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Abstract. In terms of Fueter analytic functions, a classical solution of the Liouville equation in a four- 
dimensional Euclidean space depending on two arbitrary complex functions is obtained and discussed. 

Functions with Fueter analyticity [1-4]  may be used to solve various differential 
equations. In particular, as is well known, free Maxwell equations may be rewritten in 
a form coinciding with the Fueter analyticity condition, and every pure imaginary Fueter 

analytic function provides a solution to some of these equations [5]. The Laplace 
equation may be used as another example for obtaining solutions with the help of  such 

functions [6]. 
On the other hand, these functions realize some transformations in four-dimensional 

space just as the usual analytic functions do in the complex plane. They act on and 

preserve the set of  solutions of the above-mentioned differential equations. That is why 
we say that these equations are invariant with respect to the action of some operators 

forming an infinite-dimensional algebra, which can be obtained as a Lie algebra of these 
transformations. 

In this Letter we show how to construct some classical solutions of  the Liouville 
equation in a four-dimensional Euclidean space in terms of Fueter analytic functions. 

Let us write the Liouville equation in our case in the form 

[] (o(x) + exp [2~o(x)] = 0 (1) 

where 

[] - (# = 0, 1 ,2 ,3)  

is the four-dimensional Laplace operator and 2 is a constant. The field ~p(x) is a complex 
field. 

Then we can prove the following theorem: 

THEOREM.  Let  A(x )  and B(x )  be two arbitrary complex Fueter analytic functions. Then 

the function 
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q~(x) = 1 ha 8 aoA(x ) Oo-B(x ) (2) 

,~ ~ [ a ( x )  - N ( x ) l  2 ' 

where B(x) denotes the complex conjugated function, is a solution of Equation (1). 

The Fueter analyticity for the functions A(x) and B(x) means that they satisfy the 
following conditions: 

~ A ( x )  = ~ B ( x )  = O,  

where the operator ~ has the form 
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and e, denotes the quaternion units 

e,ej = - ~o + ~,j,,ek. 

@ = 0  o+e ;d  t (i= 1,2,3);  a , -  (4) 
Ox u 

(5) 

On the other hand, the theorem says that A(x) and B(x) are complex functions. To 
combine these two statements, we can consider the imaginary unit of the complex 
functions A(x) and B(x) as one of the quaternion units. This means that we assume A(x) 
and B(x) to be some quaternion functions but depending on one of the quaternion units 
only. In this case, the complex conjugation of the function B(x) coincides with the 
quaternion conjugation of the same function. 

To show that such functions exist, we use the method suggested in a previous 
paper [6]. There we can see that to every analytic function w(zl, z2) of two complex 
variables corresponds a one-parameter family of Fueter analytic functions. To briefly 
describe this method, let us denote by 

U = U(Ul,  1)1; u2, I)2), V = V(Ul, 1)1; u2, 1)2) 

the real and imaginary parts of w(zl, z2) respectively, where 

u~=Rez~,  1)~=Imz~ (~= 1,2). 

If, moreover, we denote 

4+_ = Xo + exxl ; ~+_ = x3 + elx2,  

then the functions 

f (x )  = R(x) + eaJ(x ) 

where 

g(x) = u(~_, n+ ; ~+, n-)  + cU(r n- ; ~-, n+), 

s(x) = v (r  n+ ; r n - )  + cV(r n-  ; ~ - ,  n+) 

(c is an arbitrary constant) have Fueter analyticity. 

(6) 

(7) 

(8) 

(3) 
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Because U is a real function, U(r r/+ ; r r/_) and U(r ;7_ ; ~_, q+) are 
quaternions conjugated to each other. From (6), we can see that this function contains 
only one of the quaternion units - el. The same is valid for the function V. 

Now if we choose 

c = l  

then the functions R(x)  and J (x )  become real. In this case, f ( x )  is a usual complex 
function and the imaginary unit coincides with e 3. After taking A(x )  and B(x )  as 
functions of the type described above, we can prove our theorem. For this purpose we 
must insert qJ(x) from Equation (2) into Equation (1). In the course of these calculations, 
one makes use of the relations 

[ ]  = ~ = ~ 

where ~ = do - e; ~; (the quaternion conjugate) and 

~ a ( x )  = ~ A ( x )  = 0 ,  

which lead to the following identities: 

e i 8,A(x) = - aoA(x) ,  

ei OiB(x) = 8oB(x) . 

(Note that A(x)  and B ( x )  commute with each other.) Using direct calculations, we can 
obtain the relations 

[ ] In  8oA3o~_ 8 8oA8o ~ (9) 
(A - ~ ) 2  (,4 - ~ ) 2  

Using the last equality, it is easy to prove our theorem. 
Finally, let us note that the obtained solution (2) has two different symmetries. The 

first one is connected with the group SL(2, R). Actually, the quantity 

~oA(x) ~oa(X) 

[A(x)  - ~ ( x ) ]  2 

is invariant under the following fractional linear transformation 

A ( x ) - ,  ~A(x) + fl ," S ( x ) - ,  ~ ( x )  + fl , (lO) 
~,.4(x) + b ~,B(x) + 

where the 2 • 2 matrix 

is an arbitrary element of the group SL(2, R). That is why solution (2) is also invariant 
under the transformations (10). 
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The second symmetry is connected with the group of diffeomorphisms of the four- 
dimensional real space as a manifold preserving the Fueter analyticity of functions A(x) 
and B(x). In our case, we can construct such diffeomorphisms on the basis of the 
correspondence between the analytic functions w(z~, z2) of two complex variables and 
Fueter analytic functions, which we have considered above. Actually, to every 
diffeomorphism of the two-dimensional complex space as a manifold on which the 
analytic function w(zl, z2) is defined, corresponds some diffeomorphism of the 
four-dimensional space on which the corresponding Fueter analytic function is defined. 
Then it is easy to see that, as a result of such transformation, the functions A(x) and 
B(x) preserve its Fueter analyticity and, on the other hand, they remain usual complex 
functions (we must keep in mind that c = 1). The group of these diffeomorphisms is an 
infinite-dimensional Lie group and its algebra has been described in [6] in this 
connection, see also [7]). 
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