,  

SNN(L  - a, L - b, L - c, L - d[ u) = SN~(a ,  b, c, dl  u ) .  
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The resulting models are grouped together by parity of  N, L, and I v For  even N, it 

suffices to consider the three cases (a) L even, I e even (b) L even, l, odd (c) L odd, l i odd. 

For  odd N, the lattice is divided into two sublattices X, Y in such a way that/~ is odd 

for i ~ X and l; is even for i ~ Y. There are two cases (d) L odd (e) L even. In the case (e), 

the number o f  states is L/2 for i ~ X and L/2 - 1 for i e Y. 

These hierarchies contain several known models. For  N = 2, the cases (a) and (b) are 

obtained in [10] and [11 ], respectively (communicated by A. Kuniba). The two cases 

N = k -  1, L = 2k + 1, and N =  k, L = 2k + 1 o f ( c )  and (d) lead to the same model. 

In terms of  the variable (r e = the integer part of  I1 i - L/21, the restrictions (1), (7) then 

read as (r, = 0, 1 . . . . .  k - 1, a,. + ~. ~ k - 1. For  small k this model coincides with the 

hard hexagon model [ 1 ] (k = 2) and its generalizations obtained in [6] (k = 3, 4, 5) and 
[7] (k = 3). 

4. Vertex-SOS Correspondence 

Originally the fusion procedure was developed for vertex models [5]. Here we relate the 
construction therein to our SOS model. 

The fusion procedure for the eight vertex model goes as follows [12]. Let 

3 
R(u) = y~ w.(u)(ro | (to, 

a=O 

Wo. 3(u) = 0 ( 2 ) ( |  + 1)) + H(2u)|  + 1))), 

Wl. 2(u) = H(2) ( |  + 1)) + H(2u)n (2 (u  + 1))), 

be the matrix of  vertex weights of  the eight vertex model, where (ro = id. and (ra are the 

Pauli matrices. We regard R(u)  as an operator acting on C 2 |  C:.  Let p, q be positive 

integers and let 11,. = Vj = C 2 (i = 1 . . . . .  p, j = 1 . . . .  , q). By R'7(u) we mean the operator 

R(u)  acting on V,.| V/. We define an operator acting on (V  1 | . . .  | Vp)|  Vj by 

R(I  p ) j ( u )  

= Po . . .p )R  IJ(u + p - 1 ) ' " R P J ( u ) P o .  ..p)/[u + p - 1 ] p _  1 , 

where P(I...p) denotes the projector on the space of  symmetric tensors in V~ | �9 �9 �9 | lip. 

We also define an operator acting on V~ | . . .  | lip | Vq | . . .  | V; by 

Rpq(U)  = e~q . . .  1)R(1...p)l(U)...R(1 . . .p)q(U - q + 1)P~q... 1)' 

The matrix elements o f  Rpq(U) are the vertex weights of  the spin(p/2, q/2) representation. 
Define vectors 

~ab(U) = t(H(2(s~ -T- u)), |  -T- u))) 

if b = a + 1, ~p.b(U) = 0 otherwise. Here s~ = s -+ + a and s -+ are constants related to 
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by ~ = (s + + s - ) / 2  - K/2. Put 

o (u) 

= P ( l . . . p ) ( ~ a o a l ( U  + p  - 1 ) |  �9 ' | ) (a o = a, ap = b), 

o (u) 

= P~q. .l~(~b~o~t(u + q -  1 ) | 1 7 4  ( a o = a , a  o= b), 

where a,. is a sequence of  integers satisfying ]a i - a,. .  11 = 1. These  are independent  of  

the choice of  a e. We  have then 

Rpq(u) (~)p, dc(u) ~ ~Yq, ca(O)) 

: [q]q E Wpq(a, b, c, dl (p i> q) .  
a 

This type of  relation was first es tabl ished by Baxter  [2] for the case  p = q = 1. We 

have checked that  the vertex weights cor responding to the sp in ( l ,  1) representat ion are 

identical with those of  the model  o f  Fa teev  [ 13], as pointed out  in [5]. We  note also that  

Theorem 3 of  [ 12] fails except in the case p = 1 or  q = 1, an error due to overcounting 

common zeros of  the weights. 

A p p e n d i x  

We give below formulas  for the unsymmetr ized  Bol tzmann  weights Wpq(a, b, c, d] u) (6). 

In either of  the four cases I a - b[ -- p or  [ b - c [ -- q or I c - d I = P or  [ d - a [ = q they 

have the factorized form: 

l l + 2m - p u~ 

l + 2r - q l + 2m - p + q Jpq 

f p -  m l [ r  + l + m + r - p - 1 ] I m  + u] [ r  + l + m + u] 
q - r  r r q - r  

I~ ~ l + r l l  r + l + 2 r -  q r r 11 

l l + 2 m - p q  u) 

l + 2r - q l + 2m - p - pq 

q - r  AL q - r  r 
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Using these weights we have in general 

l 

l +  2 r - q  
, qU) L:] 

l' + 2s - pq 

ram(r, s) 

E 
y = max(O,r+s- 

I 1' u ) 
- q + s  x 

q) l + 2 j - s  l' + s  ps 

,,+s ) 
x l '  u + 2r q + 2s - q p , q - s  

k = max(o.,--s) \ l  + 2k - q + s "1)  U - - S  
1' -- q + S p , q - s  

l + 2 k - q + s  l' - q + s  ) 
U . 

• - l' l + 2 r  q + 2s  - q p~ 

X 
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